Molecular Mechanisms of Mitochondrial Dysfunction in Neurodegenerative Diseases: Pharmacological Targets and Therapeutic Advances
Abstract
One of the main characteristics of severe neurodegenerative disorders like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD) is mitochondrial dysfunction. These disorders cause progressive neuronal degeneration due to abnormalities in mitochondrial energy metabolism, redox regulation, calcium homeostasis, and quality control pathways. Mechanistically, the key pathogenic causes are altered electron transport chain activity, dysregulated mitochondrial dynamics (fission and fusion), impaired mitophagy, and increased formation of reactive oxygen species (ROS). Furthermore, mutations in proteins such as PINK1, Parkin, SOD1, TDP-43, and huntingtin worsen mitochondrial instability and interfere with mitochondrial-nucleus communication.This review provides a comprehensive analysis of mitochondrial dysfunction from a mechanistic perspective, highlighting disease-specific pathways and molecular targets. We evaluate current and emerging pharmacological strategies, including mitochondria-targeted antioxidants, biogenesis activators, calcium modulators, and mitophagy enhancers. In addition, we discuss drug delivery innovations, such as mitochondrial-penetrating peptides and nanoparticle systems, as well as the clinical progress and limitations of mitochondrial therapies.By integrating insights from molecular biology, pharmacology, and translational neuroscience, this review outlines the therapeutic potential of targeting mitochondria and offers perspectives on future drug discovery aimed at mitigating neurodegeneration through mitochondrial repair and protection.
Keywords: Mitochondrial dysfunction, neurodegenerative diseases, PINK1, Parkinson’s disease, Alzheimer’s disease, SIRT3
Keywords:
Mitochondrial dysfunction, neurodegenerative diseases, PINK1, Parkinson’s disease, Alzheimer’s disease, SIRT3DOI
https://doi.org/10.22270/jddt.v15i10.7424References
1. Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of mitochondrial dysfunctions in neurodegenerative disorders: advances in mitochondrial biology. Molecular Neurobiology. 2025 Jun;62(6):6827-55.https://doi.org/10.1007/s12035-024-04469-x
2. Cardanho-Ramos C, Morais VA. Mitochondrial biogenesis in neurons: how and where. International journal of molecular sciences. 2021 Dec 2;22(23):13059.https://doi.org/10.3390/ijms222313059
3. Fedorova A, Jovisic N, Vallverdù J, Battistoni S, Jovicic M, Medojević M, Toschev A, Alshanskaia E, Talanov M, Erokhin V. Advancing Neural Networks: Innovations and Impacts on Energy Consumption. Advanced Electronic Materials. 2024 Dec;10(12):2400258. https://doi.org/10.1002/aelm.202400258
4. Bereiter-Hahn J, Jendrach M. Environmental Stress: Mitochondria as Targets and Stressors in Cellular Metabolism. InStress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies 2019 Nov 28 (pp. 43-70). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-030-16996-1_5
5. Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Saceleanu VM. Unraveling molecular and genetic insights into neurodegenerative diseases: advances in understanding Alzheimer’s, Parkinson’s, and Huntington’s diseases and amyotrophic lateral sclerosis. International journal of molecular sciences. 2023 Jun 28;24(13):10809.https://doi.org/10.3390/ijms241310809
6. Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019 Nov 1;49:35-45.https://doi.org/10.1016/j.mito.2019.07.003
7. Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal transduction and targeted therapy. 2024 May 15;9(1):124.https://doi.org/10.1038/s41392-024-01839-8
8. Shi Z, Wang XM, Duan WW, Du YL, Ling SK, Zhang Z, Wang GD, Zhao D, Ding JJ, Zhang K, Li A. Neuroplasticity and brain health: insights from natural torpor. Biological Reviews. 2025.https://doi.org/10.1111/brv.70069
9. Feofilaktova T, Kushnireva L, Segal M, Korkotian E. Calcium signaling in postsynaptic mitochondria: mechanisms, dynamics, and role in ATP production. Frontiers in Molecular Neuroscience. 2025 Jul 21;18:1621070.https://doi.org/10.3389/fnmol.2025.1621070
10. Feofilaktova T, Kushnireva L, Segal M, Korkotian E. Calcium signaling in postsynaptic mitochondria: mechanisms, dynamics, and role in ATP production. Frontiers in Molecular Neuroscience. 2025 Jul 21;18:1621070. https://doi.org/10.3389/fnmol.2025.1621070
11. Chintaluri C, Vogels TP. Metabolically regulated spiking could serve neuronal energy homeostasis and protect from reactive oxygen species. Proceedings of the National Academy of Sciences. 2023 Nov 28;120(48):e2306525120.https://doi.org/10.1073/pnas.2306525120
12. Gulino R. Synaptic dysfunction and plasticity in amyotrophic lateral sclerosis. International Journal of Molecular Sciences. 2023 Feb 27;24(5):4613.https://doi.org/10.3390/ijms24054613
13. Gao T, Hu Y, Zhang H, Shi R, Song Y, Ding M, Gao F. Aerobic Capacity Beyond Cardiorespiratory Fitness Linking Mitochondrial Function, Disease Resilience and Healthy Aging. The FASEB Journal. 2025 Jun 15;39(11):e70655. https://doi.org/10.1096/fj.202500554R
14. Plascencia-Villa G, Perry G. Exploring molecular targets for mitochondrial therapies in neurodegenerative diseases. International Journal of Molecular Sciences. 2023 Aug 6;24(15):12486. https://doi.org/10.3390/ijms241512486
15. Șerban M, Toader C, Covache-Busuioc RA. The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration. International Journal of Molecular Sciences. 2025 Aug 3;26(15):7498.https://doi.org/10.3390/ijms26157498
16. Li Y, Li XM, Wei LS, Ye JF. Advancements in mitochondrial-targeted nanotherapeutics: overcoming biological obstacles and optimizing drug delivery. Frontiers in Immunology. 2024 Oct 17;15:1451989.https://doi.org/10.3389/fimmu.2024.1451989
17. Hu N, Chen Z, Zhao X, Peng X, Wu Y, Yang K, Sun T. Endothelial dysfunction in Huntington’s disease: pathophysiology and therapeutic implications. International Journal of Molecular Sciences. 2025 Feb 8;26(4):1432.https://doi.org/10.3390/ijms26041432
