Pharmacological Targeting of Ferroptosis in Cancer Treatment
Abstract
A non-apoptotic iron-dependent form of Regulated Cell Death (RCD) known as ferroptosis is brought on by an excess of harmful lipid peroxides and iron overload. Inhibiting the antioxidant defense system results in overwhelming of GSH dependent pathway and building up iron-dependent Reactive Oxygen Species (ROS) that react with polyunsaturated fatty acids in large quantities can both cause ferroptosis. Recent research has shown that ferroptosis holds a great deal of promise for preventing tumor cell resistance and limiting growth and spread. Emerging evidence also suggests that ferroptosis plays a dual role in human cancer. However, the precise underlying molecular mechanisms and their different role in tumorigenesis are unclear. Therefore, in this review we summarize and briefly present the key pathways of ferroptosis, its dual role as an oncogenic and as a tumor suppressor event in human cancers, paying special attention to the regulation of ferroptosis along with a variety of current medications and naturally occurring substances that may one day be used to target ferroptosis in tumor cells. Thus, addressing this sort of cell death could be seen as a potentially expanding technique in cancer treatment. Consequently, this will offer crucial viewpoints for next research on ferroptosis-based cancer treatment.
Keywords: Ferroptosis, antioxidant defense system, Cancer
Keywords:
Ferroptosis, antioxidant defense system, CancerDOI
https://doi.org/10.22270/jddt.v14i2.6371References
Rahimi S, Roushandeh AM, Ahmadzadeh E, Jahanian-Najafabadi A, Roudkenar MH. Implication and role of neutrophil gelatinase-associated lipocalin in cancer: lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol Biol Rep. 2020;47(3):2327-46. https://doi.org/10.1007/s11033-020-05261-5 PMid:31970626
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-72. https://doi.org/10.1016/j.cell.2012.03.042 PMid:22632970 PMCid:PMC3367386
Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):864-8. https://doi.org/10.1038/nature05859 PMid:17568748 PMCid:PMC3047570
Tomita K, Nagasawa T, Kuwahara Y, Torii S, Igarashi K, Roudkenar MH, et al. MiR-7-5p Is Involved in Ferroptosis Signaling and Ra-diore-sistance Thru the Generation of ROS in Radioresistant HeLa and SAS Cell Lines. Int J Mol Sci. 2021;22(15):8300 https://doi.org/10.3390/ijms22158300 PMid:34361070 PMCid:PMC8348045
Valashedi MR, Najafi-Ghalehlou N, Nikoo A, Bamshad C, Tomita K, Kuwahara Y, et al. Cashing in on ferroptosis against tumor cells: Usher in the next chapter. Life Sci. 2021;285:119958. https://doi.org/10.1016/j.lfs.2021.119958 PMid:34534562
Wu Y, Yu C, Luo M, Cen C, Qiu J, Zhang S, et al. Ferroptosis in Cancer Treatment: Another Way to Rome. Front Oncol. 2020;10:571127. https://doi.org/10.3389/fonc.2020.571127 PMid:33102227 PMCid:PMC7546896
Takashi Y, Tomita K, Kuwahara Y, Roudkenar MH, Roushandeh AM, Igarashi K, et al. Mitochondrial dysfunction promotes aquaporin ex-pression that controls hydrogen peroxide permeability and ferropto-sis. Free Radic Biol Med. 2020;161:60-70. https://doi.org/10.1016/j.freeradbiomed.2020.09.027 PMid:33017631 PMCid:PMC7530583
Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18(5):280-296. https://doi.org/10.1038/s41571-020-00462-0 PMid:33514910
Kuang F, Liu J, Tang D, Kang R. Oxidative Damage and Antioxidant Defense in Ferroptosis. Front Cell Dev Biol. 2020;8:586578. https://doi.org/10.3389/fcell.2020.586578 PMid:33043019 PMCid:PMC7527737
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;(4):266-282. https://doi.org/10.1038/s41580-020-00324-8 PMid:33495651 PMCid:PMC8142022
Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of geno-type-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285-296. https://doi.org/10.1016/S1535-6108(03)00050-3 PMid:12676586
Yan N, Zhang JJ. Iron Metabolism, Ferroptosis, and the links with Alzheimer's disease. Front Neurosci. 2020;13:1443. https://doi.org/10.3389/fnins.2019.01443 PMid:32063824 PMCid:PMC7000453
Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13:1045-1060. https://doi.org/10.1016/S1474-4422(14)70117-6 PMid:25231526
Wang Y, Yu L, Ding J, Chen Y. Iron metabolism in cancer. Int J Mol Sci. 2019;20:95. https://doi.org/10.3390/ijms20010095 PMid:30591630 PMCid:PMC6337236
Ng SW, Norwitz SG, Norwitz ER. The impact of iron overload and ferroptosis on reproductive disorders in humans: Implications for preeclampsia. Int J Mol Sci. 2019;20:3283. https://doi.org/10.3390/ijms20133283 PMid:31277367 PMCid:PMC6651445
Zhang C, Zhang F. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell. 2015;6:88-100. https://doi.org/10.1007/s13238-014-0119-z PMid:25476483 PMCid:PMC4312762
Brookes MJ, Hughes S, Turner FE, Reynolds G, Sharma N, Ismail T, et al. Modulation of iron transport proteins in human colorectal car-cinogenesis. Gut. 2006;55:1449-1460. https://doi.org/10.1136/gut.2006.094060 PMid:16641131 PMCid:PMC1856421 18. Kuang Y, Wang Q. Iron and lung cancer. Cancer Lett. 2019;464:56-61. https://doi.org/10.1016/j.canlet.2019.08.007 PMid:31437477
Li D, Li Y. The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther. 2020;5:108. https://doi.org/10.1038/s41392-020-00216-5 PMid:32606298 PMCid:PMC7327075
Liang D, Minikes AM, Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022;82:2215-2227. https://doi.org/10.1016/j.molcel.2022.03.022 PMid:35390277 PMCid:PMC9233073
Lee J, Kim WK, Bae K, Lee SC, Lee E. Lipid metabolism and ferropto-sis. Biol (Basel). 2021;10:184. https://doi.org/10.3390/biology10030184 PMid:33801564 PMCid:PMC8000263
Kagan VE, Mao G, Qu F, Angeli JPF, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81-90. https://doi.org/10.1038/nchembio.2238 PMid:27842066 PMCid:PMC5506843
