Omega-3 Fatty Acids: From Natural Sources to Clinical Applications: An Integrative Review

Authors

Abstract

Omega-3 fatty acids, including alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are essential polyunsaturated fats known for their vital roles in cardiovascular, neurological, and inflammatory health. Growing awareness of their therapeutic benefits, coupled with sustainability concerns, has intensified research into their natural sources, biosynthesis, pharmacokinetics, and clinical applications. This review provides an integrative synthesis of recent advances in omega-3 fatty acid research, encompassing their sources, bioavailability, sustainability, mechanisms of action, and clinical relevance. Plant-based oils, marine fish, krill, and microalgae remain key natural sources, while innovations such as algal oils and genetically engineered crops present sustainable alternatives. The human conversion of ALA to EPA and DHA is inherently limited due to Δ6-desaturase and elongase enzyme constraints, with efficiency affected by genetic, hormonal, and dietary factors. Bioavailability is influenced by molecular form, with triglyceride, ethyl ester, and phospholipid structures displaying varying absorption and metabolic profiles. Mechanistically, omega-3 fatty acids regulate inflammation, maintain neuronal membrane integrity, and improve vascular function, with emerging evidence suggesting potential anti-cancer effects. Collectively, these insights underscore the significant preventive and therapeutic potential of omega-3 fatty acids and highlight the need for optimizing bioavailability, advancing sustainable production, and personalizing clinical applications to support future nutrition and healthcare strategies.

Keywords: Omega-3 fatty acids, Eicosapentaenoic acid, Docosahexaenoic acid , Bioavailability, Sustainable nutrient sources, Clinical nutrition

Keywords:

Omega-3 fatty acids, Eicosapentaenoic acid, Docosahexaenoic acid , Bioavailability, Sustainable nutrient sources, Clinical nutrition

DOI

https://doi.org/10.22270/jddt.v15i11.7463

Author Biographies

Poonam Sahu , Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Shiv Kumar Bhardwaj , Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Abinash Satapathy , College of Veterinary Science and Animal Husbandry, Anjora, Durg, 491001, C.G, India

College of Veterinary Science and Animal Husbandry, Anjora, Durg, 491001, C.G, India

Abhisek Satapathy , Pt J.N.M. Medical College, Railway Station Rd, Moudhapara, Raipur-492001, C.G., India

Pt J.N.M. Medical College, Railway Station Rd, Moudhapara, Raipur-492001, C.G., India

Arvind Kumar , Faculty of Pharmacy, Kalinga University, Kotni, Naya Raipur- 492001, C.G., India

Faculty of Pharmacy, Kalinga University, Kotni, Naya Raipur- 492001, C.G., India

Manoj Kumar , Department of Pharmacy, Guru Ghasidas Central University, Koni, Bilaspur-495009, C.G., India

Department of Pharmacy, Guru Ghasidas Central University, Koni, Bilaspur-495009, C.G., India

Princy Kashyap , Department of Pharmacy, Guru Ghasidas Central University, Koni, Bilaspur-495009, C.G., India

Department of Pharmacy, Guru Ghasidas Central University, Koni, Bilaspur-495009, C.G., India

Kunal Chandrakar , University College of Pharmacy, CSVTU, Bhilai- 491107, C.G., India

University College of Pharmacy, CSVTU, Bhilai- 491107, C.G., India

Manisha Chandrakar , University College of Pharmacy, CSVTU, Bhilai- 491107, C.G., India

University College of Pharmacy, CSVTU, Bhilai- 491107, C.G., India

References

[1] Cholewski, M., Tomczykowa, M., & Tomczyk, M. A comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids. Nutrients, 2018;10(11):1662. https://doi.org/10.3390/nu10111662

[2] Saini, R. K., Prasad, P., Sreedhar, R. V., Akhilender Naidu, K., Shang, X., & Keum, Y. S. Omega-3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits-A review. Antioxidants, 2021;10(10):1627. https://doi.org/10.3390/antiox10101627

[3] Zhang, N., Ren, Y., & Xu, Y. From laboratory to clinic: opportunities and challenges of functional food active ingredients in cancer therapy. Frontiers in Nutrition, 2025;12:1627949. https://doi.org/10.3389/fnut.2025.1627949