18. Batis N, Brooks JM, Payne K, Sharma N, Nankivell P, Mehanna H. Lack of predictive tools for conventional and targeted cancer therapy: Barriers to biomarker development and clinical translation. Advanced Drug Delivery Reviews. 2021 Sep 1;176:113854.https://doi.org/10.1016/j.addr.2021.113854
19. Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FS. Mitochondria: a promising convergent target for the treatment of amyotrophic lateral sclerosis. Cells. 2024 Jan 29;13(3):248.https://doi.org/10.3390/cells13030248
20. Liang Y, Rubinstein JL. Structural analysis of mycobacterial electron transport chain complexes by cryoEM. Biochemical Society Transactions. 2023 Feb 27;51(1):183-93.https://doi.org/10.1042/BST20220611
21. Peng S, Gao J, Stojkov D, Yousefi S, Simon HU. Established and emerging roles for mitochondria in neutrophils. Immunological Reviews. 2023 Mar;314(1):413-26. https://doi.org/10.1111/imr.13158
22. Padavannil A, Ayala-Hernandez MG, Castellanos-Silva EA, Letts JA. The mysterious multitude: structural perspective on the accessory subunits of respiratory complex I. Frontiers in molecular biosciences. 2022 Jan 3;8:798353.https://doi.org/10.3389/fmolb.2021.798353
23. Priya HK, Jha KP, Kumar N, Singh S. Reactive Oxygen Species and Mitochondrial Calcium's Roles in the Development of Atherosclerosis. Current Pharmaceutical Design.2024 Jun 1;30(23):1812-21. https://doi.org/10.2174/0113816128303026240514111200
24. Eaton AF, Merkulova M, Brown D. The H+-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. American Journal of Physiology-Cell Physiology. 2021 Mar 1;320(3):C392-414.https://doi.org/10.1152/ajpcell.00442.2020
25. Benit P, Goncalves J, El Khoury R, Rak M, Favier J, Gimenez-Roqueplo AP, Rustin P. Succinate dehydrogenase, succinate, and superoxides: a genetic, epigenetic, metabolic, environmental explosive crossroad. Biomedicines. 2022 Jul 25;10(8):1788.https://doi.org/10.3390/biomedicines10081788
26. Muras V, Toulouse C, Fritz G, Steuber J. Respiratory membrane protein complexes convert chemical energy. Bacterial Cell Walls and Membranes. 2019 Jun 19:301-35.https://doi.org/10.1007/978-3-030-18768-2_10
27. Mantle D, Dewsbury M, Hargreaves IP. The Ubiquinone-Ubiquinol redox cycle and Its clinical consequences: An overview. International Journal of Molecular Sciences. 2024 Jun 20;25(12):6765.https://doi.org/10.3390/ijms25126765
28. Zhou H, Wang K, He L, Liu Z, Kong D, Zhang Q, Jin S, Han Y, Guan Q, Sheng G. Periplasmic transport channels to accelerate the proton motive force for efficient groundwater bioelectrocatalytic Cr (VI) reduction. Water Research. 2025 Sep 9:124581.https://doi.org/10.1016/j.watres.2025.124581
29. Heine KB, Parry HA, Hood WR. How does density of the inner mitochondrial membrane influence mitochondrial performance?. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2023 Feb 1;324(2):R242-8.https://doi.org/10.1152/ajpregu.00254.2022
30. Hauser D, Sode M, Andreeva EA, Parey K, Barends TR. Rieske Iron-Sulfur Cluster Proteins from an Anaerobic Ammonium Oxidizer Suggest Unusual Energetics in their Parent Rieske/cytochrome b complexes. bioRxiv. 2025 Jun 27:2025-06.https://doi.org/10.1101/2025.06.25.661457
31. Paduvari R, Arekal R, Somashekara DM. Uncovering the mysteries of bacterial cytochrome c oxidases: A review on structural and molecular insights for potential application. International Journal of Biological Macromolecules. 2025 May 1;309:142773.https://doi.org/10.1016/j.ijbiomac.2025.142773
32. Protasoni M, Zeviani M. Mitochondrial structure and bioenergetics in normal and disease conditions. International journal of molecular sciences. 2021 Jan 8;22(2):586. https://doi.org/10.3390/ijms22020586
33. Kostova I. The role of complexes of biogenic metals in living organisms. Inorganics. 2023 Jan 25;11(2):56. https://doi.org/10.3390/inorganics11020056
34. Zharova TV, Grivennikova VG, Borisov VB. F1· Fo ATP Synthase/ATPase: contemporary view on unidirectional catalysis. International Journal of Molecular Sciences. 2023 Mar 12;24(6):5417.5417; https://doi.org/10.3390/ijms24065417
35. Zharova TV, Grivennikova VG, Borisov VB. F1· Fo ATP Synthase/ATPase: contemporary view on unidirectional catalysis. International Journal of Molecular Sciences. 2023 Mar 12;24(6):5417. https://doi.org/10.3390/ijms24065417
36. Schirrmacher V. Mitochondria at work: new insights into regulation and dysregulation of cellular energy supply and metabolism. Biomedicines. 2020 Nov 22;8(11):526. https://doi.org/10.3390/biomedicines8110526
37. Venditti P, Di Meo S. The role of reactive oxygen species in the life cycle of the mitochondrion. International journal of molecular sciences. 2020 Mar 21;21(6):2173.https://doi.org/10.3390/ijms21062173
38. Du H, Xu T, Yu S, Wu S, Zhang J. Mitochondrial metabolism and cancer therapeutic innovation. Signal Transduction and Targeted Therapy. 2025 Aug 4;10(1):245.https://doi.org/10.1038/s41392-025-02311-x
39. Ragni M, Ruocco C, Nisoli E. Mitochondrial uncoupling, energy substrate utilization, and brown adipose tissue as therapeutic targets in cancer. npj Metabolic Health and Disease. 2025 Sep 22;3(1):37.https://doi.org/10.1038/s44324-025-00080-3
40. Sayehmiri F, Motamedi F, Batool Z, Naderi N, Shaerzadeh F, Zoghi A, Rezaei O, Khodagholi F, Pourbadie HG. Mitochondrial plasticity and synaptic plasticity crosstalk; in health and Alzheimer's disease. CNS neuroscience & therapeutics. 2024 Aug;30(8):e14897. https://doi.org/10.1111/cns.14897
41. Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxidative medicine and cellular longevity. 2019;2019(1):2105607. https://doi.org/10.1155/2019/2105607
42. Mahapatra C, Kishore A, Gawad J, Al-Emam A, Kouzeiha RA, Rusho MA. Review of electrophysiological models to study membrane potential changes in breast cancer cell transformation and tumor progression. Frontiers in Physiology. 2025 Mar 5;16:1536165. https://doi.org/10.3389/fphys.2025.1536165
43. Llavanera M, Delgado-Bermúdez A, Olives S, Mateo-Otero Y, Recuero S, Bonet S, Fernández-Fuertes B, Yeste M, Barranco I. Glutathione S-transferases play a crucial role in mitochondrial function, plasma membrane stability and oxidative regulation of mammalian sperm. Antioxidants. 2020 Jan 24;9(2):100. https://doi.org/10.3390/antiox9020100
44. Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biological Reviews. 2021 Dec;96(6):2489-521. https://doi.org/10.1111/brv.12764
45. Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial bioenergy in neurodegenerative disease: Huntington and Parkinson. International Journal of Molecular Sciences. 2023 Apr 13;24(8):7221.https://doi.org/10.3390/ijms24087221
46. Seager R, Lee L, Henley JM, Wilkinson KA. Mechanisms and roles of mitochondrial localisation and dynamics in neuronal function. Neuronal Signaling. 2020 Jun;4(2):NS20200008.https://doi.org/10.1042/NS20200008
47. Wang N, Wang X, Lan B, Gao Y, Cai Y. DRP1, fission and apoptosis. Cell Death Discovery. 2025 Apr 7;11(1):150.https://doi.org/10.1038/s41420-025-02458-0
48. Adebayo M, Singh S, Singh AP, Dasgupta S. Mitochondrial fusion and fission: the fine‐tune balance for cellular homeostasis. The FASEB Journal. 2021 Jun;35(6):e21620. https://doi.org/10.1096/fj.202100067R
49. Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial dynamics and cristae shape changes during metabolic reprogramming. Antioxidants & Redox Signaling. 2023 Oct 1;39(10-12):684-707.https://doi.org/10.1089/ars.2023.0268
50. Quiles JM, Gustafsson ÅB. The role of mitochondrial fission in cardiovascular health and disease. Nature Reviews Cardiology. 2022 Nov;19(11):723-36.https://doi.org/10.1038/s41569-022-00703-y
51. Theocharopoulou G. The ubiquitous role of mitochondria in Parkinson and other neurodegenerative diseases. AIMS neuroscience. 2020 Mar 25;7(1):43. 10.3934/Neuroscience.2020004
52. Iorio R, Celenza G, Petricca S. Mitophagy: molecular mechanisms, new concepts on parkin activation and the emerging role of AMPK/ULK1 axis. Cells. 2021 Dec 23;11(1):30.https://doi.org/10.3390/cells11010030
53. Vargas JN, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nature reviews Molecular cell biology. 2023 Mar;24(3):167-85.https://doi.org/10.1038/s41580-022-00542-2
54. Vizziello M, Borellini L, Franco G, Ardolino G. Disruption of mitochondrial homeostasis: The role of PINK1 in Parkinson’s disease. Cells. 2021 Nov 4;10(11):3022. https://doi.org/10.3390/cells10113022
55. Mandal A, Drerup CM. Axonal transport and mitochondrial function in neurons. Frontiers in Cellular Neuroscience. 2019 Aug 9;13:373.https://doi.org/10.3389/fncel.2019.00373
56. Alberti P, Semperboni S, Cavaletti G, Scuteri A. Neurons: the interplay between cytoskeleton, ion channels/transporters and mitochondria. Cells. 2022 Aug 11;11(16):2499.https://doi.org/10.3390/cells11162499
57. Fenton AR, Jongens TA, Holzbaur EL. Mitochondrial dynamics: Shaping and remodeling an organelle network. Current opinion in cell biology. 2021 Feb 1;68:28-36.https://doi.org/10.1016/j.ceb.2020.08.014
58. Scott DN, Frank MJ. Adaptive control of synaptic plasticity integrates micro-and macroscopic network function. Neuropsychopharmacology. 2023 Jan;48(1):121-44.https://doi.org/10.1038/s41386-022-01374-6
59. Atkinson CS, Cheng-Boivin Z, Larochelle N, Minotti S, Gentil BJ. CK1α, FAM83H, and FAM83B contribute to bundling of neurofilaments and are sequestered in cellular and mice models of ARSACS. bioRxiv. 2024 Oct 1:2024-10.https://doi.org/10.1101/2024.10.01.616079
60. Chinopoulos C, Adam‐Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology: novel aspects of an enduring theme. The FEBS journal. 2006 Feb;273(3):433-50. https://doi.org/10.1111/j.1742-4658.2005.05103
61. Marchi S, Pinton P. The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. The Journal of physiology. 2014 Mar 1;592(5):829-39.https://doi.org/10.1113/jphysiol.2013.268235
62. Mammucari C, Raffaello A, Reane DV, Rizzuto R. Molecular structure and pathophysiological roles of the mitochondrial calcium uniporter. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2016 Oct 1;1863(10):2457-64.https://doi.org/10.1016/j.bbamcr.2016.03.006
63. Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiological reviews. 2022 Apr 1;102(2):893-992.https://doi.org/10.1152/physrev.00041.2020
64. Borkum JM. The tricarboxylic acid cycle as a central regulator of the rate of aging: implications for metabolic interventions. Advanced Biology. 2023 Jul;7(7):2300095. https://doi.org/10.1002/adbi.202300095
65. Penna C, Perrelli MG, Pagliaro P. Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxidants & redox signaling. 2013 Feb 10;18(5):556-99.https://doi.org/10.1089/ars.2011.4459
66. Feno S, Butera G, Vecellio Reane D, Rizzuto R, Raffaello A. Crosstalk between calcium and ROS in pathophysiological conditions. Oxidative medicine and cellular longevity. 2019;2019(1):9324018.https://doi.org/10.1155/2019/9324018
67. Oyewole AO, Birch‐Machin MA. Mitochondria‐targeted antioxidants. The FASEB Journal. 2015 Dec;29(12):4766-71. https://doi.org/10.1096/fj.15-275404
68. Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Frontiers in cell and developmental biology. 2023 Jan 24;11:1094356.https://doi.org/10.3389/fcell.2023.1094356
69. Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A, Więckowski MR. Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. International Journal of Molecular Sciences. 2017 Jul 20;18(7):1576. https://doi.org/10.3390/ijms18071576
70. Loncke J, Kerkhofs M, Kaasik A, Bezprozvanny I, Bultynck G. Recent advances in understanding IP3R function with focus on ER-mitochondrial Ca2+ transfers. Current Opinion in Physiology. 2020 Oct 1;17:80-8.https://doi.org/10.1016/j.cophys.2020.07.011
71. Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic reticulum-mitochondria contacts: a potential therapy target for cardiovascular remodeling-associated diseases. Frontiers in Cell and Developmental Biology. 2021 Nov 10;9:774989.https://doi.org/10.3389/fcell.2021.774989
72. Area-Gomez E, de Groof A, Bonilla E, Montesinos J, Tanji K, Boldogh I, Pon L, Schon EA. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell death & disease. 2018 Feb 28;9(3):335.https://doi.org/10.1038/s41419-017-0215-0
73. Tabassum N, Kheya IS, Asaduzzaman S, Maniha S, Fayz AH, Zakaria A, Noor R. A review on the possible leakage of electrons through the electron transport chain within mitochondria. Life Sci. 2020;6(1):105-13. https://doi.org/10.1111/j.1469-7793.2003.00335.