Magtanong L, Ko PJ, To M, Cao JY, Forcina GC, Tarangelo A, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol. 2019;26:420-432. https://doi.org/10.1016/j.chembiol.2018.11.016 PMid:30686757 PMCid:PMC6430697
Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS, et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 2020;585:113-118. https://doi.org/10.1038/s41586-020-2623-z PMid:32814895 PMCid:PMC7484468
Hoy AJ. Tumour fatty acid metabolism in the context of therapy re-sistance and obesity. Nat Rev Cancer. 2021; 21: 753-766. https://doi.org/10.1038/s41568-021-00388-4 PMid:34417571
Vettore L, Westbrook RL, Tennant DA. New aspects of amino acid metabolism in cancer. Br J Cancer. 2019; 122 :150-156. https://doi.org/10.1038/s41416-019-0620-5 PMid:31819187 PMCid:PMC7052246
Dixon SJ, Patel D, Welsch M, Skouta R, Lee E, Hayano M, et al. Phar-macological inhibition of cystine-glutamate exchange induces endo-plasmic reticulum stress and ferroptosis. Elife. 2014:02523. https://doi.org/10.7554/eLife.02523.018 PMid:24844246 PMCid:PMC4054777
Wang X, Wang Z, Cao J, Dong Y, Chen Y. Ferroptosis mechanisms involved in hippocampal-related diseases. Int J Mol Sci. 2021;22:9902. https://doi.org/10.3390/ijms22189902 PMid:34576065 PMCid:PMC8472822
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12:599-620. https://doi.org/10.1007/s13238-020-00789-5 PMid:33000412 PMCid:PMC8310547
Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics 2019; 19:1800311. https://doi.org/10.1002/pmic.201800311 PMid:30888116
Liu M. System Xc −: a key regulatory target of ferroptosis in cancer. Invest N. Drugs. 2021;39:1123-1131. https://doi.org/10.1007/s10637-021-01070-0 PMid:33506324
Xu P, Wang Y, Deng Z, Tan Z, Pei X. MicroRNA-15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression. Oncol Lett. 2022;23:67. https://doi.org/10.3892/ol.2022.13186 PMid:35069876 PMCid:PMC8756426
Liu L, Yao H, Zhou X, Chen J, Chen G, Shi X, et al. MiR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer. Mol Carcinog. 2022;61:301-310. https://doi.org/10.1002/mc.23367 PMid:34727409
Gomaa A, Peng D, Chen Z, Soutto M, Abouelezz K, Corvalan A, et al. Epigenetic regulation of AURKA by miR-4715-3p in upper gastro-intes-tinal cancers. Sci Rep. 2019;9:16970. https://doi.org/10.1038/s41598-019-53174-6 PMid:31740746 PMCid:PMC6861278
Deng S, Wu D, Li L, Liu T, Zhang T, Li J, et al. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. BiochemBiophys Res Commun. 2021;16:54-60. https://doi.org/10.1016/j.bbrc.2021.02.077 PMid:33662669
Wei D, Ke YQ, Duan P, Zhou L, Wang CY, Cao P. MicroRNA-302a-3p induces ferroptosis of non-small cell lung cancer cells via targeting ferroportin. Free Radic Res. 2021;55:821-830. https://doi.org/10.1080/10715762.2021.1947503 PMid:34181495
Bai T, Liang R, Zhu R, Wang W, Zhou L, Sun Y. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol. 2020;235:5637-5648. https://doi.org/10.1002/jcp.29496 PMid:31960438
He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther. 2021;15:3965-3978. https://doi.org/10.2147/DDDT.S332847 PMid:34566408 PMCid:PMC8458041
Li YZ, Zhu HC, Du Y, Zhao HC, Wang L. Silencing lncRNA SLC16A1-AS1 induced ferroptosis in renal cell carcinoma through miR-143-3p/SLC7A11 signaling. Technol Cancer Res Treat. 2022; 21:15330338221077803. https://doi.org/10.1177/15330338221077803 PMid:35167383 PMCid:PMC8854231
Wang Z, Chen X, Liu N, Shi Y, Liu Y, Ouyang L, et al. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner de-pendent upon apoptosis. Mol Ther. 2021;29:263-274. https://doi.org/10.1016/j.ymthe.2020.09.024 PMid:33002417 PMCid:PMC7791008
Chen C, Zhao J, Liu JN, Sun C. Mechanism and Role of the Neuropep-tide LGI1 Receptor ADAM23 in Regulating Biomarkers of Ferropto-sis and Progression of Esophageal Cancer. Dis Markers. 2021;9227897. https://doi.org/10.1155/2021/9227897 PMid:35003396 PMCid:PMC8739919
Yu W, Invasion C, Hospital X, South C, Hospital SX, Program CE, et al. A G3BP1- interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78:3484-3496. https://doi.org/10.1158/0008-5472.CAN-17-3454 PMid:29588351 PMCid:PMC8073197
Gai C, Liu C, Wu X, Yu M, Zheng J, Zhang W, et al. MT1DP loaded by folatemodified liposomes sensitizes erastin-induced ferroptosis via regulating miR365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis. 2020;11:751. https://doi.org/10.1038/s41419-020-02939-3 PMid:32929075 PMCid:PMC7490417
Jiang M, Mo R, Liu C, Wu H. Circ_0000190 sponges miR-382-5p to suppress cell proliferation and motility and promote cell death by targeting ZNRF3 in gastric cancer. J Biochem. 2022;mvac003. https://doi.org/10.1093/jb/mvac003 PMid:35037032
Wang Y, Chen H, Wei X. Circ_0007142 downregulates miR-874-3p-mediated GDPD5 on colorectal cancer cells. Eur J Clin Invest. 2021;51:e13541. https://doi.org/10.1111/eci.13541 PMid:33797091
Bazhabayi M, Qiu X, Li X, Yang A, Wen W, Zhang X, et al. CircGFRA1 facilitates the malignant progression of HER-2-positive breast can-cer via acting as a sponge of miR-1228 and enhancing AIFM2 expres-sion. J Cell Mol Med. 2021;25:10248-10256. https://doi.org/10.1111/jcmm.16963 PMid:34668628 PMCid:PMC8572792
Ou R, Lu S, Wang L, Wang Y, Lv M, Li T, et al. Circular RNA circLMO1 suppresses cervical cancer growth and metastasis by triggering miR-4291/ACSL4-mediated ferroptosis. Front Oncol. 2022;12:858598. https://doi.org/10.3389/fonc.2022.858598 PMid:35321435 PMCid:PMC8936435
Liu Z, Wang Q, Wang X, Xu Z, Wei X, Li J. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding pro-tein ALKBH5. Cell Death Discov. 2020;6:72. https://doi.org/10.1038/s41420-020-00306-x PMid:32802409 PMCid:PMC7414223
Jiang L, Kon N, Li T, Wang S, Su T, Hibshoosh H, et al. Ferroptosis as a p53- mediated activity during tumour suppression. Nature. 2015;520:57-62. https://doi.org/10.1038/nature14344 PMid:25799988 PMCid:PMC4455927