[4] Caruso, G., Floris, R., Serangeli, C., & Di Paola, L. Fishery wastes as a yet undiscovered treasure from the sea: Biomolecules sources, extraction methods and valorization. Marine drugs, 2020;18(12):622. https://doi.org/10.3390/md18120622

[5] Ahmad, M. Z., Ahmad, J., Zafar, S., Warsi, M. H., Abdel-Wahab, B. A., Akhter, S., & Alam, M. A. Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Therapeutic delivery, 2020;11(1):851-868. https://doi.org/10.4155/tde-2019-0072

[6] Weylandt, K. H., Serini, S., Chen, Y. Q., Su, H. M., Lim, K., Cittadini, A., &Calviello, G. Omega‐3 polyunsaturated fatty acids: the way forward in times of mixed evidence. BioMed research international, 2015(1), 143109. https://doi.org/10.1155/2015/143109

[7] Owuonda, S., &Olembo, S. Balancing the Right to Food and Environmental Sustainability: A Call for Holistic Transformation. African Journal of Food, Agriculture, Nutrition and Development, 2024;24(10):24790-24806. https://doi.org/10.22004/ag.econ.348074

[8] Wang L, Cheng C, Yu X, Guo L, Wan X, Xu J, Xiang X, Yang J, Kang J, Deng Q. Conversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acids: bioavailability and dietary regulation. Critical Reviews in Food Science and Nutrition. 2024 Dec 12:1-33. https://doi.org/10.1080/10408398.2024.2442064

[9] Liu Y, Jandacek R, Rider T, Tso P, McNamara RK. Elevated delta-6 desaturase (FADS2) expression in the postmortem prefrontal cortex of schizophrenic patients: relationship with fatty acid composition. Schizophrenia research. 2009 Apr 1; 109(1-3):113-20. https://doi.org/10.1016/j.schres.2008.12.027

[10] Ferdinandusse S, Denis S, Mooijer PA, Zhang Z, Reddy JK, Spector AA, Wanders RJ. Identification of the peroxisomal β-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. Journal of lipid research. 2001 Dec 1; 42(12):1987-95. https://doi.org/10.1016/S0022-2275(20)31527-3

[11] Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr.. 2004 Jul 14; 24(1):597-615. https://doi.org/10.1146/annurev.nutr.24.012003.132106

[12] Satapathy T, Patel N, Sahu P, Satapathy A. Decoding Inflammatory Signaling Networks: From Molecular Mechanisms to Therapeutic Targets. Advances in Biomarker Sciences and Technology. 2025 Jul 30. https://doi.org/10.1016/j.abst.2025.07.002

[13] Satapathy T, Yadu H, Sahu P. Protective Role of Herbal Bioactive in Modulation of PDGF-VEGF-TGFβ-EGF Fibroblast Proliferation and Re-epithelialization for the Enhancement of Tissue Strength and Wound Healing. Regenerative Engineering and Translational Medicine. 2025 Sep 22: 1-22. https://doi.org/10.1007/s40883-025-00495-w

[14] Rizzo G, Baroni L, Lombardo M. Promising sources of plant-derived polyunsaturated fatty acids: A narrative review. International Journal of Environmental Research and Public Health. 2023 Jan 17; 20(3):1683. https://doi.org/10.3390/ijerph20031683

[15] Satapathy T, Kasture SB, Kurrey SS, Meher B. Evaluation of anxiolytic potential of Linum usitatissimum oil in wistar rats. Journal of Applied Pharmaceutical Research. 2014 Sep 24; 2(3):05-9.

[16] Rizzo G, Storz MA, Calapai G. The role of hemp (Cannabis sativa L.) as a functional food in vegetarian nutrition. Foods. 2023 Sep 20; 12(18):3505. https://doi.org/10.3390/foods12183505

[17] Bertoni C, Abodi M, D’Oria V, Milani GP, Agostoni C, Mazzocchi A. Alpha-linolenic acid and cardiovascular events: a narrative review. International journal of molecular sciences. 2023 Sep 20; 24(18):14319. https://doi.org/10.3390/ijms241814319

[18] Tyagi R, Rastogi RP, Babich O, Awasthi MK, Tiwari A. New perspectives of omega-3 fatty acids from diatoms. Systems Microbiology and Biomanufacturing. 2024 Apr;4(2):528-41. https://doi.org/10.1007/s43393-023-00202-2