74. Wang Y, Zhang SX, Gozal D. Reactive oxygen species and the brain in sleep apnea. Respiratory physiology & neurobiology. 2010 Dec 31;174(3):307-16.https://doi.org/10.1016/j.resp.2010.09.001
75. Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. Journal of Inflammation research. 2020 Dec 2:1057-73.https://doi.org/10.2147/JIR.S275595
76. Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Ţiț DM, Pașcalău N, Nistor-Cseppentö DC. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of Alzheimer’s disease: therapeutic implications and future perspectives. Antioxidants. 2022 Oct 31;11(11):2167.https://doi.org/10.3390/antiox11112167
77. Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer's disease: role of amyloid‐β peptide alcohol dehydrogenase (ABAD). International journal of experimental pathology. 2005 Jun;86(3):161-71. https://doi.org/10.1111/j.0959-9673.2005.00427.
78. Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, Trillat AC, Stern DM, Arancio O, Yan SS. ABAD enhances Aβ‐induced cell stress via mitochondrial dysfunction. The FASEB Journal. 2005 Apr;19(6):1-25. https://doi.org/10.1096/fj.04-2582fje
79. R. Valaasani K, Sun Q, Hu G, Li J, Du F, Guo Y, A. Carlson E, Gan X, S. Yan S. Identification of human ABAD inhibitors for rescuing Aβ-mediated mitochondrial dysfunction. Current Alzheimer research. 2014 Feb 1;11(2):128-36.https://doi.org/10.2174/1567205011666140130150108
80. Swerdlow RH. The mitochondrial hypothesis: dysfunction, bioenergetic defects, and the metabolic link to Alzheimer's disease. International review of neurobiology. 2020 Jan 1;154:207-33.https://doi.org/10.1016/bs.irn.2020.01.008
81. Cheekatla SR. Benzothiazole-Based Therapeutics: FDA Insights and Clinical Advances. Chemistry. 2025 Jul 25;7(4):118. https://doi.org/10.3390/chemistry7040118
82. Pinho CM, Teixeira PF, Glaser E. Mitochondrial import and degradation of amyloid-β peptide. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2014 Jul 1;1837(7):1069-74.https://doi.org/10.1016/j.bbabio.2014.02.007
83. Plácido AI, Pereira CM, Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Oliveira CR, Moreira PI. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: implications for Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2014 Sep 1;1842(9):1444-53.https://doi.org/10.1016/j.bbadis.2014.05.003
84. Ottens F, Franz A, Hoppe T. Build-UPS and break-downs: metabolism impacts on proteostasis and aging. Cell Death & Differentiation. 2021 Feb;28(2):505-21.https://doi.org/10.1038/s41418-020-00682-y
85. Wang X, Zheng W. Ca2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles. The FASEB Journal. 2019 Jun;33(6):6697-712. https://doi.org/10.1096/fj.201801751R
86. Briston T, Hicks AR. Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention. Biochemical Society Transactions. 2018 Aug 20;46(4):829-42.https://doi.org/10.1042/BST20180025
87. Sahu P, Satapathy T. Immunopharmacology of senescence: targeting the senescence-associated secretory phenotype (SASP)-a mechanism-based review. Inflammopharmacology. 2025 Jul 26:1-20. https://doi.org/10.1007/s10787-025-01867-y
88. Cario A, Berger CL. Tau, microtubule dynamics, and axonal transport: New paradigms for neurodegenerative disease. Bioessays. 2023 Aug;45(8):2200138. https://doi.org/10.1002/bies.202200138
89. Zaninello M, Bean C. Highly specialized mechanisms for mitochondrial transport in neurons: from intracellular mobility to intercellular transfer of mitochondria. Biomolecules. 2023 Jun 3;13(6):938. https://doi.org/10.3390/biom13060938
90. Reddy PH. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease. Brain research. 2011 Sep 30;1415:136-48.https://doi.org/10.1016/j.brainres.2011.07.052
91. Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxidants & redox signaling. 2011 Apr 1;14(7):1275-88.https://doi.org/10.1089/ars.2010.3359
92. Chen H, Chan DC. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Human molecular genetics. 2009 Oct 15;18(R2):R169-76.https://doi.org/10.1093/hmg/ddp326
93. Wang S, Tan J, Miao Y, Zhang Q. Mitochondrial dynamics, mitophagy, and mitochondria–endoplasmic reticulum contact sites crosstalk under hypoxia. Frontiers in cell and developmental biology. 2022 Feb 25;10:848214.https://doi.org/10.3389/fcell.2022.848214
94. Westermann B. Mitochondrial fusion and fission in cell life and death. Nature reviews Molecular cell biology. 2010 Dec;11(12):872-84.https://doi.org/10.1038/nrm3013
95. Ganguly G, Chakrabarti S, Chatterjee U, Saso L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug design, development and therapy. 2017 Mar 16:797-810.https://doi.org/10.2147/DDDT.S130514
96. Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Human molecular genetics. 2010 Apr 15;19(R1):R28-37.https://doi.org/10.1093/hmg/ddq143
97. Tanaka K. The PINK1–Parkin axis: an overview. Neuroscience research. 2020 Oct 1;159:9-15.https://doi.org/10.1016/j.neures.2020.01.006
98. Kowalczyk P, Sulejczak D, Kleczkowska P, Bukowska-Ośko I, Kucia M, Popiel M, Wietrak E, Kramkowski K, Wrzosek K, Kaczyńska K. Mitochondrial oxidative stress—a causative factor and therapeutic target in many diseases. International journal of molecular sciences. 2021 Dec 13;22(24):13384. https://doi.org/10.3390/ijms222413384
99. Picca A, Guerra F, Calvani R, Romano R, Coelho-Júnior HJ, Bucci C, Marzetti E. Mitochondrial dysfunction, protein misfolding and neuroinflammation in Parkinson’s disease: roads to biomarker discovery. Biomolecules. 2021 Oct 13;11(10):1508.https://doi.org/10.3390/biom11101508
100. Haque ME, Akther M, Azam S, Kim IS, Lin Y, Lee YH, Choi DK. Targeting α‐synuclein aggregation and its role in mitochondrial dysfunction in Parkinson's disease. British Journal of Pharmacology. 2022 Jan;179(1):23-45. https://doi.org/10.1111/bph.15684