Xie Y, Zhu S, Song X, Xie Y, Zhu S, Song X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 Activity. Cell Rep. 2017;20:1692-1704. https://doi.org/10.1016/j.celrep.2017.07.055 PMid:28813679
Tarangelo A, Magtanong L, Bieging-rolett KT, Li Y, Ye J, Attardi LD, et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 2018;22:569-575. https://doi.org/10.1016/j.celrep.2017.12.077 PMid:29346757 PMCid:PMC5791910
Gao R, Kalathur RKR, Coto-llerena M, Ercan C, Buechel D, Shuang S, et al. YAP/ TAZ and ATF4 drive resistance to Sorafenib in hepatocellu-lar carcinoma by preventing ferroptosis. EMBO Mol Med. 2021;13:14351. https://doi.org/10.15252/emmm.202114351 PMid:34664408 PMCid:PMC8649869
Xu Y, Zhang N, Chen C, Xu X, Luo A, Yan Y, et al. Sevoflurane Induces Ferroptosis of Glioma Cells Through Activating the ATF4-CHAC1 Pathway. Front Oncol. 2022;12:859621. https://doi.org/10.3389/fonc.2022.859621 PMid:35372041 PMCid:PMC8969566
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, et al. ATF3 promotes eras-tin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 2020;27:662-675. https://doi.org/10.1038/s41418-019-0380-z PMid:31273299 PMCid:PMC7206049
Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246-257. https://doi.org/10.1038/nrc3458 PMid:23467301
Nguyen CDK, Yi C. YAP/TAZ Signaling and Resistance to Cancer Ther-apy. Trends Cancer. 2019;5:283-296. https://doi.org/10.1016/j.trecan.2019.02.010 PMid:31174841 PMCid:PMC6557283
Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, et al. Intercellu-lar interaction dictates cancer cell ferroptosis via NF2-YAP signal-ling. Nature. 2019;572:402-406. https://doi.org/10.1038/s41586-019-1426-6 PMid:31341276 PMCid:PMC6697195
Yang W, Ding CC, Sun T, Rupprecht G, Lin C, Hsu D, et al. The Hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 2019;28:2501-2508. https://doi.org/10.1016/j.celrep.2019.07.107 PMid:31484063 PMCid:PMC10440760
Liu J, Yang M, Kang R, Klionsky DJ, Tang D. Autophagic degradation of the circadian clock regulator promotes ferroptosis. Autophagy. 2019;15:2033-2035. https://doi.org/10.1080/15548627.2019.1659623 PMid:31441366 PMCid:PMC6844535
Yang M, Chen P, Liu J, Zhu S, Kroemer G. Clockophagy is a novel se-lective autophagy process favoring ferroptosis. Sci Adv. 2019;5:2238. https://doi.org/10.1126/sciadv.aaw2238 PMid:31355331 PMCid:PMC6656546
Fan Z, Wirth A, Chen D, Wruck CJ, Rauh M, Buchfelder M, et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferropto-sis. Oncogenesis. 2017;6:371. https://doi.org/10.1038/oncsis.2017.65 PMid:28805788 PMCid:PMC5608917
Carmona-Gutierrez D, Zimmermann A, Kainz K, Pietrocola F, Chen G, Maglioni S, et al. The flavonoid 4,4'-dimethoxychalcone promotes autophagy-dependent longevity across species. Nat Commun. 2019;10:651. https://doi.org/10.1038/s41467-019-08555-w PMid:30783116 PMCid:PMC6381180
Yang C, Wang T, Zhao Y, Meng X, Ding W, Wang Q, et al. Flavonoid 4,4'- dimethoxychalcone induced ferroptosis in cancer cells by syn-ergistically activating Keap1/Nrf2/HMOX1 pathway and inhibiting FECH. Free Radic Biol Med. 2022;188:14-23. https://doi.org/10.1016/j.freeradbiomed.2022.06.010 PMid:35697292
Meng C, Zhan J, Chen D, Shao G, Zhang H, Gu W, et al. The deubiquiti-nase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene. 2021;40:1706-1720. https://doi.org/10.1038/s41388-021-01660-5 PMid:33531626
Tsai Y, Xia C, Sun Z. The Inhibitory Effect of 6-Gingerol on ubiquitin-specific peptidase 14 enhances autophagy-dependent ferroptosis and anti-tumor in vivo and in vitro. Front Pharm. 2020;11:598555. https://doi.org/10.3389/fphar.2020.598555 PMid:33281606 PMCid:PMC7691590
Chen S, Bu D, Zhu J, Yue T, Guo S, Wang X, et al. Endogenous hydrogen sulfide regulates xCT stability through persulfidation of OTUB1 at cysteine 91 in colon cancer cells. Neoplasia. 2021;23:461-472. https://doi.org/10.1016/j.neo.2021.03.009 PMid:33878705 PMCid:PMC8081877
Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 2020;11:433. https://doi.org/10.1038/s41467-020-14324-x PMid:31974380 PMCid:PMC6978386
Zhang HL, Hu BX, Li ZL, Du T, Shan JL, Ye ZP, et al. PKCβII phosphory-lates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat Cell Biol. 2022;24:88-98. https://doi.org/10.1038/s41556-021-00818-3 PMid:35027735
Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, et al. AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc- Activity. Curr Biol. 2018;28:2388-2399. https://doi.org/10.1016/j.cub.2018.05.094 PMid:30057310 PMCid:PMC6081251
Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S, et al. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 2020;235:3425-3437. https://doi.org/10.1002/jcp.29232 PMid:31556117
Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Ver-donck J, et al. Ferroptosis induction in multiple myeloma cells trig-gers DNA methylation and histone modification changes associated with cellular senescence. Int J Mol Sci. 2021;22:12234. https://doi.org/10.3390/ijms222212234 PMid:34830117 PMCid:PMC8618106
Hasegawa M, Takahashi H, Rajabi H, Alam M, Suzuki Y, Yin L, et al. Functional interactions of the cystine/glutamate antiporter, CD44V and MUC1-C oncoprotein in triple-negative breast cancer cells. Onco-target. 2016;7:11756-11769. https://doi.org/10.18632/oncotarget.7598 PMid:26930718 PMCid:PMC4914246
Wang S, Li D, Ou Y, Wang S, Li D, Ou Y, et al. Acetylation is crucial for p53- mediated ferroptosis and tumor suppression. Cell Rep. 2016;17:366-373. https://doi.org/10.1016/j.celrep.2016.09.022 PMid:27705786 PMCid:PMC5227654
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017;171(2):273-285. https://doi.org/10.1016/j.cell.2017.09.021 PMid:28985560 PMCid:PMC5685180
Antoszczak M, Huczyński A. Salinomycin and its derivatives - A new class of multiple-targeted "magic bullets". Eur J Med Chem. 2019;176:208-227. https://doi.org/10.1016/j.ejmech.2019.05.031 PMid:31103901
Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645-659. https://doi.org/10.1016/j.cell.2009.06.034 PMid:19682730 PMCid:PMC4892125
Gruber M, Handle F, Culig Z. The stem cell inhibitor salinomycin decreases colony formation potential and tumor-initiating popula-tion in docetaxel-sensitive and docetaxel-resistant prostate cancer cells. Prostate. 2020;80(3):267-273. https://doi.org/10.1002/pros.23940 PMid:31834633 PMCid:PMC7003856
Michalak M, Lach MS, Antoszczak M, Huczyński A, Suchorska WM. Overcoming Resistance to Platinum-Based Drugs in Ovarian Cancer by Salinomycin and Its Derivatives-An In Vitro Study. Molecules. 2020;25(3),537. https://doi.org/10.3390/molecules25030537 PMid:31991882 PMCid:PMC7037477
Dewangan J, Srivastava S, Mishra S, Divakar A, Kumar S, Rath SK. Salinomycin inhibits breast cancer progression via targeting HIF-1α/VEGF mediated tumor angiogenesis in vitro and in vivo. Bio-chemPharmacol. 2019;164:326-335. https://doi.org/10.1016/j.bcp.2019.04.026 PMid:31028743
Schenk M, Aykut B, Teske C, Giese NA, Weitz J, Welsch T. Salinomy-cin inhibits growth of pancreatic cancer and cancer cell migration by disruption of actin stress fiber integrity. Cancer Lett. 2015;358(2):161-169. https://doi.org/10.1016/j.canlet.2014.12.037 PMid:25529011
Li T, Su L, Zhong N, Hao X, Zhong D, Singhal S, et al. Salinomycin induces cell death with autophagy through activation of endoplas-mic reticulum stress in human cancer cells. Autophagy. 2013;9(7):1057-1068. https://doi.org/10.4161/auto.24632 PMid:23670030 PMCid:PMC3722315
Yu SN, Kim SH, Kim KY, Ji JH, Seo YK, Yu HS, et al. Salinomycin induc-es endoplasmic reticulum stress mediated autophagy and apoptosis through generation of reactive oxygen species in human glioma U87MG cells. Oncol Rep. 2017;37(6):3321-3328. https://doi.org/10.3892/or.2017.5615 PMid:28498472
Zhang G, Wang W, Yao C, Ren J, Zhang S, Han M. Salinomycin over-comes radioresistance in nasopharyngeal carcinoma cells by inhib-iting Nrf2 level and promoting ROS generation. Biomed Pharma-cother. 2017;91:147-154. https://doi.org/10.1016/j.biopha.2017.04.095 PMid:28453992
Klose J, Trefz S, Wagner T, Steffen L, Preißendörfer Charrier A, Ra-dhakrishnan P, et al. Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model. PLoS One. 2019;14(2): https://doi.org/10.1371/journal.pone.0211916 PMid:30763370 PMCid:PMC6375586 85. 0211916.
Mai TT, Hamaï A, Hienzsch A, Cañeque T, Müller S, Wicinski J, et al. Salinomycin kills cancer stem cells by sequestering iron in lyso-somes. Nat Chem. 2017;9(10):1025-1033. https://doi.org/10.1038/nchem.2778 PMid:28937680 PMCid:PMC5890907
Hamaï A, Cañeque T, Müller S, Mai TT, Hienzsch A, Ginestier C, et al. An iron hand over cancer stem cells. Autophagy. 2017;13(8):1465-1466. https://doi.org/10.1080/15548627.2017.1327104 PMid:28613094 PMCid:PMC5584845
Zhao Y, Zhao W, Lim YC, Liu T. Salinomycin-Loaded Gold Nanoparti-cles for Treating Cancer Stem Cells by Ferroptosis-Induced Cell Death. Mol Pharm. 2019;16(6):2532-2539. https://doi.org/10.1021/acs.molpharmaceut.9b00132 PMid:31009228
Xuhong JC, Qi XW, Zhang Y, Jiang J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am J Cancer Res. 2019;9(10):2103-2119.
Ryan Q, Ibrahim A, Cohen MH, Johnson J, Ko C wen, Sridhara R, et al. FDA drug approval summary: lapatinib in combination with capecit-abine for previously treated metastatic breast cancer that overex-presses HER-2. Oncologist. 2008;13(10):1114-1119. https://doi.org/10.1634/theoncologist.2008-0816 PMid:18849320
Chintalaramulu N, Vadivelu R, Nguyen NT, Cock IE. Lapatinib inhib-its doxorubicin induced migration of HER2-positive breast cancer cells. Inflammopharmacology. 2020;28(5):1375-1386. https://doi.org/10.1007/s10787-020-00711-9 PMid:32378049
Heading, C.; Siramesine, H Lundbeck Current Opin. Investig. Drugs, 2001, 2(2), 266-270.
Ostenfeld MS, Fehrenbacher N, Høyer-Hansen M, Thomsen C, Farkas T, Jäättelä M. Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res. 2005;65(19):8975-8983. https://doi.org/10.1158/0008-5472.CAN-05-0269 PMid:16204071
Petersen NHT, Olsen OD, Groth-Pedersen L, Ellegaard AM, Bilgin M, Redmer S, et al. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhib-itors of acid sphingomyelinase. Cancer Cell. 2013;24(3):379-393. https://doi.org/10.1016/j.ccr.2013.08.003 PMid:24029234
Fassl A, Brain C, Abu-Remaileh M, Stukan I, Butter D, Stepien P, et al. Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Sci Adv. 2020;6(25):2210. https://doi.org/10.1126/sciadv.abb2210 PMid:32704543 PMCid:PMC7360435
Liu J, Tang M, Zhou Y, Long Y, Cheng Y, Zheng H. A siramesine-loaded metal organic framework nanoplatform for overcoming multidrug resistance with efficient cancer cell targeting. RSC Adv. 2020;10(12):6919-6926. https://doi.org/10.1039/C9RA09923A PMid:35493908 PMCid:PMC9049735
Ma S, Henson ES, Chen Y, Gibson SB. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 2016;7(7):2307. https://doi.org/10.1038/cddis.2016.208 PMid:27441659 PMCid:PMC4973350
Ma S, Dielschneider RF, Henson ES, Xiao W, Choquette TR, Blankstein AR, et al. Ferroptosis and autophagy induced cell death occur inde-pendently after siramesine and lapatinib treatment in breast cancer cells. PLoS One. 2017;12(8):0182921. https://doi.org/10.1371/journal.pone.0182921 PMid:28827805 PMCid:PMC5565111
Villalpando-Rodriguez GE, Blankstein AR, Konzelman C, Gibson SB. Lysosomal Destabilizing Drug Siramesine and the Dual Tyrosine Ki-nase Inhibitor Lapatinib Induce a Synergistic Ferroptosis through Reduced Heme Oxygenase-1 (HO-1) Levels. Oxid Med Cell Longev. 2019;2019:9561281. https://doi.org/10.1155/2019/9561281 PMid:31636810 PMCid:PMC6766165