[19] Nostbakken OJ, Rasinger JD, Hannisdal R, Sanden M, Frøyland L, Duinker A, Frantzen S, Dahl LM, Lundebye AK, Madsen L. Levels of omega 3 fatty acids, vitamin D, dioxins and dioxin-like PCBs in oily fish; a new perspective on the reporting of nutrient and contaminant data for risk–benefit assessments of oily seafood. Environment International. 2021 Feb 1;147:106322. https://doi.org/10.1016/j.envint.2020.106322

[20] Chowdhury R, Stevens S, Gorman D, Pan A, Warnakula S, Chowdhury S, Ward H, Johnson L, Crowe F, Hu FB, Franco OH. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. Bmj. 2012 Oct 30;345. doi: https://doi.org/10.1136/bmj.e6698

[21] Choi JH, Park SE, Kim S. Antarctic Krill Euphausia superba Oil Supplementation Attenuates Hypercholesterolemia, Fatty Liver, and Oxidative Stress in Diet-Induced Obese Mice. Nutrients. 2024 Oct 24;16(21):3614. https://doi.org/10.3390/nu16213614

[22] Aksu E, Erbas O. Krill Oil Mitigates Cisplatin-Induced Ovarian Toxicity via Attenuation of Oxidative Stress and Inflammatory Pathways. Current Issues in Molecular Biology. 2025 Sep 1;47(9):708. https://doi.org/10.3390/cimb47090708

[23] Oliver L, Dietrich T, Marañón I, Villarán MC, Barrio RJ. Producing omega-3 polyunsaturated fatty acids: A review of sustainable sources and future trends for the EPA and DHA market. Resources. 2020 Dec 16;9(12):148. https://doi.org/10.3390/resources9120148

[24] Hill SL. Prospects for a sustainable increase in the availability of long chain omega 3s: Lessons from the Antarctic Krill fishery. InOmega-6/3 Fatty Acids: Functions, Sustainability Strategies and Perspectives 2012 Nov 7 (pp. 267-296). Totowa, NJ: Humana Press. DOIhttps://doi.org/10.1007/978-1-62703-215-5_14

[25] Brown RA. Psychoneuroimmunological Implications of Growing Nutrient Deficiencies and Imbalances: Omegas, Iodine, Vitamin D, Minerals. In Psycho NeuroImmunology: Volume 1: Integration of Psychology, Neurology, and Immunology 2025 Jan 17 (pp. 247-329). Cham: Springer Nature Switzerland. DOI https://doi.org/10.1007/978-3-031-73061-0_8

[26] Narkhede KP, Satapathy T, Pandit B. Protective effect of cod liver oil in experimentally induced gastric ulceration in rats. Research Journal of Pharmacy and Technology. 2019;12(1):5-10. doi: 10.5958/0974-360X.2019.00002.7.

[27] Barclay WR, Meager KM, Abril JR. Heterotrophic production of long-chain omega-3 fatty acids utilizing algae and algae-like microorganisms. In: Cohen Z, Ratledge C, editors. Single Cell Oils. Champaign (IL): AOCS Press; 2005. p. 36-52. doi: 10.1201/9781439830142.ch3

[28] Ryu AJ, Shin WS, Jang S, et al. Enhancing fatty acid and omega-3 production in Schizochytrium sp. using developed safe-harboring expression system. J Biol Eng. 2024; 18:56. doi:10.1186/s13036-024-00447-y.

[29] Liu Y, Han X, Chen Z, Yan Y, Chen Z. Selectively superior production of docosahexaenoic acid in Schizochytrium sp. through engineering the fatty acid biosynthetic pathways. Biotechnol Biofuels Bioproducts. 2024;17:75. doi:10.1186/s13068-024-02524-2.

[30] Loukil I, Loukidi A, Boubertakh A, et al. Genetic association between FADS and ELOVL genes and circulating EPA and DHA levels: a systematic review. Genes & Nutrition. 2024;19(1):17. doi:10.1186/s12263-024-00747-4.

[31] Dietrich D, Jovanovic-Gasovic S, Cao P, Kohlstedt M, Wittmann C. Refactoring the architecture of a polyketide gene cluster enhances docosahexaenoic acid production in Yarrowia lipolytica through improved expression and genetic stability. Microb Cell Fact. 2023;22:199. doi:10.1186/s12934-023-02209-9.