101. Vasquez V, Kodavati M, Mitra J, Vedula I, Hamilton DJ, Garruto RM, Rao KS, Hegde ML. Mitochondria-targeted oligomeric α-synuclein induces TOM40 degradation and mitochondrial dysfunction in Parkinson’s disease and parkinsonism-dementia of Guam. Cell Death & Disease. 2024 Dec 18;15(12):914.https://doi.org/10.1038/s41419-024-07258-5
102. Napolitano G, Fasciolo G, Venditti P. Mitochondrial management of reactive oxygen species. Antioxidants. 2021 Nov 17;10(11):1824. https://doi.org/10.3390/antiox10111824
103. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxidants & redox signaling. 2009 Jun 1;11(6):1373-414.https://doi.org/10.1089/ars.2008.2331
104. Martinez TN, Greenamyre JT. Toxin models of mitochondrial dysfunction in Parkinson's disease. Antioxidants & redox signaling. 2012 May 1;16(9):920-34.https://doi.org/10.1089/ars.2011.403
105. Kim-Han JS, Antenor-Dorsey JA, O'Malley KL. The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. Journal of Neuroscience. 2011 May 11;31(19):7212-21.https://doi.org/10.1523/JNEUROSCI.0711-11.2011
106. Fonck C, Baudry M. Rapid reduction of ATP synthesis and lack of free radical formation by MPP+ in rat brain synaptosomes and mitochondria. Brain research. 2003 Jun 13;975(1-2):214-21.https://doi.org/10.1016/S0006-8993(03)02675-1
107. Agnihotri A, Aruoma OI. Alzheimer’s disease and Parkinson’s disease: a nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. Journal of the American College of Nutrition. 2020 Jan 2;39(1):16-27.https://doi.org/10.1080/07315724.2019.1683379
108. Carmo C, Naia L, Lopes C, Rego AC. Mitochondrial dysfunction in Huntington’s disease. Polyglutamine disorders. 2018 Feb 10:59-83.https://doi.org/10.1007/978-3-319-71779-1_3
109. Satapathy T, Sahu D, Sahu H, Pandey RK, Shukla SS, Gidwani B. Trends on Nanomedicines as Novel therapeutics Approach in Targeting Nociceptors for Relieving Pain. Current Drug Targets. 2024 Sep; 25(12):796-818. https://doi.org/10.2174/0113894501315521240725065617
110. Gualtieri R, Kalthur G, Barbato V, Di Nardo M, Adiga SK, Talevi R. Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells. Antioxidants. 2021 Feb 24;10(3):337.https://doi.org/10.3390/antiox10030337
111. Oliveira JM. Nature and cause of mitochondrial dysfunction in Huntington’s disease: focusing on huntingtin and the striatum. Journal of neurochemistry. 2010 Jul;114(1):1-2. https://doi.org/10.1111/j.1471-4159.2010.06741.x
112. Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response. Antioxidants. 2023 May 10;12(5):1075.https://doi.org/10.3390/antiox12051075
113. Scarpulla RC. Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2012 Sep 1;1819(9-10):1088-97.https://doi.org/10.1016/j.bbagrm.2011.10.011
114. Intihar TA, Martinez EA, Gomez-Pastor R. Mitochondrial dysfunction in Huntington’s disease; interplay between HSF1, p53 and PGC-1α transcription factors. Frontiers in cellular neuroscience. 2019 Mar 19;13:103.https://doi.org/10.3389/fncel.2019.00103
115. Jurcau A, Jurcau CM. Mitochondria in Huntington’s disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regeneration Research. 2023 Jul 1;18(7):1472-7.https://doi.org/10.4103/1673-5374.360289
116. Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response. Antioxidants. 2023 May 10;12(5):1075. https://doi.org/10.1155/2020/1452696
117. Palabiyik AA, Palabiyik E. Pharmacological approaches to enhance mitochondrial biogenesis: focus on PGC-1Α, AMPK, and SIRT1 in cellular health. Molecular Biology Reports. 2025 Dec;52(1):270.https://doi.org/10.1139/apnm-2020-0005
118. Vercruysse P, Vieau D, Blum D, Petersén Å, Dupuis L. Hypothalamic alterations in neurodegenerative diseases and their relation to abnormal energy metabolism. Frontiers in molecular neuroscience. 2018 Jan 19;11:2.https://doi.org/10.3389/fnmol.2018.00002
119. Satapathy T, Kumar D. A comprehensive review and recent advancement in the application of tannins for treating Parkinson disease. Pharmacological Research-Modern Chinese Medicine. 2024 Sep 1; 12:100499. https://doi.org/10.1016/j.prmcm.2024.100499
120. BYGRAVE FL. Mitochondria and the control of intracellular calcium. Biological Reviews. 1978 Feb;53(1):43-79.https://doi.org/10.1111/j.1469-185X.1978.tb00992.x
121. Endlicher R, Drahota Z, Štefková K, Červinková Z, Kučera O. The mitochondrial permeability transition pore—current knowledge of its structure, function, and regulation, and optimized methods for evaluating its functional state. Cells. 2023 Apr 27;12(9):1273.https://doi.org/10.3390/cells12091273
122. Bonora M, Patergnani S, Ramaccini D, Morciano G, Pedriali G, Kahsay AE, Bouhamida E, Giorgi C, Wieckowski MR, Pinton P. Physiopathology of the permeability transition pore: molecular mechanisms in human pathology. Biomolecules. 2020 Jul 4;10(7):998. https://doi.org/10.3390/biom10070998
123. Cai J, Yang J, Jones D. Mitochondrial control of apoptosis: the role of cytochrome c. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1998 Aug 10;1366(1-2):139-49.https://doi.org/10.1016/S0005-2728(98)00109-1
124. Dolgacheva LP, Zinchenko VP, Goncharov NV. Molecular and cellular interactions in pathogenesis of sporadic Parkinson disease. International journal of molecular sciences. 2022 Oct 27;23(21):13043.https://doi.org/10.3390/ijms232113043
125. Tafuri F, Ronchi D, Magri F, Comi GP, Corti S. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Frontiers in cellular neuroscience. 2015 Aug 25;9:336.https://doi.org/10.3389/fncel.2015.00336
126. Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circulation research. 2020 Jan 17;126(2):280-93.https://doi.org/10.1161/CIRCRESAHA.119.316306
