Cuproptosis: A Copper-Triggered Unique Cell Death Targeting Cancer
Abstract
A recently discovered type of copper-driven cell death is regarded as Cuproptosis. The significance of copper and copper-triggered cell death in the development of malignancies has garnered attention recently. Cuproptosis has shown remarkable promise for cancer therapy, which has sparked a great deal of interest in the cancer research community. Treatments based on copper have the potential to treat malignancies that are resistant to chemotherapy by impeding the growth of the tumor. We offer a critical examination of copper homeostasis and the part copper dysregulation plays in the onset and spread of cancer in this review. After outlining the fundamental molecular underpinnings of Cuproptosis and its connection to cancer, the present state of knowledge regarding copper-based cancer treatment agents - copper chelators, copper ionophores, and copper complexes-based dynamic therapy is summarized. We also provide an overview of the latest research on the use of copper ionophores and complexes-based medicines to reduce tumor treatment resistance in various cancer types. We also go over the small-molecule substances and nanoparticles (NPs) that have the potential to induce Cuproptosis in cancer cells, which will provide fresh insight into the future development of Cuproptosis-inducing anticancer medications. Ultimately, the key ideas and urgent issues surrounding Cuproptosis that need to be addressed in further research were covered. Targeting Cuproptosis may be a potential anticancer therapy and treatment approach to overcome drug resistance in cancer, according to this review article.
Keywords: Cuproptosis, cancer, chemo-resistance, malignancies, Cu homeostasis, Cu chelators
Downloads
References
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y, Wang H. Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resistance Updates. 2023 Nov 11:101018. https://doi.org/10.1016/j.drup.2023.101018 PMid:37979442
P.A. Cobine, D.C. Brady Cuproptosis: cellular and molecular mecha-nisms underlying copper-induced cell death Mol. Cell, 82 (2022),1786-1787 https://doi.org/10.1016/j.molcel.2022.05.001 PMid:35594843
Chen M, Huang Z, Xia M, Ding Y, Shan T, Guan Z, Dai X, Xu X, Huang Y, Huang M, Zhao C. Glutathione-responsive copper-disulfiram nano-particles for enhanced tumor chemotherapy. Journal of Controlled Release. 2022 Jan 1;341:351-63. https://doi.org/10.1016/j.jconrel.2021.11.041 PMid:34856225
Kahlson MA, Dixon SJ. Copper-induced cell death. Science. 2022 Mar 18;375(6586):1231-2. https://doi.org/10.1126/science.abo3959 PMid:35298241
Li Y. Copper homeostasis: Emerging target for cancer treatment. IUBMB life. 2020 Sep;72(9):1900-8. https://doi.org/10.1002/iub.2341 PMid:32599675
da Silva DA, De Luca A, Squitti R, Rongioletti M, Rossi L, Machado CM, Cerchiaro G. Copper in tumors and the use of copper-based com-pounds in cancer treatment. Journal of inorganic biochemistry. 2022 Jan 1;226:111634. https://doi.org/10.1016/j.jinorgbio.2021.111634 PMid:34740035
Sahu M, Satapathy T, Bahadur S, Saha S, Purabiya P, Kaushik S, Netam AK, Prasad J. Preparation methods for nanoparticle: A smart carrier system for treatment of cancer. March. 2018 Mar 19;7(19):216-6.
Lin Q, Hou S, Dai Y, Jiang N, Lin Y. Monascin exhibits neuroprotective effects in rotenone model of Parkinson's disease via antioxidation and anti-neuroinflammation. Neuroreport. 2020 Jun 10;31(9):637-43. https://doi.org/10.1097/WNR.0000000000001467 PMid:32427711
Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, Kocak M. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nature chemical biology. 2019 Jul;15(7):681-9. https://doi.org/10.1038/s41589-019-0291-9 PMid:31133756 PMCid:PMC8183600
Li X, Wang Q, Xu C, Zhang L, Zhou J, Lv J, Xu M, Jiang D. Ferroptosis Inducers Kill Mesenchymal Stem Cells Affected by Neuroblastoma. Cancers. 2023 Feb 18;15(4):1301. https://doi.org/10.3390/cancers15041301 PMid:36831642 PMCid:PMC9954189
Satapathy A, Khan MdA, Satapathy T, Sen K, Sahu S, Pradhan B et al. Pharmacological targeting of ferroptosis in cancer treatment. Journal of Drug Delivery and Therapeutics.2024;14(2):205-221 https://doi.org/10.22270/jddt.v14i2.6371
Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death?. Cell Death & Differentiation. 2023 Apr;30(4):876-84. https://doi.org/10.1038/s41418-023-01125-0 PMid:36755067 PMCid:PMC10070433
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nature Reviews Cancer. 2022 Feb;22(2):102-13. https://doi.org/10.1038/s41568-021-00417-2 PMid:34764459 PMCid:PMC8810673
Gao W, Huang Z, Duan J, Nice EC, Lin J, Huang C. Elesclomol induces copper‐dependent ferroptosis in colorectal cancer cells via degrada-tion of ATP7A. Molecular Oncology. 2021 Dec;15(12):3527-44. https://doi.org/10.1002/1878-0261.13079 PMid:34390123 PMCid:PMC8637554
Pan Q, Kleer CG, van Golen KL, Irani J, Bottema KM, Bias C, De Car-valho M, Mesri EA, Robins DM, Dick RD, Brewer GJ. Copper defi-ciency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer research. 2002 Sep 1;62(17):4854-9.