[32] Patted PG, Patil S, Narayan B, et al. Omega-3 fatty acids: a comprehensive scientific review of their sources, industrial applications and health benefits. Future J Pharm Sci. 2024;10(1):13. doi:10.1186/s43094-024-00667-5.

[33] Kauser S, Hussain A, Ashraf S, Fatima G, et al. Flaxseed (Linum usitatissimum); phytochemistry, pharmacological characteristics and functional food applications. Food Chemistry Advances. 2024;4:100573. doi:10.1016/j.focha.2023.100573.

[34] Seth J, Sharma S, Leong CJ, Rabkin SW. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) ameliorate heart failure through reductions in oxidative stress: a systematic review and meta-analysis. Antioxidants. 2024;13(8):955. doi:10.3390/antiox13080955.

[35] Duo X, Guo J, Shi Y, et al. Insights into the health-promoting properties of krill oil: chemical composition, bioavailability and mechanisms. Front Nutr. 2024; 11: 1388155. doi:10.3389/fnut. 2024.1388155.

[36] Parmar J, Thakkar P, Thakur S, Kuchipudi JD. Therapeutic and nutritional potential of fish liver oil: a comprehensive review. J Curr Res Food Sci. 2025;6(1):177-180. doi: 10.22271/ foodsci. 2025. v6. i1c.198

[37] Literakova P, Kralova K, Kovářová L, et al. Marine microalgae Schizochytrium demonstrates strong potential for industrial-scale omega-3 PUFA (DHA) production: optimization of cultivation conditions. Front Nutr. 2024; 11: 1290701. doi:10.3389/fnut.2024.1290701.

[38] Koh HG, Jeon S, Kim M, Chang YK, Park K, Nam K. Optimization and mechanism analysis of photosynthetic EPA production in Nannochloropsis salina: evaluating the effect of temperature and nitrogen concentrations. Plant Physiol Biochem. 2024; 211:108729. doi: 10.1016/ j.plaphy. 2024.108729.

[39] Jovanovic-Gasovic S, Dietrich D, Gläser L, Cao P, Kohlstedt M, Wittmann C. Multi-omics view of recombinant Yarrowia lipolytica: enhanced ketogenic amino acid catabolism increases polyketide-synthase-driven docosahexaenoic acid production to high selectivity at the gram scale. Metab Eng. 2023;79:1-12. doi:10.1016/j.ymben.2023.09.003

[40] Glencross BD, Bachis E, Betancor MB, Calder PC, Liland N, Newton R, Ruyter B. Omega-3 Futures in Aquaculture: Exploring the Supply and Demands for Long-Chain Omega-3 Essential Fatty Acids by Aquaculture Species. Rev Fish Sci Aquac. 2024;1–50. doi:10.1080/23308249.2024.2388563.

[41] Yin F, Sun X, Luo X, Zheng W, Yin L, Zhang Y, Fu Y. A review on marine microbial docosahexaenoic acid production through circular economy, fermentation engineering, and antioxidant technology. Mar Drugs. 2025;23(6):256. doi:10.3390/md23060256

[42] Alijani S, Mori H, Yap S, et al. Bioavailability of EPA and DHA in humans: a systematic review of chemical forms and food matrices. Food Chem. 2025; 415: 140730. doi: 10.1016/ j.foodchem. 2024.140730

[43] Vaysse C, Larvol L, Breton G. In vivo absorption and lymphatic bioavailability of docosahexaenoic acid from microalgal oil according to its physical and chemical form of vectorization. Nutrients. 2024;16(7):1014. doi:10.3390/nu16071014.

[44] Alijani S, Hahn A, Harris W S, Schuchardt J. Bioavailability of EPA and DHA in humans-a comprehensive review. Prog Lipid Res. 2024;97:101318. doi:10.1016/j.plipres.2024.101318.

[45] Seth J, Sharma S, Leong CJ, Rabkin SW. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) ameliorate heart failure through reductions in oxidative stress: a systematic review and meta-analysis. Antioxidants. 2024;13(8):955. doi:10.3390/antiox13080955

[46] Yuan Y, Tsai GJ, Shyu YW, Lei CM, Lin SY. Enhanced bioavailability of ethyl-ester ω-3 fatty acids from a novel liquid-crystalline nanoparticle formulation: a randomized crossover study in healthy subjects. Int J Pharm. 2024;636:123524. doi:10.1016/j.ijpharm.2024.123524.