127. Buratti E. Trends in understanding the pathological roles of TDP-43 and FUS proteins. InFrontotemporal Dementias: Emerging Milestones of the 21st Century 2021 Jan 13 (pp. 243-267). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-030-51140-1_15
128. Zayani Z, Matinahmadi A, Tavakolpournegari A, Bidooki SH. Exploring Stressors: Impact on Cellular Organelles and Implications for Cellular Functions. Stresses. 2025 Apr 4;5(2):26.https://doi.org/10.3390/stresses5020026
129. Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca2+ transport in the pathogenesis of diseases. Acta Pharmacologica Sinica. 2025 Feb;46(2):271-91.https://doi.org/10.1038/s41401-024-01359-9
130. Jagaran K, Singh M. Nanomedicine for neurodegenerative disorders: Focus on Alzheimer’s and Parkinson’s diseases. International journal of molecular sciences. 2021 Aug 23;22(16):9082.https://doi.org/10.3390/ijms22169082
131. Gao XY, Yang T, Gu Y, Sun XH. Mitochondrial dysfunction in Parkinson’s disease: from mechanistic insights to therapy. Frontiers in aging neuroscience. 2022 Jun 20;14:885500.https://doi.org/10.3389/fnagi.2022.885500
132. Martí iLíndez AA, Reith W. Arginine-dependent immune responses. Cellular and Molecular Life Sciences. 2021 Jul;78(13):5303-24.https://doi.org/10.1007/s00018-021-03828-4
133. Su Y. Three-Dimensional Network of Creatine Metabolism: from Intracellular Energy Shuttle to Systemic Metabolic Regulatory Switch. Molecular Metabolism. 2025 Aug 6:102228.https://doi.org/10.1016/j.molmet.2025.102228
134. Muddapu VR, Dharshini SA, Chakravarthy VS, Gromiha MM. Neurodegenerative diseases–is metabolic deficiency the root cause? Frontiers in neuroscience. 2020 Mar 31;14:213.https://doi.org/10.3389/fnins.2020.00213
135. Correia JP, Gromicho M, Pronto-Laborinho AC, Oliveira Santos M, de Carvalho M. Creatine kinase and respiratory decline in amyotrophic lateral sclerosis. Brain Sciences. 2024 Jun 28;14(7):661.https://doi.org/10.3390/brainsci14070661
136. Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FS. Mitochondria: a promising convergent target for the treatment of amyotrophic lateral sclerosis. Cells. 2024 Jan 29;13(3):248.https://doi.org/10.3390/cells13030248
137. Schoenmann N, Tannenbaum N, Hodgeman RM, Raju RP. Regulating mitochondrial metabolism by targeting pyruvate dehydrogenase with dichloroacetate, a metabolic messenger. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2023 Oct 1;1869(7):166769.https://doi.org/10.1016/j.bbadis.2023.166769
138. Kumar Jha M, Jeon S, Suk K. Pyruvate dehydrogenase kinases in the nervous system: their principal functions in neuronal-glial metabolic interaction and neuro-metabolic disorders. Current neuropharmacology. 2012 Dec 1;10(4):393-403.https://doi.org/10.2174/157015912804499528
139. ŠkorjaMilić N, Dolinar K, Miš K, Matkovič U, Bizjak M, Pavlin M, Podbregar M, Pirkmajer S. Suppression of pyruvate dehydrogenase kinase by dichloroacetate in cancer and skeletal muscle cells is isoform specific and partially independent of HIF-1α. International journal of molecular sciences. 2021 Aug 10;22(16):8610. https://doi.org/10.3390/ijms22168610
140. Liang R, Hou X, Zhou D, Zhu L, Teng L, Song W, Tang Q. Exercise preconditioning mitigates Ischemia-Reperfusion injury in rats by enhancing mitochondrial respiration. Neuroscience. 2024 Dec 6;562:64-74.https://doi.org/10.1016/j.neuroscience.2024.10.045
141. Zhang Y, Sun M, Zhao H, Wang Z, Shi Y, Dong J, Wang K, Wang X, Li X, Qi H, Zhao X. Neuroprotective effects and therapeutic potential of dichloroacetate: targeting metabolic disorders in nervous system diseases. International Journal of Nanomedicine. 2023 Dec 31:7559-81.https://doi.org/10.2147/IJN.S439728
142. Amorim R, Benfeito S, Teixeira J, Cagide F, Oliveira PJ, Borges F. Targeting mitochondria: the road to mitochondriotropic antioxidants and beyond. InMitochondrial biology and experimental therapeutics 2018 Mar 22 (pp. 333-358). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-319-73344-9_16
143. Kaushik S, Jain P, Satapathy T, Purabiya P, Roy A. Evaluation of anti-arthritic and anti-inflammatory activities of Martynia annua L. Ethanolic extract. Clinical Phytoscience. 2021 Jan 16 ; 7(1):7. https://doi.org/10.1186/s40816-021-00250-y
144. Mishima E, Conrad M. Nutritional and metabolic control of ferroptosis. Annual Review of Nutrition. 2022 Aug 22;42:275-309.https://doi.org/10.1146/annurev-nutr-062320-114541
145. Enns GM, Kinsman SL, Perlman SL, Spicer KM, Abdenur JE, Cohen BH, Amagata A, Barnes A, Kheifets V, Shrader WD, Thoolen M. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Molecular genetics and metabolism. 2012 Jan 1;105(1):91-102.https://doi.org/10.1016/j.ymgme.2011.10.009
146. Kowaltowski AJ, Vercesi AE. Mitochondrial damage induced by conditions of oxidative stress. Free Radical Biology and Medicine. 1999 Feb 1;26(3-4):463-71.https://doi.org/10.1016/S0891-5849(98)00216-0
147. Satapathy T, Sahu D, Sahu H, Pandey RK, Shukla SS, Gidwani B. Trends on Nanomedicines as Novel therapeutics Approach in Targeting Nociceptors for Relieving Pain. Current Drug Targets. 2024 Sep; 25(12):796-818. https://doi.org/10.2174/0113894501315521240725065617
148. Cheng X, Feng D, Lv J, Cui X, Wang Y, Wang Q, Zhang L. Application prospects of triphenylphosphine-based mitochondria-targeted cancer therapy. Cancers. 2023 Jan 21;15(3):666.https://doi.org/10.3390/cancers15030666
149. Arenas‐Jal M, Suñé‐Negre JM, García‐Montoya E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Comprehensive reviews in food science and food safety. 2020 Mar;19(2):574-94.https://doi.org/10.1111/1541-4337.12539
150. Jayatunga DP, Hone E, Khaira H, Lunelli T, Singh H, Guillemin GJ, Fernando B, Garg ML, Verdile G, Martins RN. Therapeutic potential of mitophagy-inducing microflora metabolite, urolithin A for Alzheimer’s disease. Nutrients. 2021 Oct 23;13(11):3744.https://doi.org/10.3390/nu13113744