Chen H, Shi L, Yang X, Li S, Guo X, Pan L. Artesunate inhibiting angio-genesis induced by human myeloma RPMI8226 cells. Int J Hematol. 2010;92(4):587-597. https://doi.org/10.1007/s12185-010-0697-3 PMid:20945119
Zhou HJ, Wang WQ, Wu GD, Lee J, Li A. Artesunate inhibits angio-genesis and downregulates vascular endothelial growth factor ex-pres-sion in chronic myeloid leukemia K562 cells. VasculPharma-col. 2007;47(2-3):131-138. https://doi.org/10.1016/j.vph.2007.05.002 PMid:17581794
Zhao F, Vakhrusheva O, Markowitsch SD, Slade KS, Tsaur I, Cinatl J, et al. Artesunate Impairs Growth in Cisplatin-Resistant Bladder Can-cer Cells by Cell Cycle Arrest, Apoptosis and Autophagy Induction. Cells. 2020;9(12):2643. https://doi.org/10.3390/cells9122643 PMid:33316936 PMCid:PMC7763932
Wang Z, Wang Q, He T, Li W, Liu Y, Fan Y, et al. The combination of artesunate and carboplatin exerts a synergistic anti-tumour effect on non-small cell lung cancer. Clin Exp Pharmacol Physiol. 2020;47(6):1083-1091. https://doi.org/10.1111/1440-1681.13287 PMid:32072678
Wang B, Hou D, Liu Q, Wu T, Guo H, Zhang X, et al. Artesunate sensi-tizes ovarian cancer cells to cisplatin by downregulating RAD51. Cancer Biol Ther. 2015;16(10):1548-1556. https://doi.org/10.1080/15384047.2015.1071738 PMid:26176175 PMCid:PMC5391513
Nunes JJ, Pandey SK, Yadav A, Goel S, Ateeq B. Targeting NF-kappa B Signaling by Artesunate Restores Sensitivity of Castrate-Resistant Prostate Cancer Cells to Antiandrogens. Neoplasia. 2017;19(4):333-345. https://doi.org/10.1016/j.neo.2017.02.002 PMid:28319807 PMCid:PMC5358938
Ishikawa C, Senba M, Mori N. Evaluation of artesunate for the treat-ment of adult T-cell leukemia/lymphoma. Eur J Pharmacol. 2020;872:172953. https://doi.org/10.1016/j.ejphar.2020.172953 PMid:31996318
Wang K, Zhang Z, Wang M, Cao X, Qi J, Wang D, et al. Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells. Drug Des Devel Ther. 2019;13:2135-2144. https://doi.org/10.2147/DDDT.S199459 PMid:31456633 PMCid:PMC6620771
Greenshields AL, Shepherd TG, Hoskin DW. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol Carcinog. 2017;56(1):75-93. https://doi.org/10.1002/mc.22474 PMid:26878598
Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. Identifica-tion of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience. 2015;2(5):517-532. https://doi.org/10.18632/oncoscience.160 PMid:26097885 PMCid:PMC4468338
Yang ND, Tan SH, Ng S, Shi Y, Zhou J, Tan KSW, et al. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J Biol Chem. 2014;289(48):33425-33441. https://doi.org/10.1074/jbc.M114.564567 PMid:25305013 PMCid:PMC4246098
Kong Z, Liu R, Cheng Y. Artesunate alleviates liver fibrosis by regu-lating ferroptosis signaling pathway. Biomed Pharmacother. 2019;109:2043-2053. https://doi.org/10.1016/j.biopha.2018.11.030 PMid:30551460
Li ZJ, Dai HQ, Huang XW, Feng J, Deng JH, Wang ZX, et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin. 2021;42(2):301-310. https://doi.org/10.1038/s41401-020-0478-3 PMid:32699265 PMCid:PMC8026986
Crawford RR, Prescott ET, Sylvester CF, Higdon AN, Shan J, Kilberg MS, et al. Human CHAC1 Protein Degrades Glutathione, and mRNA Induction Is Regulated by the Transcription Factors ATF4 and ATF3 and a Bipartite ATF/CRE Regulatory Element. J Biol Chem. 2015;290(25):15878-15891. https://doi.org/10.1074/jbc.M114.635144 PMid:25931127 PMCid:PMC4505494
Roh JL, Kim EH, Jang H, Shin D. Nrf2 inhibition reverses the re-sistance of cisplatin-resistant head and neck cancer cells to ar-tesunate-induced ferroptosis. Redox Biol. 2017;11:254-262. https://doi.org/10.1016/j.redox.2016.12.010 PMid:28012440 PMCid:PMC5198738
Hua H, Zhu Y, Song YH. Ruscogenin suppressed the hepatocellular carcinoma metastasis via PI3K/Akt/mTOR signaling pathway. Bio-med Pharmacother. 2018;101:115-122. https://doi.org/10.1016/j.biopha.2018.02.031 PMid:29477471
Song Z, Xiang X, Li J, Deng J, Fang Z, Zhang L, et al. Ruscogenin in-duces ferroptosis in pancreatic cancer cells. Oncol Rep. 2020;43(2):516-524. https://doi.org/10.3892/or.2019.7425
Deeks ED. Neratinib: First Global Approval. Drugs. 2017;77(15):1695-1704. https://doi.org/10.1007/s40265-017-0811-4 PMid:28884417
Booth L, Poklepovic A, Dent P. Neratinib decreases pro-survival responses of [sorafenib + vorinostat] in pancreatic cancer. Biochem-Pharmacol. 2020;178:114067. https://doi.org/10.1016/j.bcp.2020.114067 PMid:32504550
Nagpal A, Redvers RP, Ling X, Ayton S, Fuentes M, Tavancheh E, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Res. 2019;21(1):94. https://doi.org/10.1186/s13058-019-1177-1 PMid:31409375 PMCid:PMC6693253
Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378-390. https://doi.org/10.1056/NEJMoa0708857 PMid:18650514
Adnane L, Trail PA, Taylor I, Wilhelm SM. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK path-way in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol. 2006;407:597-612. https://doi.org/10.1016/S0076-6879(05)07047-3 PMid:16757355
Tai WT, Shiau CW, Chen HL, Liu CY, Lin CS, Cheng AL, et al. Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death in-duced by sorafenib and SC-59 in hepatocellular carcinoma cells. Cell Death Dis. 2013;4(2):485. https://doi.org/10.1038/cddis.2013.18 PMid:23392173 PMCid:PMC3734819
Rodríguez-Hernández MA, González R, de la Rosa ÁJ, Gallego P, Ordóñez R, Navarro-Villarán E, et al. Molecular characterization of autophagic and apoptotic signaling induced by sorafenib in liver cancer cells. J Cell Physiol. 2018;234(1):692-708. https://doi.org/10.1002/jcp.26855 PMid:30132846
Louandre C, Ezzoukhry Z, Godin C, Barbare JC, Mazière JC, Chauffert B, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 2013;133(7):1732-1742. https://doi.org/10.1002/ijc.28159 PMid:23505071
Lachaier E, Louandre C, Godin C, Saidak Z, Baert M, Diouf M, et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res. 2014;34(11):6417-6422.