Helsel ME, Franz KJ. Pharmacological activity of metal binding agents that alter copper bioavailability. Dalton Transactions. 2015;44(19):8760-70. https://doi.org/10.1039/C5DT00634A PMid:25797044 PMCid:PMC4425619
Wadhwa S, Mumper RJ. D-penicillamine and other low molecular weight thiols: Review of anticancer effects and related mechanisms. Cancer letters. 2013 Aug 28;337(1):8-21. https://doi.org/10.1016/j.canlet.2013.05.027 PMid:23727371
Baldari S, Di Rocco G, Toietta G. Current biomedical use of copper chelation therapy. International journal of molecular sciences. 2020 Feb 6;21(3):1069. https://doi.org/10.3390/ijms21031069 PMid:32041110 PMCid:PMC7037088
Alvarez HM, Xue Y, Robinson CD, Canalizo-Hernández MA, Marvin RG, Kelly RA, Mondragón A, Penner-Hahn JE, O'Halloran TV. Tetrathi-omolybdate inhibits copper trafficking proteins through metal cluster formation. Science. 2010 Jan 15;327(5963):331-4. https://doi.org/10.1126/science.1179907 PMid:19965379 PMCid:PMC3658115
Kim YJ, Tsang T, Anderson GR, Posimo JM, Brady DC. Inhibition of BCL2 family members increases the efficacy of copper chelation in BRAFV600E-driven melanoma. Cancer Research. 2020 Apr 2;80(7):1387-400. https://doi.org/10.1158/0008-5472.CAN-19-1784 PMid:32005716 PMCid:PMC7127963
Fu S, Naing A, Fu C, Kuo MT, Kurzrock R. Overcoming platinum re-sistance through the use of a copper-lowering agent. Molecular can-cer therapeutics. 2012 Jun 1;11(6):1221-5. https://doi.org/10.1158/1535-7163.MCT-11-0864 PMid:22491798 PMCid:PMC3667596
Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang CY, Zhang M, Du Z, Barsoum J, Bertin J. Elesclomol induces cancer cell apoptosis through oxidative stress. Molecular cancer therapeutics. 2008 Aug 1;7(8):2319-27. https://doi.org/10.1158/1535-7163.MCT-08-0298 PMid:18723479
Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D, Liu J. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 2023 Jan 14:1-5. https://doi.org/10.1080/15548627.2023.2165323 PMid:36622894 PMCid:PMC10283421
Wu L, Zhou L, Liu DQ, Vogt FG, Kord AS. LC-MS/MS and density func-tional theory study of copper (II) and nickel (II) chelating complexes of elesclomol (a novel anticancer agent). Journal of pharmaceutical and biomedical analysis. 2011 Jan 25;54(2):331-6. https://doi.org/10.1016/j.jpba.2010.09.007 PMid:20933353
Zhang X, Jiang Q, Su Y, Bu L, Sun Z, Wu X, Gao B, Wang L, Lin Y, Xie W, Guo J. AMPK phosphorylates and stabilises copper transporter 1 to synergise metformin and copper chelator for breast cancer therapy. British Journal of Cancer. 2023 Apr 12;128(8):1452-65. https://doi.org/10.1038/s41416-022-02127-4 PMid:36807336 PMCid:PMC10070418
Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J, Ozdian T, Bartkova J, Turi Z, Moudry P, Kraus M. Alcohol-abuse drug disul-firam targets cancer via p97 segregase adaptor NPL4. Nature. 2017 Dec 14;552(7684):194-9. https://doi.org/10.1038/nature25016 PMid:29211715 PMCid:PMC5730499
Jiang W, Liang M, Lei Q, Li G, Wu S. The Current Status of Photody-namic Therapy in Cancer Treatment. Cancers. 2023 Jan 18;15(3):585. https://doi.org/10.3390/cancers15030585 PMid:36765543 PMCid:PMC9913255
Cao C, Wang X, Yang N, Song X, Dong X. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chemical Science. 2022;13(4):863-89. https://doi.org/10.1039/D1SC05482A PMid:35211255 PMCid:PMC8790788
Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. Self-assembled copper-amino acid nanoparticles for in situ glutathione "AND" H2O2 sequentially triggered chemodynamic ther-apy. Journal of the American Chemical Society. 2018 Dec 13;141(2):849-57. https://doi.org/10.1021/jacs.8b08714 PMid:30541274
Shi L, Liu P, Wu J, Ma L, Zheng H, Antosh MP, Zhang H, Wang B, Chen W, Wang X. The effectiveness and safety of X-PDT for cutaneous squamous cell carcinoma and melanoma. Nanomedicine. 2019 Aug;14(15):2027-43. https://doi.org/10.2217/nnm-2019-0094 PMid:31165659 PMCid:PMC7006790
Zhou M, Zhao J, Tian M, Song S, Zhang R, Gupta S, Tan D, Shen H, Ferrari M, Li C. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and re-duces lung metastasis in orthotopic 4T1 breast Tumor model. Na-noscale. 2015 Dec 12;7(46):19438. https://doi.org/10.1039/C5NR04587H PMid:26376843 PMCid:PMC4993020
Dong K, Liu Z, Li Z, Ren J, Qu X. Hydrophobic anticancer drug deliv-ery by a 980 nm laser‐driven photothermal vehicle for efficient syn-ergistic therapy of cancer cells in vivo. Advanced Materials. 2013 Aug 27;25(32):4452-8. https://doi.org/10.1002/adma.201301232 PMid:23798450
Girma WM, Dehvari K, Ling YC, Chang JY. Albumin-functionalized CuFeS2/photosensitizer nanohybrid for single-laser-induced folate receptor-targeted photothermal and photodynamic therapy. Materi-als Science and Engineering: C. 2019 Aug 1;101:179-89. https://doi.org/10.1016/j.msec.2019.03.074 PMid:31029311
Yang L, Yang P, Lip GY, Ren J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends in pharmacological sci-ences. 2023 Jul 25;44(9):573-85. https://doi.org/10.1016/j.tips.2023.07.004 PMid:37500296
Yang Z, Zhao Z, Cheng H, Shen Y, Xie A, Zhu M. In-situ fabrication of novel Au nanoclusters-Cu2+@ sodium alginate/hyaluronic acid na-nohybrid gels for cuproptosis enhanced photother-mal/photodynamic/chemodynamic therapy via tumor microenvi-ronment regula-tion. Journal of Colloid and Interface Science. 2023 Jul 1;641:215-28. https://doi.org/10.1016/j.jcis.2023.03.065 PMid:36933468
Netam AK, Prasad J, Satapathy T. Potential role of antisense oligonu-cleotides in regulation of gene expression to target cancer: a step forward. 2018;7(9):26-34.
Nie D, Chen C, Li Y, Zeng C. Disulfiram, an aldehyde dehydrogenase inhibitor, works as a potent drug against sepsis and cancer via ne-crosis, pyroptosis, apoptosis, ferroptosis, and cuproptosis. Blood Science. 2022 Jul 30;4(03):152-4. https://doi.org/10.1097/BS9.0000000000000117 PMid:36518588 PMCid:PMC9742096
Liu Z, Ma H, Lai Z. The role of ferroptosis and cuproptosis in curcu-min against Hepatocellular Carcinoma. Molecules. 2023 Feb 8;28(4):1623. https://doi.org/10.3390/molecules28041623 PMid:36838613 PMCid:PMC9964324
Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nature reviews Clinical oncology. 2021 May;18(5):280-96. https://doi.org/10.1038/s41571-020-00462-0 PMid:33514910
Wang W, Mo W, Hang Z, Huang Y, Yi H, Sun Z, Lei A. Cuproptosis: Harnessing transition metal for cancer therapy. ACS nano. 2023 Oct 11;17(20):19581-99. https://doi.org/10.1021/acsnano.3c07775 PMid:37820312
Satapathy T, Kaushik S, Netam AK, Prasad J, Rao SP, Sahu MK, Baghel P. Nano delivery: a smart carrier for treatment of ovarian can-cer.2018; 7(9): 513-523.