151. Iorio R, Celenza G, Petricca S. Mitophagy: molecular mechanisms, new concepts on parkin activation and the emerging role of AMPK/ULK1 axis. Cells. 2021 Dec 23;11(1):30.https://doi.org/10.3390/cells11010030
152. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry. 2017 Nov 17;44(2):532-53.https://doi.org/10.1159/000485089
153. Zhang Q, Zhang W, Yuan X, Peng X, Hu G. Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges. Biomedicines. 2025 Jun 25;13(7):1553.https://doi.org/10.3390/biomedicines13071553
154. Ghosh D, Kumar A. Harnessing mitophagy for therapeutic advances in aging and chronic neurodegenerative diseases. Neuroglia. 2024 Oct 15;5(4):391-409.https://doi.org/10.3390/neuroglia5040026
155. Alegre GF, Pastore GM. NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR): potential dietary contribution to health. Current nutrition reports. 2023 Sep;12(3):445-64.
https://doi.org/10.1007/s13668-023-00475-y
156. Lei P, Li W, Luo J, Xu N, Wang Y, Xie D, Guan H, Huang B, Huang X, Zhou P. PARP (Poly ADP‐ribose Polymerase) Family in Health and Disease. MedComm. 2025 Sep;6(9):e70314.https://doi.org/10.1002/mco2.70314
157. Abeti R, Duchen MR. Activation of PARP by oxidative stress induced by β-amyloid: implications for Alzheimer’s disease. Neurochemical research. 2012 Nov;37(11):2589-96.https://doi.org/10.1007/s11064-012-0895-x
158. Huang P, Chen G, Jin W, Mao K, Wan H, He Y. Molecular mechanisms of parthanatos and its role in diverse diseases. International journal of molecular sciences. 2022 Jun 30;23(13):7292.https://doi.org/10.3390/ijms23137292
159. Santos L, Benitez-Rosendo A, Bresque M, Camacho-Pereira J, Calliari A, Escande C. Sirtuins: the NAD+-dependent multifaceted modulators of inflammation. Antioxidants & Redox Signaling. 2023 Dec 1;39(16):1185-208.https://doi.org/10.1089/ars.2023.0295
160. Lloret A, Beal MF. PGC-1α, sirtuins and PARPs in Huntington’s disease and other neurodegenerative conditions: NAD+ to rule them all. Neurochemical research. 2019 Oct;44(10):2423-34.https://doi.org/10.1007/s11064-019-02809-1
161. Di Lisa F, Carpi A, Giorgio V, Bernardi P. The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2011 Jul 1;1813(7):1316-22.https://doi.org/10.1016/j.bbamcr.2011.01.031
162. Elrod JW, Molkentin JD. Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Circulation Journal. 2013;77(5):1111-22.https://doi.org/10.1253/circj.CJ-13-0321
163. Stockburger C, Eckert S, Eckert GP, Friedland K, Müller WE. Mitochondrial function, dynamics, and permeability transition: a complex love triangle as a possible target for the treatment of brain aging and Alzheimer’s disease. Journal of Alzheimer’s Disease. 2018 Jun 12;64(s1):S455-67.https://doi.org/10.3233/JAD-179915
164. Liao Y, Dong Y, Cheng J. The function of the mitochondrial calcium uniporter in neurodegenerative disorders. International journal of molecular sciences. 2017 Feb 10;18(2):248.https://doi.org/10.3390/ijms18020248
165. Sun L, Wei H. Ryanodine receptors: a potential treatment target in various neurodegenerative disease. Cellular and molecular neurobiology. 2021 Nov;41(8):1613-24.https://doi.org/10.1007/s10571-020-00936-w
166. Grattagliano I, Di Ciaula A, Baj J, Molina-Molina E, Shanmugam H, Garruti G, Wang DQ, Portincasa P. Protocols for mitochondria as the target of pharmacological therapy in the context of nonalcoholic fatty liver disease (NAFLD). Mitochondrial Regulation: Methods and Protocols. 2021 Jun 7:201-46.https://doi.org/10.1007/978-1-0716-1433-4_12
167. Sen K, Satapathy T. Efficient and Safe Induction of Diabetes in Experimental Animals: A Review on Alternative Models and Techniques. Journal of Lab Animal Research. 2024 Oct 31; 3(5):27-39. https://doi.org/10.58803/jlar.v3i5.47
168. Vaughan RA, Mermier CM, Bisoffi M, Trujillo KA, Conn CA. Dietary stimulators of the PGC-1 superfamily and mitochondrial biosynthesis in skeletal muscle. A mini-review. Journal of physiology and biochemistry. 2014 Mar;70(1):271-84.https://doi.org/10.1007/s13105-013-0301-4
169. Dasgupta A, Chen KH, Wu D, Hoskin V, Mewburn J, Lima PD, Parlow LR, Hindmarch CC, Martin A, Sykes EA, Tayade C. An epigenetic increase in mitochondrial fission by MiD49 and MiD51 regulates the cell cycle in cancer: Diagnostic and therapeutic implications. The FASEB Journal. 2020 Apr;34(4):5106-27.https://doi.org/10.1096/fj.201903117R
170. Ruiz A, Alberdi E, Matute C. Mitochondrial division inhibitor 1 (mdivi-1) protects neurons against excitotoxicity through the modulation of mitochondrial function and intracellular Ca2+ signaling. Frontiers in Molecular Neuroscience. 2018 Jan 17;11:3.https://doi.org/10.3389/fnmol.2018.00003
171. Li M, Li CM, Ye ZC, Huang J, Li Y, Lai W, Peng H, Lou TQ. Sirt3 modulates fatty acid oxidation and attenuates cisplatin‐induced AKI in mice. Journal of Cellular and Molecular Medicine. 2020 May;24(9):5109-21.https://doi.org/10.1111/jcmm.15148
172. Cacabelos R, Carril JC, Cacabelos N, Kazantsev AG, Vostrov AV, Corzo L, Cacabelos P, Goldgaber D. Sirtuins in Alzheimer’s disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics. International journal of molecular sciences. 2019 Mar 12;20(5):1249.https://doi.org/10.3390/ijms20051249
173. Chen L, Qin Y, Liu B, Gao M, Li A, Li X, Gong G. PGC-1 α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure. Frontiers in cell and developmental biology. 2022 May 27;10:871357.https://doi.org/10.3389/fcell.2022.871357
174. Wang Y, Liu N, Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS neuroscience & therapeutics. 2019 Jul;25(7):859-75.https://doi.org/10.1111/cns.13140.