[47] Katare PB, Dalmao-Fernandez A, Mengeste AM, Navabakbar F, Hamarsland H, Ellefsen S, Berge RK, Bakke HG, Nyman TA, Kase ET, Rustan AC, Thoresen GH. Krill oil supplementation in vivo promotes increased fuel metabolism and protein synthesis in cultured human skeletal muscle cells. Front Nutr. 2024; 11: 1452768. doi:10.3389/fnut.2024.1452768

[48] Takić M, Živković L, Torić J, Spasić S, Ilić I. Current insights into the effects of dietary α-linolenic acid: Metabolism, mechanisms and health implications. Int J Mol Sci. 2024;25(22):12479. doi:10.3390/ijms252212479.

[49] Bailey E, Wojcik J, Rahn M, Roos F, Spooren A, Koshibu K. Comparative bioavailability of DHA and EPA from microalgal and fish oil in adults. Int J Mol Sci. 2025;26(19):9343. doi:10.3390/ijms26199343.

[50] Jovanovic-Gasovic S, Dietrich D, Gläser L, Cao P, Kohlstedt M, Wittmann C. Refactoring the architecture of a polyketide gene cluster enhances docosahexaenoic acid production in Yarrowia lipolytica through improved expression and genetic stability. Microb Cell Fact. 2023;22:199. doi:10.1186/s12934-023-02209-9.

[51] Loukil I, Loukidi A, Boubertakh A, et al. Genetic association between FADS and ELOVL genes and circulating EPA and DHA levels: a systematic review. Genes Nutr. 2024;19(1):17. doi:10.1186/s12263-024-00747-4.

[52] Holub B, Fekete K, Yurkovetskiy A. Conversion efficiency of α-linolenic acid to long-chain omega-3 fatty acids in humans: implications for dietary recommendations. Crit Rev Food Sci Nutr. 2024;64(9):2053-2068. doi:10.1080/10408398.2023.2234469.

[53] Reyes-Pérez SD, González-Becerra K, Barrón-Cabrera E, Muñoz-Valle JF, Armendáriz-Borunda J, Martínez-López E. FADS1 genetic variant and omega-3 supplementation are associated with changes in fatty acid composition in red blood cells of subjects with obesity. Nutrients. 2024;16(20):3522. doi:10.3390/nu16203522.

[54] Wang L, Zhao L, Wei J, et al. Sex differences in erythrocyte fatty acid composition: role of hormones in n-3 PUFA metabolism. Front Pharmacol. 2023;14:1314151. doi:10.3389/fphar.2023.1314151

[55] Li Q, Zhang H, Sun C, et al. Genetic variants affecting FADS2 enzyme dynamics and omega-3 long-chain polyunsaturated fatty acid metabolism in humans. Nutrients. 2024;16(4):666. doi:10.3390/nu16040666

[56] Wang X, He Y, Xi H, et al. A comprehensive review of the family of very-long-chain fatty acid elongases (ELOVLs): structure, function and implications in physiology and pathology. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868(3):159035. doi: 10.1016/ j. bbalip.2022.159035

[57] Back M, von Schacky C, Indrébo A, et al. Fatty acid desaturase genetic variations and dietary omega-3 PUFA intake: implications for vascular health and lipid metabolism. Nutrients. 2022;14(12):2461. doi:10.3390/nu14122461.

[58] Medoro A, Graziano F, Cardinale G, et al. The influence of FADS1 and ELOVL2 genetic polymorphisms on polyunsaturated fatty acid composition in response to fish oil supplementation. Lipids Health Dis. 2025;24:102. doi:10.1186/s12944-025-02513-w.

[59] Lewis JP, Gillingham MS, Smith GM, et al. Sex-specific differences in long-chain n-3 polyunsaturated fatty acid metabolism: Insights from whole-body and tissue tracer studies. Am J Clin Nutr. 2024;120(4):1234-1242. doi:10.1016/j.ajcn.2024.01.015.

[60] Eggersdorfer M, Wyss A. Perspective: Role of Micronutrients and Omega-3 Long-Chain Polyunsaturated Fatty Acids in Cardiovascular and Brain Function. Adv Nutr. 2024;15(3):492-509. doi:10.1093/advances/nmad055.