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;3:02523. https://doi.org/10.7554/eLife.02523 PMid:24844246 PMCid:PMC4054777
Sun X, Niu X, Chen R, He W, Chen D, Kang R, et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology. 2016;64(2):488-500. https://doi.org/10.1002/hep.28574 PMid:27015352 PMCid:PMC4956496
Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 2015;356(2 Pt B):971-977. https://doi.org/10.1016/j.canlet.2014.11.014 PMid:25444922
Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci. 2013;34(6):340-346. https://doi.org/10.1016/j.tips.2013.04.005
PMid:23664668 130. Feng J, Lu PZ, Zhu GZ, Hooi SC, Wu Y, Huang XW, et al. ACSL4 is a predictive biomarker of sorafenib sensitivity in hepa-tocellular carcinoma. Acta Pharmacol Sin. 2021;42(1):160-170. https://doi.org/10.1038/s41401-020-0439-x PMid:32541921 PMCid:PMC7921679
Li Y, Xia J, Shao F, Zhou Y, Yu J, Wu H, et al. Sorafenib induces mito-chondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis. BiochemBiophys Res Commun. 2021;534:877-884. https://doi.org/10.1016/j.bbrc.2020.10.083 PMid:33162029
Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, et al. Systems biology of cisplatin resistance: past, present and fu-ture. Cell Death Dis. 2014;5(5):1257. https://doi.org/10.1038/cddis.2013.428 PMid:24874729 PMCid:PMC4047912
Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, et al. Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer Res Treat. 2018;50(2):445-460. https://doi.org/10.4143/crt.2016.572
PMid:28494534 PMCid:PMC5912137 134. Wang And X, Guo Z. The role of sulfur in platinum anticancer chemotherapy. Anticancer Agents Med Chem. 2007;7(1):19-34. https://doi.org/10.2174/187152007779314062 PMid:17266503
Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, Ander-son ME. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A. 1992;89(7):3070-3074. https://doi.org/10.1073/pnas.89.7.3070 PMid:1348364 PMCid:PMC48805
Plosker GL, Croom KF. Sulfasalazine: a review of its use in the man-agement of rheumatoid arthritis. Drugs. 2005;65(13):1825-1849. https://doi.org/10.2165/00003495-200565130-00008 PMid:16114981
Arlt A, Gehrz A, Müerköster S, Vorndamm J, Kruse ML, Fölsch UR, et al. Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Onco-gene. 2003;22(21):3243-3251. https://doi.org/10.1038/sj.onc.1206390 PMid:12761494
Sleire L, Skeie BS, Netland IA, Førde HE, Dodoo E, Selheim F, et al. Drug repurposing: sulfasalazine sensitizes gliomas to gamma knife radiosurgery by blocking cystine uptake through system Xc-, leading to glutathione depletion. Oncogene. 2015;34(49):5951-5959. https://doi.org/10.1038/onc.2015.60 PMid:25798841
Gout PW, Buckley AR, Simms CR, Bruchovsky N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia. 2001;15(10):1633-1640. https://doi.org/10.1038/sj.leu.2402238 PMid:11587223
Guan J, Lo M, Dockery P, Mahon S, Karp CM, Buckley AR, et al. The xc- cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of sulfasalazine. Cancer ChemotherPhar-macol. 2009;64(3):463-472. https://doi.org/10.1007/s00280-008-0894-4 PMid:19104813
Lo M, Ling V, Low C, Wang YZ, Gout PW. Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Curr Oncol. 2010;17(3):9-16. https://doi.org/10.3747/co.v17i3.485 PMid:20567622 PMCid:PMC2880911
Ma MZ, Chen G, Wang P, Lu WH, Zhu CF, Song M, et al. Xc- inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism. Cancer Lett. 2015;368(1):88-96. https://doi.org/10.1016/j.canlet.2015.07.031 PMid:26254540
Yu H, Yang C, Jian L, Guo S, Chen R, Li K, et al. Sulfasalazine induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 2019;42(2):826-838. https://doi.org/10.3892/or.2019.7189 PMid:31173262
Zhang Q, Bykov VJN, Wiman KG, Zawacka-Pankau J. APR-246 reac-tivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis. 2018;9(5):439. https://doi.org/10.1038/s41419-018-0463-7 PMid:29670092 PMCid:PMC5906465
Perdrix A, Najem A, Saussez S, Awada A, Journe F, Ghanem G, et al. PRIMA-1 and PRIMA-1Met (APR-246): From Mutant/Wild Type p53 Reactivation to Unexpected Mechanisms Underlying Their Potent Anti-Tumor Effect in Combinatorial Therapies. Cancers (Basel). 2017;9(12):172. https://doi.org/10.3390/cancers9120172 PMid:29258181 PMCid:PMC5742820
Haffo L, Lu J, Bykov VJN, Martin SS, Ren X, Coppo L, et al. Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide re-ductase by mutant p53-targeting compound APR-246. Sci Rep. 2018;8(1):12671. https://doi.org/10.1038/s41598-018-31048-7 PMid:30140002 PMCid:PMC6107631
Mohell N, Alfredsson J, Fransson Å, Uustalu M, Byström S, Gullbo J, et al. APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis. 2015;6(6):1794. https://doi.org/10.1038/cddis.2015.143 PMid:26086967 PMCid:PMC4669826
Birsen R, Larrue C, Decroocq J, Johnson N, Guiraud N, Gotanegre M, et al. APR-246 induces early cell death by ferroptosis in acute mye-loid leukemia. Haematologica. 2022;107(2):403-416. https://doi.org/10.3324/haematol.2020.259531 PMid:33406814 PMCid:PMC8804578
Griffith OW. Mechanism of action, metabolism, and toxicity of bu-thionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem. 1982;257(22):13704-12. https://doi.org/10.1016/S0021-9258(18)33504-X PMid:6128339
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180-1191. https://doi.org/10.1038/ncb3064 PMid:25402683 PMCid:PMC4894846