175. Chen LB. Mitochondrial membrane potential in living cells. Annual review of cell biology. 1988 Nov;4(1):155-81.https://doi.org/10.1146/annurev.cb.04.110188.001103
176. Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal transduction and targeted therapy. 2022 Nov 19;7(1):379.https://doi.org/10.1038/s41392-022-01243-0
177. Satapathy T, Sahu D, Sahu H, Pandey RK, Shukla SS, Gidwani B. Trends on Nanomedicines as Novel therapeutics Approach in Targeting Nociceptors for Relieving Pain. Current Drug Targets. 2024 Sep; 25(12):796-818. https://doi.org/10.2174/0113894501315521240725065617
178. Zahariev N, Boyuklieva R, Penkov D, Lukova P, Katsarov P. Functionalized Magnetic Nanoparticles: Can They Revolutionize the Treatment of Neurodegenerative Disorders? Materials. 2025 Sep 14;18(18):4302.https://doi.org/10.3389/fimmu.2024.1451989
179. Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol.. 2007 Feb 10;47(1):629-56.https://doi.org/10.1146/annurev.pharmtox.47.120505.105110
180. Matés JM, Sánchez-Jiménez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. The international journal of biochemistry & cell biology. 2000 Feb 1;32(2):157-70.https://doi.org/10.1016/S1357-2725(99)00088-6
181. Satapathy T, Panda PK, Mishra G. Comparative Evaluation of in Vitro Antioxidant, Amylase Inhibition and Cytotoxic Activity of Cur-Pip Dual Drug Loaded Nanoparticles. InAdvances in Biomedical Engineering and Technology: Select Proceedings of ICBEST 2018 2020 Sep 29 (pp. 129-139). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-6329-4_12
182. Singh D. A sojourn on mitochondria targeted drug delivery systems for cancer: Strategies, clinical and future prospects. Mitochondrion. 2024 Jan 1;74:101826.https://doi.org/10.1016/j.mito.2023.101826
183. Song M, Ye L, Yan Y, Li X, Han X, Hu S, Yu M. Mitochondrial diseases and mtDNA editing. Genes & Diseases. 2024 May 1;11(3):101057.https://doi.org/10.1016/j.gendis.2023.06.026
184. Yang Y, Wu H, Kang X, Liang Y, Lan T, Li T, Tan T, Peng J, Zhang Q, An G, Liu Y. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein & cell. 2018 Mar;9(3):283-97.https://doi.org/10.1007/s13238-017-0499-y
185. Torres AK, Jara C, Llanquinao J, Lira M, Cortés-Díaz D, Tapia-Rojas C. Mitochondrial bioenergetics, redox balance, and calcium homeostasis dysfunction with defective ultrastructure and quality control in the Hippocampus of aged female C57BL/6J mice. International Journal of Molecular Sciences. 2023 Mar 13;24(6):5476. https://doi.org/10.3390/ijms24065476
186. Li CL, Liu JF, Liu SF. Mitochondrial dysfunction in chronic obstructive pulmonary disease: unraveling the molecular nexus. Biomedicines. 2024 Apr 7;12(4):814.https://doi.org/10.3390/biomedicines12040814
187. Liang X, Kristiansen CK, Vatne GH, Hong Y, Bindoff LA. Patient-specific neural progenitor cells derived from induced pluripotent stem cells offer a promise of good models for mitochondrial disease. Cell and tissue research. 2020 Apr;380(1):15-30.https://doi.org/10.1007/s00441-019-03164-x
188. Liu S, Liang Q. Sepsis toxicity network reconstruction—Dynamic signaling and multi-organ injury: A review. Biomolecules and Biomedicine. 2025 Sep 2.https://doi.org/10.17305/bb.2025.12931
189. Hu SY, Zhuang QQ, Qiu Y, Zhu XF, Yan QF. Cell models and drug discovery for mitochondrial diseases. Journal of Zhejiang University-SCIENCE B. 2019 May;20(5):449-56.https://doi.org/10.1631/jzus.B1900196
190. Milani L, Ghiselli F. Faraway, so close. The comparative method and the potential of non-model animals in mitochondrial research. Philosophical Transactions of the Royal Society B. 2020 Jan 20;375(1790):20190186.https://doi.org/10.1098/rstb.2019.0186
191. Hong L, Sklar LA. Targeting GTPases in Parkinson’s disease: comparison to the historic path of kinase drug discovery and perspectives. Frontiers in molecular neuroscience. 2014 Jun 5;7:52.https://doi.org/10.3389/fnmol.2014.00052
Published
Abstract Display: 212
PDF Downloads: 156
PDF Downloads: 26 How to Cite
Issue
Section
Copyright (c) 2025 Nikita Patel , Trilochan Satapathy , Poonam Sahu , Abhisek Satapathy , Shiv Kumar Bhardwaj , Abinash Satapathy , Neha Yadav , Kunal Chandrakar , Manisha Chandrakar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.