[61] Plourde M, Cunnane SC. Steady-state pharmacokinetics of prescription omega-3 formulations in humans: comparison of free fatty acid, triglyceride and ethyl ester forms. J Nutr. 2022;152(6):1091-1103. doi:10.1093/jn/nxac011

[62] Bailey E, Wojcik J, Rahn M, Roos F, Spooren A, Koshibu K. Comparative bioavailability of DHA and EPA from microalgal and fish oil in adults. Int J Mol Sci. 2025;26(19):9343. doi:10.3390/ijms26199343

[63] Ibi A, Chang C, Kuo YC, Zhang Y, Du M, Roh YS, Gahler R, Hardy M, Solnier J. Evaluation of the metabolite profile of fish oil omega-3 fatty acids (n-3 FAs) in micellar and enteric-coated forms-A randomized, cross-over human study. Metabolites. 2024;14(5):265. doi:10.3390/metabo14050265.

[64] Murray KF, Zielinski CH, James JF, et al. Bioavailability of EPA and DHA in humans- a comprehensive review. Prog Lipid Res. 2024; 97:101318. doi: 10.1016/ j.plipres. 2024.101318.

[65] Chuang J-C, Chou C-C, Yeong E-J, Hsu C-Y. A randomized double-blind trial to measure the absorption characteristics of eicosapentaenoic acid and docosahexaenoic acid-rich oil blend with natural lipid-based delivery system: Comparison of absorption with and without a fatty meal. Food Sci Biotechnol. 2024;33(8):1161-1170. doi:10.1007/s10068-023-01466-z.

[66] Rundblad A, Lau R, Brennan L, et al. Individual variability in the plasma triglyceride response to EPA- and DHA-rich fish oil supplementation: interactions with age, sex, baseline lipid status and digestive health. Prostaglandins Leukot Essent Fatty Acids. 2023; 197:102568. doi:10.1016/ j. plefa.2023.102568.

[67] Martín-Olmedo JJ, Jurado-Fasoli L. Impact of technological processing on the bioavailability of omega-3 fatty acids in fish oil: a review. Crit Rev Food Sci Nutr. 2025;65(31):7468-7478. doi:10.1080/10408398.2025.2472858.

[68] Schön C, Maurer G, Schmidt-Stutz C, Büchert M, Blank M. Bioavailability of EPA and DHA in humans-a comprehensive review. Prog Lipid Res. 2025 Jan; 97: 101318. Doi: 10.1016/ j. plipres. 2024.101318.

[69] Hoang TV, Aziz QS, Li YK. Comparison of Omega-3 polyunsaturated fatty acids in fish oil vs krill oil: a network meta-analysis of bioavailability. Nutr Health. 2024;30(2):75-83. doi:10.1177/0260106024123456.

[70] Zinkow A, Grodzicki W, Czerwińska M, Dziendzikowska K. Molecular mechanisms linking omega-3 fatty acids and the gut-brain axis. Molecules. 2024;30(1):71. doi:10.3390/molecules30010071

[71] Musazadeh V, Mahmoudinezhad M, Pam P, Brazandeh S, Faramarzi F, Mohammadpour Y, et al. Omega-3 supplementation and cardiometabolic risk factors in obese/overweight children and adolescents: a GRADE-assessed systematic review and meta-analysis. Nutr Metab. 2025; 22:78. doi:10.1186/s12986-025-00952-x.

[72] Satapathy T, Minj A, Verma M. Impact of NSAIDs corticosteroids DMARDs biologics and their comparisons with natural products in C-reactive proteins (CRP) linked cardiovascular disorders. Inflammopharmacology. 2025 May 4:1-27. doi:10.1007/s10787-025-01532-0.

[73] Sahu MK, Satapathy T, Netam AK, Prasad J. Structural Architecture and Signal Transduction of Ion Channels: A Review. Research Journal of Pharmacology and Pharmacodynamics. 2018;10(1):38-44. doi:10.5958/2321-5836.2018.00007.1

[74] Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum D, et al.; REDUCE-IT Investigators. Reduction of cardiovascular events with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11-22. doi:10.1056/NEJMoa1812792.

[75] Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico-Prevenzione (GISSI-Prevenzione) Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999 Aug 7;354(9177):447-55. doi:10.1016/S0140-6736(99)07072-5.

[76] Rader DJ, Culver AL, Devlin JJ, O’Conner-Smith D, McPherson L, Joyal SV, et al. Effectiveness of a novel ω-3 krill oil agent in patients with severe hypertriglyceridemia: a randomized clinical trial. JAMA Netw Open. 2023;6(4):e279665. doi:10.1001/jamanetworkopen.2023.1665.

