Molecular Mechanisms of Mitochondrial Dysfunction in Neurodegenerative Diseases: Pharmacological Targets and Therapeutic Advances

Authors

Abstract

One of the main characteristics of severe neurodegenerative disorders like amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD) is mitochondrial dysfunction.  These disorders cause progressive neuronal degeneration due to abnormalities in mitochondrial energy metabolism, redox regulation, calcium homeostasis, and quality control pathways.  Mechanistically, the key pathogenic causes are altered electron transport chain activity, dysregulated mitochondrial dynamics (fission and fusion), impaired mitophagy, and increased formation of reactive oxygen species (ROS).  Furthermore, mutations in proteins such as PINK1, Parkin, SOD1, TDP-43, and huntingtin worsen mitochondrial instability and interfere with mitochondrial-nucleus communication.This review provides a comprehensive analysis of mitochondrial dysfunction from a mechanistic perspective, highlighting disease-specific pathways and molecular targets. We evaluate current and emerging pharmacological strategies, including mitochondria-targeted antioxidants, biogenesis activators, calcium modulators, and mitophagy enhancers. In addition, we discuss drug delivery innovations, such as mitochondrial-penetrating peptides and nanoparticle systems, as well as the clinical progress and limitations of mitochondrial therapies.By integrating insights from molecular biology, pharmacology, and translational neuroscience, this review outlines the therapeutic potential of targeting mitochondria and offers perspectives on future drug discovery aimed at mitigating neurodegeneration through mitochondrial repair and protection.

Keywords: Mitochondrial dysfunction, neurodegenerative diseases, PINK1, Parkinson’s disease, Alzheimer’s disease, SIRT3

Keywords:

Mitochondrial dysfunction, neurodegenerative diseases, PINK1, Parkinson’s disease, Alzheimer’s disease, SIRT3

DOI

https://doi.org/10.22270/jddt.v15i10.7424

Author Biographies

Nikita Patel , Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Trilochan Satapathy , Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Poonam Sahu , Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Abhisek Satapathy , Pt J.N.M. Medical College, Railway Station Rd, Moudhapara, Raipur-492001, Chhattisgarh, India

Pt J.N.M. Medical College, Railway Station Rd, Moudhapara, Raipur-492001, Chhattisgarh, India

Shiv Kumar Bhardwaj , Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Abinash Satapathy , College of Veterinary Science and Animal Husbandry, Anjora, Durg, 491001, C.G, India

College of Veterinary Science and Animal Husbandry, Anjora, Durg, 491001, C.G, India

Neha Yadav , College of Veterinary Science and Animal Husbandry, Anjora, Durg, 491001, C.G, India

College of Veterinary Science and Animal Husbandry, Anjora, Durg, 491001, C.G, India

Kunal Chandrakar , University College of Pharmacy, CSVTU, Bhilai, Durg-491107, Chhattisgarh, India

University College of Pharmacy, CSVTU, Bhilai, Durg-491107, Chhattisgarh, India

Manisha Chandrakar , University College of Pharmacy, CSVTU, Bhilai, Durg-491107, Chhattisgarh, India

University College of Pharmacy, CSVTU, Bhilai, Durg-491107, Chhattisgarh, India

References

1. Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of mitochondrial dysfunctions in neurodegenerative disorders: advances in mitochondrial biology. Molecular Neurobiology. 2025 Jun;62(6):6827-55.https://doi.org/10.1007/s12035-024-04469-x

2. Cardanho-Ramos C, Morais VA. Mitochondrial biogenesis in neurons: how and where. International journal of molecular sciences. 2021 Dec 2;22(23):13059.https://doi.org/10.3390/ijms222313059

3. Fedorova A, Jovisic N, Vallverdù J, Battistoni S, Jovicic M, Medojević M, Toschev A, Alshanskaia E, Talanov M, Erokhin V. Advancing Neural Networks: Innovations and Impacts on Energy Consumption. Advanced Electronic Materials. 2024 Dec;10(12):2400258. https://doi.org/10.1002/aelm.202400258

4. Bereiter-Hahn J, Jendrach M. Environmental Stress: Mitochondria as Targets and Stressors in Cellular Metabolism. InStress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies 2019 Nov 28 (pp. 43-70). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-030-16996-1_5

5. Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Saceleanu VM. Unraveling molecular and genetic insights into neurodegenerative diseases: advances in understanding Alzheimer’s, Parkinson’s, and Huntington’s diseases and amyotrophic lateral sclerosis. International journal of molecular sciences. 2023 Jun 28;24(13):10809.https://doi.org/10.3390/ijms241310809