Sun Y, Zheng Y, Wang C, Liu Y. Glutathione depletion induces ferrop-tosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis. 2018;9(7):753. https://doi.org/10.1038/s41419-018-0794-4 PMid:29988039 PMCid:PMC6037763
Li Q, Yin X, Wang W, Zhan M, Zhao B, Hou Z, et al. The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine. Oncol Lett. 2016;11(1):474-480. https://doi.org/10.3892/ol.2015.3879 PMid:26870236 PMCid:PMC4727028
Tagde A, Singh H, Kang MH, Reynolds CP. The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melpha-lan activity against preclinical models of multiple myeloma. Blood Cancer J. 2014;4(7):229. https://doi.org/10.1038/bcj.2014.45 PMid:25036800 PMCid:PMC4219442
Lee HM, Kim DH, Lee HL, Cha B, Kang DH, Jeong YI. Synergistic effect of buthionine sulfoximine on the chlorin e6-based photody-namic treatment of cancer cells. Arch Pharm Res. 2019;42(11):990-999. https://doi.org/10.1007/s12272-019-01179-0 PMid:31482490
Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015;27(2):211-222. https://doi.org/10.1016/j.ccell.2014.11.019 PMid:25620030
Whitt JD, Keeton AB, Gary BD, Sklar LA, Sodani K, Chen ZS, et al. Sulindac sulfide selectively increases sensitivity of ABCC1 express-ing tumor cells to doxorubicin and glutathione depletion. J Biomed Res. 2016;30(2):120-133. https://doi.org/10.7555/JBR.30.20150108 PMid:28276667 PMCid:PMC4820889
Tessoulin B, Descamps G, Moreau P, Maïga S, Lodé L, Godon C, et al. PRIMA-1Met induces myeloma cell death independent of p53 by im-pairing the GSH/ROS balance. Blood. 2014;124(10):1626-1636. https://doi.org/10.1182/blood-2014-01-548800 PMid:25006124
Mandal PK, Seiler A, Perisic T, Kölle P, Banjac Canak A, Förster H, et al. System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem. 2010;285(29):22244-22253. https://doi.org/10.1074/jbc.M110.121327 PMid:20463017 PMCid:PMC2903358
Wang L, Hu T, Shen J, Zhang L, Chan RLY, Lu L, et al. Dihydro-tanshinone I induced apoptosis and autophagy through caspase de-pendent pathway in colon cancer. Phytomedicine. 2015;22(12):1079-1087. https://doi.org/10.1016/j.phymed.2015.08.009 PMid:26547530
Tsai SL, Suk FM, Wang CI, Liu DZ, Hou WC, Lin PJ, et al. Anti-tumor potential of 15,16-dihydrotanshinone I against breast adenocarcino-ma through inducing G1 arrest and apoptosis. BiochemPharmacol. 2007;74(11):1575-1586. https://doi.org/10.1016/j.bcp.2007.08.009 PMid:17869226
Cheng R, Chen J, Wang Y, Ge Y, Huang Z, Zhang G. Dihydrotanshinone induces apoptosis of SGC7901 and MGC803 cells via activation of JNK and p38 signalling pathways. Pharm Biol. 2016;54(12):3019-3025. https://doi.org/10.1080/13880209.2016.1199045 PMid:27431278
Lee IY, Lin YY, Yang YH, Lin YS, Lin CL, Lin WY, et al. Dihydroiso-tanshinone I combined with radiation inhibits the migration ability of prostate cancer cells through DNA damage and CCL2 pathway. BMC PharmacolToxicol. 2018;19(1):5. https://doi.org/10.1186/s40360-018-0195-4 Mid:29386061 PMCid:PMC5793371
Lin YS, Shen YC, Wu CY, Tsai YY, Yang YH, Lin YY, et al. Danshen Improves Survival of Patients With Breast Cancer and Dihydroiso-tanshinone I Induces Ferroptosis and Apoptosis of Breast Cancer Cells. Front Pharmacol. 2019;10:1226 https://doi.org/10.3389/fphar.2019.01226 PMid:31736748 PMCid:PMC6836808
Tan, S.; Hou, X.; Mei, L. Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis. Oncol. Lett., 2020, 20(4), 122. https://doi.org/10.3892/ol.2020.11980 PMid:32863935 PMCid:PMC7448571
Wu CY, Yang YH, Lin YS, Chang GH, Tsai MS, Hsu CM, et al. Dihy-droisotanshinone I induced ferroptosis and apoptosis of lung cancer cells. Biomed Pharmacother. 2021;139:111585. https://doi.org/10.1016/j.biopha.2021.111585 PMid:33862493
Hassannia B, Logie E, Vandenabeele P, Vanden Berghe T, Vanden Berghe W. Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. BiochemPharmacol. 2020;173:113602. https://doi.org/10.1016/j.bcp.2019.08.004 PMid:31404528
Cohen SM, Mukerji R, Timmermann BN, Samadi AK, Cohen MS. A novel combination of withaferin A and sorafenib shows synergistic efficacy against both papillary and anaplastic thyroid cancers. Am J Surg. 2012;204(6):895-900. https://doi.org/10.1016/j.amjsurg.2012.07.027 PMid:23231932
Lee J, Hahm ER, Marcus AI, Singh S V. Withaferin A inhibits experi-mental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Mol Carcinog. 2015;54(6):417-429. https://doi.org/10.1002/mc.22110 PMid:24293234 PMCid:PMC4039625
Amin H, Nayak D, Ur Rasool R, Chakraborty S, Kumar A, Yousuf K, et al. Par-4 dependent modulation of cellular β-catenin by medicinal plant natural product derivative 3-azido Withaferin A. Mol Carcinog. 2016;55(5):864-881. https://doi.org/10.1002/mc.22328 PMid:25969134
Lv TZ, Wang GS. Antiproliferation potential of withaferin A on hu-man osteosarcoma cells via the inhibition of G2/M checkpoint pro-teins. Exp Ther Med. 2015;10(1):323-329. https://doi.org/10.3892/etm.2015.2480 PMid:26170956 PMCid:PMC4487066
Okamoto S, Tsujioka T, Suemori SI, Kida JI, Kondo T, Tohyama Y, et al. Withaferin A suppresses the growth of myelodysplasia and leu-kemia cell lines by inhibiting cell cycle progression. Cancer Sci. 2016;107(9):1302-1314. https://doi.org/10.1111/cas.12988 PMid:27311589 PMCid:PMC5021033
Alnuqaydan AM, Rah B, Almutary AG, Chauhan SS. Synergistic anti-tumor effect of 5-fluorouracil and withaferin-A induces endoplasmic reticulum stress-mediated autophagy and apoptosis in colorectal cancer cells. Am J Cancer Res. 2020;10(3):799-815.