[77] Manson JE, Cook NR, Lee I-M, Christen W, Bassuk SS, Mora S, et al. Marine n−3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2019 Jan 3;380(1):23–32. doi:10.1056/NEJMoa1811403.

[78] Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P; DOMInO Investigative Team. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 2010 Oct 20;304(15):1675-83. doi:10.1001/jama.2010.1507.

[79] Stonehouse W, Conlon C, Podd J, Hill S, Bryden WL, Cox E, et al. DHA supplementation improved memory and reaction time in healthy young adults: a randomized controlled trial. Am J Clin Nutr. 2013;97(4):1134-43. doi:10.3945/ajcn.112.053817

[80] Kromhout D, Giltay EJ, Geleijnse JM; Alpha Omega Trial Group. n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010 Oct 14;363(21):2015-26. doi:10.1056/NEJMoa1003603.

[81] Innis SM. Maternal DHA (22:6ω-3) status during pregnancy and its impact on infant neurodevelopment. Br J Nutr. 2021;125(12):1358-67. doi:10.1017/S0007114521001401.

[82] Rao JS, Ertley RN, McNamara RK, Bazinet RP, Rapoport SI. n-3 Polyunsaturated fatty acid regulation of brain dopamine systems and potential relevance to major depression. Eur Neuropsychopharmacology. 2012;22(11):753-63. doi:10.1016/j.euroneuro.2012.03.015.

[83] Fuentes-Núñez R, Gil-de-Gómez L, Finisterre F, et al. Omega-3 fatty acids, membrane remodelling and cancer: Implications for signalling through lipid rafts. Biochem Soc Trans. 2018;46(5):945-956. doi:10.1042/BST20170474.

[84] Marchio V, Ferrera L, Cianflone E, et al. Molecular weapons against chemoresistance in breast cancer: the role of ω-3 PUFAs. Cell Mol Biol Lett. 2025; 30:17. doi:10.1186/s11658-025-00694-x

[85] Metherel AH, Bazinet RP. Omega-3 fatty acid bioavailability: algal oil versus fish oil. Curr Opin Lipid Lipid Metab. 2023;30(2):88-96. doi:10.1097/MOL.0000000000000912.

[86] Satapathy T, Panda PK. Evaluation of in vitro antioxidant, anti-inflammatory and anti-diabetic potential of curcumin. Indo Am J Pharm Res. 2013; 3: 2808-2818.

[87] Germain E, Chajès V, Goupille C, et al. Differential sensitization of cancer cells to doxorubicin by docosahexaenoic acid (DHA): a role for lipoperoxidation. Br J Cancer. 2005;92(1):191-200. doi: 10.1038/sj.bjc.6602260.

[88] Lafuente M, Sacristán V, Bartolomé B, et al. Antioxidant activity and neuroprotective role of omega-3 polyunsaturated fatty acids in retinal diseases: insights from experimental and clinical studies. Mol Vis. 2021; 27:714-728. doi:10.3390/ijms23094501.

[89] SanGiovanni JP, Chew EY, Clemons TE, et al. The relationship of dietary lipid intake and age-related macular degeneration in a case- control study: AREDS. Arch Ophthalmol. 2007;125(5):671-79. doi:10.1001/archopht.125.5.671.

[90] Oppedisano F, Macrì R, Gliozzi M, Musolino V, Carresi C, Maiuolo J, et al. The role of ω-3 polyunsaturated fatty acids in metabolic syndrome and cardiovascular diseases: evidence from human and animal studies. Nutrients. 2023;15(3):579. doi:10.3390/nu15030579.

[91] Clarke G, Murphy EF, Nilaweera K, Ross P, O’Mahony SM, Shanahan F, et al. Associations among dietary omega-3 polyunsaturated fatty acids, the gut microbiota, and intestinal immunity. Front Immunol. 2019; 10:426. doi:10.3389/fimmu.2019.00426.

[92] Bertelli AA, Bosco F, Porta AL, et al. Omega-3 polyunsaturated fatty acids improve intestinal barrier integrity-albeit to a lesser degree than short-chain fatty acids: an exploratory analysis of the randomized controlled LIBRE trial. Eur J Nutr. 2023;62(3):1509-1518. doi:10.1007/s00394-023-03172-2.