6. Wu Y, Chen M, Jiang J. Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion. 2019 Nov 1;49:35-45.https://doi.org/10.1016/j.mito.2019.07.003

7. Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal transduction and targeted therapy. 2024 May 15;9(1):124.https://doi.org/10.1038/s41392-024-01839-8

8. Shi Z, Wang XM, Duan WW, Du YL, Ling SK, Zhang Z, Wang GD, Zhao D, Ding JJ, Zhang K, Li A. Neuroplasticity and brain health: insights from natural torpor. Biological Reviews. 2025.https://doi.org/10.1111/brv.70069

9. Feofilaktova T, Kushnireva L, Segal M, Korkotian E. Calcium signaling in postsynaptic mitochondria: mechanisms, dynamics, and role in ATP production. Frontiers in Molecular Neuroscience. 2025 Jul 21;18:1621070.https://doi.org/10.3389/fnmol.2025.1621070

10. Feofilaktova T, Kushnireva L, Segal M, Korkotian E. Calcium signaling in postsynaptic mitochondria: mechanisms, dynamics, and role in ATP production. Frontiers in Molecular Neuroscience. 2025 Jul 21;18:1621070. https://doi.org/10.3389/fnmol.2025.1621070

11. Chintaluri C, Vogels TP. Metabolically regulated spiking could serve neuronal energy homeostasis and protect from reactive oxygen species. Proceedings of the National Academy of Sciences. 2023 Nov 28;120(48):e2306525120.https://doi.org/10.1073/pnas.2306525120

12. Gulino R. Synaptic dysfunction and plasticity in amyotrophic lateral sclerosis. International Journal of Molecular Sciences. 2023 Feb 27;24(5):4613.https://doi.org/10.3390/ijms24054613

13. Gao T, Hu Y, Zhang H, Shi R, Song Y, Ding M, Gao F. Aerobic Capacity Beyond Cardiorespiratory Fitness Linking Mitochondrial Function, Disease Resilience and Healthy Aging. The FASEB Journal. 2025 Jun 15;39(11):e70655. https://doi.org/10.1096/fj.202500554R

14. Plascencia-Villa G, Perry G. Exploring molecular targets for mitochondrial therapies in neurodegenerative diseases. International Journal of Molecular Sciences. 2023 Aug 6;24(15):12486. https://doi.org/10.3390/ijms241512486

15. Șerban M, Toader C, Covache-Busuioc RA. The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration. International Journal of Molecular Sciences. 2025 Aug 3;26(15):7498.https://doi.org/10.3390/ijms26157498

16. Li Y, Li XM, Wei LS, Ye JF. Advancements in mitochondrial-targeted nanotherapeutics: overcoming biological obstacles and optimizing drug delivery. Frontiers in Immunology. 2024 Oct 17;15:1451989.https://doi.org/10.3389/fimmu.2024.1451989

17. Hu N, Chen Z, Zhao X, Peng X, Wu Y, Yang K, Sun T. Endothelial dysfunction in Huntington’s disease: pathophysiology and therapeutic implications. International Journal of Molecular Sciences. 2025 Feb 8;26(4):1432.https://doi.org/10.3390/ijms26041432

18. Batis N, Brooks JM, Payne K, Sharma N, Nankivell P, Mehanna H. Lack of predictive tools for conventional and targeted cancer therapy: Barriers to biomarker development and clinical translation. Advanced Drug Delivery Reviews. 2021 Sep 1;176:113854.https://doi.org/10.1016/j.addr.2021.113854

19. Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FS. Mitochondria: a promising convergent target for the treatment of amyotrophic lateral sclerosis. Cells. 2024 Jan 29;13(3):248.https://doi.org/10.3390/cells13030248

20. Liang Y, Rubinstein JL. Structural analysis of mycobacterial electron transport chain complexes by cryoEM. Biochemical Society Transactions. 2023 Feb 27;51(1):183-93.https://doi.org/10.1042/BST20220611

21. Peng S, Gao J, Stojkov D, Yousefi S, Simon HU. Established and emerging roles for mitochondria in neutrophils. Immunological Reviews. 2023 Mar;314(1):413-26. https://doi.org/10.1111/imr.13158

22. Padavannil A, Ayala-Hernandez MG, Castellanos-Silva EA, Letts JA. The mysterious multitude: structural perspective on the accessory subunits of respiratory complex I. Frontiers in molecular biosciences. 2022 Jan 3;8:798353.https://doi.org/10.3389/fmolb.2021.798353

23. Priya HK, Jha KP, Kumar N, Singh S. Reactive Oxygen Species and Mitochondrial Calcium's Roles in the Development of Atherosclerosis. Current Pharmaceutical Design.2024 Jun 1;30(23):1812-21. https://doi.org/10.2174/0113816128303026240514111200