Hassannia B, Wiernicki B, Ingold I, Qu F, Van Herck S, Tyurina YY, et al. Nano-targeted induction of dual ferroptotic mechanisms eradi-cates high-risk neuroblastoma. J Clin Invest. 2018;128(8):3341-3355. https://doi.org/10.1172/JCI99032 PMid:29939160 PMCid:PMC6063467
He Z, Liu X, Wu F, Wu S, Rankin GO, Martinez I, et al. Gallic Acid Induces S and G2 Phase Arrest and Apoptosis in Human Ovarian Cancer Cells In Vitro. Appl Sci (Basel). 2021;11(9):3807 https://doi.org/10.3390/app11093807 PMid:34386269 PMCid:PMC8356902
Jang YG, Ko EB, Choi KC. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J NutrBiochem. 2020;84:108444. https://doi.org/10.1016/j.jnutbio.2020.108444 PMid:32615369
Zeng M, Su Y, Li K, Jin D, Li Q, Li Y, et al. Gallic Acid Inhibits Bladder Cancer T24 Cell Progression Through Mitochondrial Dysfunction and PI3K/Akt/NF-κB Signaling Suppression. Front Pharmacol. 2020;11:1222. https://doi.org/10.3389/fphar.2020.01222 PMid:32973496 PMCid:PMC7468429
Aborehab NM, Osama N. Effect of Gallic acid in potentiating chemo-therapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 2019;19:154. https://doi.org/10.1186/s12935-019-0868-0 PMid:31171918 PMCid:PMC6547587
Tang HM, Cheung PCK. Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features. Toxins (Basel). 2019;11(9):492. https://doi.org/10.3390/toxins11090492 PMid:31455047 PMCid:PMC6783835
Khorsandi K, Kianmehr Z, Hosseinmardi Z, Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020;20:18. https://doi.org/10.1186/s12935-020-1100-y PMid:31956296 PMCid:PMC6958578
Hong Z, Tang P, Liu B, Ran C, Yuan C, Zhang Y, et al. Ferroptosis-related Genes for Overall Survival Prediction in Patients with Colo-rectal Cancer can be Inhibited by Gallic acid. Int J Biol Sci. 2021;17(4):942-956. https://doi.org/10.7150/ijbs.57164 PMid:33867820 PMCid:PMC8040315
Xu J, Chen Y, Yang R, Zhou T, Ke W, Si Y, et al. Cucurbitacin B inhibits gastric cancer progression by suppressing STAT3 activity. Arch Bio-chemBiophys. 2020;684:108314. https://doi.org/10.1016/j.abb.2020.108314 PMid:32088220
Zhang ZR, Gao MX, Yang K. Cucurbitacin B inhibits cell proliferation and induces apoptosis in human osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK pathways. Exp Ther Med. 2017;14(1):805-812. https://doi.org/10.3892/etm.2017.4547 PMid:28673003 PMCid:PMC5488743
Marostica LL, de Barros ALB, Oliveira J, Salgado BS, Cassali GD, Leite EA, et al. Antitumor effectiveness of a combined therapy with a new cucurbitacin B derivative and paclitaxel on a human lung cancer xenograft model. Toxicol Appl Pharmacol. 2017;329:272-281. https://doi.org/10.1016/j.taap.2017.06.007 PMid:28610991
Huang S, Cao B, Zhang J, Feng Y, Wang L, Chen X, et al. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: molecular mechanism and therapeutic potential. Cell Death Dis. 2021;12(3):237. https://doi.org/10.1038/s41419-021-03516-y PMid:33664249 PMCid:PMC7933245
Damia G, D'Incalci M. Clinical pharmacokinetics of altretamine. Clin Pharmacokinet. 1995;28(6):439-448. https://doi.org/10.2165/00003088-199528060-00002 PMid:7656502
Woo JH, Shimoni Y, Yang WS, Subramaniam P, Iyer A, Nicoletti P, et al. Elucidating Compound Mechanism of Action by Network Pertur-bation Analysis. Cell. 2015;162(2):441-451. https://doi.org/10.1016/j.cell.2015.05.056 PMid:26186195 PMCid:PMC4506491
Osmak M. Statins and cancer: current and future prospects. Cancer Lett. 2012;324(1):1-12. https://doi.org/10.1016/j.canlet.2012.04.011 PMid:22542807
Tu YS, Kang XL, Zhou JG, Lv XF, Tang YB, Guan YY. Involvement of Chk1-Cdc25A-cyclin A/CDK2 pathway in simvastatin induced S-phase cell cycle arrest and apoptosis in multiple myeloma cells. Eur J Pharmacol. 2011;670(2-3):356-364. https://doi.org/10.1016/j.ejphar.2011.09.031 PMid:21958871
Bil J, Zapala L, Nowis D, Jakobisiak M, Golab J. Statins potentiate cytostatic/cytotoxic activity of sorafenib but not sunitinib against tumor cell lines in vitro. Cancer Lett. 2010;288(1):57-67. https://doi.org/10.1016/j.canlet.2009.06.022 PMid:19632769
Kretzer IF, Maria DA, Guido MC, Contente TC, Maranhão RC. Simvas-tatin increases the antineoplastic actions of paclitaxel carried in li-pid nanoemulsions in melanoma-bearing mice. Int J Nanomedicine. 2016;11:885-904. https://doi.org/10.2147/IJN.S88546 PMid:27022257 PMCid:PMC4788363
Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547(7664):453-457. https://doi.org/10.1038/nature23007 PMid:28678785 PMCid:PMC5667900
Tracz-Gaszewska Z, Dobrzyn P. Stearoyl-CoA Desaturase 1 as a Therapeutic Target for the Treatment of Cancer. Cancers (Basel). 2019;11(7):948 https://doi.org/10.3390/cancers11070948 PMid:31284458 PMCid:PMC6678606
Pisanu ME, Noto A, De Vitis C, Morrone S, Scognamiglio G, Botti G, et al. Blockade of Stearoyl-CoA-desaturase 1 activity reverts re-sistance to cisplatin in lung cancer stem cells. Cancer Lett. 2017;406:93-104. https://doi.org/10.1016/j.canlet.2017.07.027 PMid:28797843
Chen L, Ren J, Yang L, Li Y, Fu J, Li Y, et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis. Sci Rep. 2016;6:19665. https://doi.org/10.1038/srep19665 PMid:26813308 PMCid:PMC4728559
Huang GM, Jiang QH, Cai C, Qu M, Shen W. SCD1 negatively regulates autophagy-induced cell death in human hepatocellular carcinoma through inactivation of the AMPK signaling pathway. Cancer Lett. 2015;358(2):180-190. https://doi.org/10.1016/j.canlet.2014.12.036 PMid:25528629
Noto A, De Vitis C, Pisanu ME, Roscilli G, Ricci G, Catizone A, et al. Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabi-liza-tion and nuclear localization of YAP/TAZ. Oncogene. 2017;36(32):4573-4584.https://doi.org/10.1038/onc.2017.75 PMid:28368399
Angelucci C, Maulucci G, Colabianchi A, Iacopino F, D'Alessio A, Maiorana A, et al. Stearoyl-CoA desaturase 1 and paracrine diffusible signals have a major role in the promotion of breast cancer cell mi-gration induced by cancer-associated fibroblasts. Br J Cancer. 2015;112(10):1675-1686. https://doi.org/10.1038/bjc.2015.135 PMid:25880005 PMCid:PMC4430719
Gao J, Zhang Z, Liu Y, Zhang Z, Wang M, Gong A, et al. Stearoyl-CoA Desaturase 1 Potentiates Hypoxic plus Nutrient-Deprived Pancreatic Cancer Cell Ferroptosis Resistance. Oxid Med Cell Longev. 2021;2021:6629804. https://doi.org/10.1155/2021/6629804 PMid:33868572 PMCid:PMC8032529
Mohamad NE, Abu N, Yeap SK, Alitheen NB. Bromelain Enhances the Anti-tumor Effects of Cisplatin on 4T1 Breast Tumor Model In Vivo. Integr Cancer Ther. 2019;18:1534735419880258. https://doi.org/10.1177/1534735419880258 PMid:31752555 PMCid:PMC6876173
Romano B, Fasolino I, Pagano E, Capasso R, Pace S, De Rosa G, et al. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antipro-liferative and proapoptotic effects. Mol Nutr Food Res. 2014;58(3):457-465. https://doi.org/10.1002/mnfr.201300345 PMid:24123777
Chang TC, Wei PL, Makondi PT, Chen WT, Huang CY, Chang YJ. Bro-melain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS One. 2019;14(1):0210274. https://doi.org/10.1371/journal.pone.0210274 PMid:30657763 PMCid:PMC6338369
Park S, Oh J, Kim M, Jin EJ. Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis. Anim Cells Syst (Seoul). 2018;22(5):334-340. https://doi.org/10.1080/19768354.2018.1512521 PMid:30460115 PMCid:PMC6171431
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).