Ning S, Lyu M, Zhu D, Lam JW, Huang Q, Zhang T, Tang BZ. Type-I AIE Photosensitizer Loaded Biomimetic System Boosting Cupropto-sis to Inhibit Breast Cancer Metastasis and Rechallenge. ACS nano. 2023 May 15. https://doi.org/10.1021/acsnano.3c00326 PMid:37183977
Lu Y, Pan Q, Gao W, Pu Y, He B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. Journal of Materials Chemistry B. 2022;10(33):6296-306. https://doi.org/10.1039/D2TB01150F PMid:35904024
Prasad J, Netam AK, Rao SP, Satapathy T, Pandit B. MONOCLONAL ANTIBODY: A MOLECULAR TARGETED THERAPIES FOR CANCER TREATMENT. 2018; Volume 7, Issue 9, 158-173.
Dou L, Lu E, Tian D, Li F, Deng L, Zhang Y. Adrenomedullin induces cisplatin chemoresistance in ovarian cancer through reprogramming of glucose metabolism. Journal of Translational Internal Medicine. 2023 Jul 5;11(2):169-77. https://doi.org/10.2478/jtim-2023-0091 PMid:37408575 PMCid:PMC10318923
Fatma H, Siddique HR. Research and Patents Status of Selected Phyto-chemicals Against Cancer: How Close and How Far?. Recent Patents on Anti-Cancer Drug Discovery. 2023 Nov 1;18(4):428-47. https://doi.org/10.2174/1574892818666221107113648 PMid:36345243
PapeVeronika FS, EnyedyÉva A, KepplerBernhard K, KowolChristian R. Anticancer thiosemicarbazones: chemical properties, interaction with iron metabolism, and resistance development. Antioxidants & redox signaling. 2019 Feb 1;30(8):1062-82 https://doi.org/10.1089/ars.2017.7487 PMid:29334758
Steinbrueck A, Sedgwick AC, Brewster JT, Yan KC, Shang Y, Knoll DM, Vargas-Zúñiga GI, He XP, Tian H, Sessler JL. Transition metal chela-tors, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents. Chemical Society Reviews. 2020;49(12):3726-47. https://doi.org/10.1039/C9CS00373H PMid:32525153
Lun X, Wells JC, Grinshtein N, King JC, Hao X, Dang NH, Wang X, Aman A, Uehling D, Datti A, Wrana JL. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma. Clinical Cancer Research. 2016 Aug 1;22(15):3860-75. https://doi.org/10.1158/1078-0432.CCR-15-1798 PMid:27006494
Kita Y, Hamada A, Saito R, Teramoto Y, Tanaka R, Takano K, Nakaya-ma K, Murakami K, Matsumoto K, Akamatsu S, Yamasaki T. System-atic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: a summary of pre-clinical studies. British Journal of Cancer. 2019 Dec 10;121(12):1027-38. https://doi.org/10.1038/s41416-019-0609-0 PMid:31673101 PMCid:PMC6964684
Falls-Hubert KC, Butler AL, Gui K, Anderson M, Li M, Stolwijk JM, Rodman III SN, Solst SR, Tomanek-Chalkley A, Searby CC, Sheffield VC. Disulfiram causes selective hypoxic cancer cell toxicity and ra-dio-chemo-sensitization via redox cycling of copper. Free Radical Biology and Medicine. 2020 Apr 1;150:1-1. https://doi.org/10.1016/j.freeradbiomed.2020.01.186 PMid:32032663 PMCid:PMC7299833
Hassan I, Ebaid H, Alhazza IM, Al-Tamimi J, Rady AM. Disulfiram Enhances the Antineoplastic Activity and Sensitivity of Murine Hepato-cellular Carcinoma to 5-FU via Redox Management. Pharma-ceuticals. 2023 Jan 23;16(2):169. https://doi.org/10.3390/ph16020169 PMid:37259318 PMCid:PMC9967644
Cong J, Wang Y, Zhang X, Zhang N, Liu L, Soukup K, Michelakos T, Hong T, DeLeo A, Cai L, Sabbatino F. A novel chemoradiation target-ing stem and nonstem pancreatic cancer cells by repurposing disul-firam. Cancer letters. 2017 Nov 28;409:9-19. https://doi.org/10.1016/j.canlet.2017.08.028 PMid:28864067
Copyright (c) 2024 Mohammad Altaf Khan, Trilochan Satapathy, Ashu Vishwakarma, Kalpana Sen, Ayushi Gupta, Bharti Pradhan, Shailesh Sahu, Abinash Satapathy, Kunal Chandrakar, Manisha Chandrakar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).