24. Eaton AF, Merkulova M, Brown D. The H+-ATPase (V-ATPase): from proton pump to signaling complex in health and disease. American Journal of Physiology-Cell Physiology. 2021 Mar 1;320(3):C392-414.https://doi.org/10.1152/ajpcell.00442.2020

25. Benit P, Goncalves J, El Khoury R, Rak M, Favier J, Gimenez-Roqueplo AP, Rustin P. Succinate dehydrogenase, succinate, and superoxides: a genetic, epigenetic, metabolic, environmental explosive crossroad. Biomedicines. 2022 Jul 25;10(8):1788.https://doi.org/10.3390/biomedicines10081788

26. Muras V, Toulouse C, Fritz G, Steuber J. Respiratory membrane protein complexes convert chemical energy. Bacterial Cell Walls and Membranes. 2019 Jun 19:301-35.https://doi.org/10.1007/978-3-030-18768-2_10

27. Mantle D, Dewsbury M, Hargreaves IP. The Ubiquinone-Ubiquinol redox cycle and Its clinical consequences: An overview. International Journal of Molecular Sciences. 2024 Jun 20;25(12):6765.https://doi.org/10.3390/ijms25126765

28. Zhou H, Wang K, He L, Liu Z, Kong D, Zhang Q, Jin S, Han Y, Guan Q, Sheng G. Periplasmic transport channels to accelerate the proton motive force for efficient groundwater bioelectrocatalytic Cr (VI) reduction. Water Research. 2025 Sep 9:124581.https://doi.org/10.1016/j.watres.2025.124581

29. Heine KB, Parry HA, Hood WR. How does density of the inner mitochondrial membrane influence mitochondrial performance?. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2023 Feb 1;324(2):R242-8.https://doi.org/10.1152/ajpregu.00254.2022

30. Hauser D, Sode M, Andreeva EA, Parey K, Barends TR. Rieske Iron-Sulfur Cluster Proteins from an Anaerobic Ammonium Oxidizer Suggest Unusual Energetics in their Parent Rieske/cytochrome b complexes. bioRxiv. 2025 Jun 27:2025-06.https://doi.org/10.1101/2025.06.25.661457

31. Paduvari R, Arekal R, Somashekara DM. Uncovering the mysteries of bacterial cytochrome c oxidases: A review on structural and molecular insights for potential application. International Journal of Biological Macromolecules. 2025 May 1;309:142773.https://doi.org/10.1016/j.ijbiomac.2025.142773

32. Protasoni M, Zeviani M. Mitochondrial structure and bioenergetics in normal and disease conditions. International journal of molecular sciences. 2021 Jan 8;22(2):586. https://doi.org/10.3390/ijms22020586

33. Kostova I. The role of complexes of biogenic metals in living organisms. Inorganics. 2023 Jan 25;11(2):56. https://doi.org/10.3390/inorganics11020056

34. Zharova TV, Grivennikova VG, Borisov VB. F1· Fo ATP Synthase/ATPase: contemporary view on unidirectional catalysis. International Journal of Molecular Sciences. 2023 Mar 12;24(6):5417.5417; https://doi.org/10.3390/ijms24065417

35. Zharova TV, Grivennikova VG, Borisov VB. F1· Fo ATP Synthase/ATPase: contemporary view on unidirectional catalysis. International Journal of Molecular Sciences. 2023 Mar 12;24(6):5417. https://doi.org/10.3390/ijms24065417

36. Schirrmacher V. Mitochondria at work: new insights into regulation and dysregulation of cellular energy supply and metabolism. Biomedicines. 2020 Nov 22;8(11):526. https://doi.org/10.3390/biomedicines8110526

37. Venditti P, Di Meo S. The role of reactive oxygen species in the life cycle of the mitochondrion. International journal of molecular sciences. 2020 Mar 21;21(6):2173.https://doi.org/10.3390/ijms21062173

38. Du H, Xu T, Yu S, Wu S, Zhang J. Mitochondrial metabolism and cancer therapeutic innovation. Signal Transduction and Targeted Therapy. 2025 Aug 4;10(1):245.https://doi.org/10.1038/s41392-025-02311-x

39. Ragni M, Ruocco C, Nisoli E. Mitochondrial uncoupling, energy substrate utilization, and brown adipose tissue as therapeutic targets in cancer. npj Metabolic Health and Disease. 2025 Sep 22;3(1):37.https://doi.org/10.1038/s44324-025-00080-3