[93] Greenberg JA, Bell SJ, Ausdal WV. Omega-3 Fatty Acid supplementation during pregnancy. Rev Obstet Gynecol. 2008;1(4):162–9. doi:10.3909/riog0095.

[94] Portillo-Reyes V, Pérez-García M, Loya-Mendez Y, Puente AE. Dietary supplementation with omega-3 fatty acids enhances cognitive function in healthy children: a randomized controlled trial. Front Nutr. 2022; 9:888379. doi:10.3389/fnut.2022.888379.

[95] Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11-22. doi:10.1056/NEJMoa1812792.

[96] Middleton P, Gomersall JC, Gould JF, Shepherd E, Olsen SF, Makrides M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev. 2018;(11):CD003402. doi: 10.1002/ 14651858. CD003402.pub3.

[97] Yurko-Mauro K, Alexander DD, Van Elswyk ME. Docosahexaenoic acid and adult memory: a systematic review and meta-analysis. PLoS One. 2015;10(3): e0120391. doi: 10.1371/ journal. p one.0120391.

[98] West AL, Miles EA, Lillycrop KA, Han L, Napier JA, Calder PC, Burdge GC. Dietary supplementation with seed oil from transgenic Camelina sativa induces similar increments in plasma and erythrocyte DHA and EPA to fish oil in healthy humans. Br J Nutr. 2020;124(9):922-930. doi:10.1017/S0007114520002044.

[99] MacIntosh G, Shaw A, Connelly L, Yao DH. Food and feed safety of NS-B5ØØ27-4 omega-3 canola (Brassica napus): a new source of long-chain omega-3 fatty acids. J Crop Sci. Plant Biotechnol. 2021; 11:1-17. doi:10.3390/plants10102070.

[100] Lemke S, Hansen SN, Goldstein DA, et al. Stearidonic acid-enriched soybean oil increased the omega-3 index, an emerging cardiovascular risk marker. Lipids. 2008;43(9):805-811. doi:10.1007/s11745-008-3215-0.

[101] Yin F, Sun X, Luo X, Zheng W, Yin L, Zhang Y, Fu Y. A review on marine microbial docosahexaenoic acid production through circular economy, fermentation engineering, and antioxidant technology. Mar Drugs. 2025;23(6):256. doi:10.3390/md23060256.

[102] Qin JC, Kurt RB, L-Bassi C, Xie W. Biotechnological production of omega-3 fatty acids: current status and future perspectives. Biotechnol Biofuels Bioprod. 2023;16:112. doi:10.1186/s13068-023-02175-0.

[103] Santana JdM, Pereira M, Carvalho GQ, Gouveia Peluzio MdC, Drumond Louro I, Santos DBd, Oliveira AM. FADS1 and FADS2 gene polymorphisms modulate the relationship of omega-3 and omega-6 fatty acid plasma concentrations in gestational weight gain: A NISAMI cohort study. Nutrients. 2022;14(5):1056. doi:10.3390/nu14051056.

[104] Vijay A, Astbury S, Le Roy C, Spector TD, Valdes AM. The pre-biotic effects of omega-3 fatty acid supplementation: a six-week randomised intervention trial. Gut Microbes. 2020;13(1):1863133. doi:10.1080/19490976.2020.1863133

Published

2025-11-15
Statistics
Abstract Display: 568
PDF Downloads: 650
PDF Downloads: 94

How to Cite

1.
Sahu P, Bhardwaj SK, Satapathy A, Satapathy A, Kumar A, Kumar M, et al. Omega-3 Fatty Acids: From Natural Sources to Clinical Applications: An Integrative Review. J. Drug Delivery Ther. [Internet]. 2025 Nov. 15 [cited 2026 Jan. 19];15(11):156-75. Available from: https://jddtonline.info/index.php/jddt/article/view/7463

How to Cite

1.
Sahu P, Bhardwaj SK, Satapathy A, Satapathy A, Kumar A, Kumar M, et al. Omega-3 Fatty Acids: From Natural Sources to Clinical Applications: An Integrative Review. J. Drug Delivery Ther. [Internet]. 2025 Nov. 15 [cited 2026 Jan. 19];15(11):156-75. Available from: https://jddtonline.info/index.php/jddt/article/view/7463

Most read articles by the same author(s)

> >>