40. Sayehmiri F, Motamedi F, Batool Z, Naderi N, Shaerzadeh F, Zoghi A, Rezaei O, Khodagholi F, Pourbadie HG. Mitochondrial plasticity and synaptic plasticity crosstalk; in health and Alzheimer's disease. CNS neuroscience & therapeutics. 2024 Aug;30(8):e14897. https://doi.org/10.1111/cns.14897

41. Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxidative medicine and cellular longevity. 2019;2019(1):2105607. https://doi.org/10.1155/2019/2105607

42. Mahapatra C, Kishore A, Gawad J, Al-Emam A, Kouzeiha RA, Rusho MA. Review of electrophysiological models to study membrane potential changes in breast cancer cell transformation and tumor progression. Frontiers in Physiology. 2025 Mar 5;16:1536165. https://doi.org/10.3389/fphys.2025.1536165

43. Llavanera M, Delgado-Bermúdez A, Olives S, Mateo-Otero Y, Recuero S, Bonet S, Fernández-Fuertes B, Yeste M, Barranco I. Glutathione S-transferases play a crucial role in mitochondrial function, plasma membrane stability and oxidative regulation of mammalian sperm. Antioxidants. 2020 Jan 24;9(2):100. https://doi.org/10.3390/antiox9020100

44. Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biological Reviews. 2021 Dec;96(6):2489-521. https://doi.org/10.1111/brv.12764

45. Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial bioenergy in neurodegenerative disease: Huntington and Parkinson. International Journal of Molecular Sciences. 2023 Apr 13;24(8):7221.https://doi.org/10.3390/ijms24087221

46. Seager R, Lee L, Henley JM, Wilkinson KA. Mechanisms and roles of mitochondrial localisation and dynamics in neuronal function. Neuronal Signaling. 2020 Jun;4(2):NS20200008.https://doi.org/10.1042/NS20200008

47. Wang N, Wang X, Lan B, Gao Y, Cai Y. DRP1, fission and apoptosis. Cell Death Discovery. 2025 Apr 7;11(1):150.https://doi.org/10.1038/s41420-025-02458-0

48. Adebayo M, Singh S, Singh AP, Dasgupta S. Mitochondrial fusion and fission: the fine‐tune balance for cellular homeostasis. The FASEB Journal. 2021 Jun;35(6):e21620. https://doi.org/10.1096/fj.202100067R

49. Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial dynamics and cristae shape changes during metabolic reprogramming. Antioxidants & Redox Signaling. 2023 Oct 1;39(10-12):684-707.https://doi.org/10.1089/ars.2023.0268

50. Quiles JM, Gustafsson ÅB. The role of mitochondrial fission in cardiovascular health and disease. Nature Reviews Cardiology. 2022 Nov;19(11):723-36.https://doi.org/10.1038/s41569-022-00703-y

51. Theocharopoulou G. The ubiquitous role of mitochondria in Parkinson and other neurodegenerative diseases. AIMS neuroscience. 2020 Mar 25;7(1):43. 10.3934/Neuroscience.2020004

52. Iorio R, Celenza G, Petricca S. Mitophagy: molecular mechanisms, new concepts on parkin activation and the emerging role of AMPK/ULK1 axis. Cells. 2021 Dec 23;11(1):30.https://doi.org/10.3390/cells11010030

53. Vargas JN, Hamasaki M, Kawabata T, Youle RJ, Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nature reviews Molecular cell biology. 2023 Mar;24(3):167-85.https://doi.org/10.1038/s41580-022-00542-2

54. Vizziello M, Borellini L, Franco G, Ardolino G. Disruption of mitochondrial homeostasis: The role of PINK1 in Parkinson’s disease. Cells. 2021 Nov 4;10(11):3022. https://doi.org/10.3390/cells10113022

55. Mandal A, Drerup CM. Axonal transport and mitochondrial function in neurons. Frontiers in Cellular Neuroscience. 2019 Aug 9;13:373.https://doi.org/10.3389/fncel.2019.00373

56. Alberti P, Semperboni S, Cavaletti G, Scuteri A. Neurons: the interplay between cytoskeleton, ion channels/transporters and mitochondria. Cells. 2022 Aug 11;11(16):2499.https://doi.org/10.3390/cells11162499

57. Fenton AR, Jongens TA, Holzbaur EL. Mitochondrial dynamics: Shaping and remodeling an organelle network. Current opinion in cell biology. 2021 Feb 1;68:28-36.https://doi.org/10.1016/j.ceb.2020.08.014

58. Scott DN, Frank MJ. Adaptive control of synaptic plasticity integrates micro-and macroscopic network function. Neuropsychopharmacology. 2023 Jan;48(1):121-44.https://doi.org/10.1038/s41386-022-01374-6

59. Atkinson CS, Cheng-Boivin Z, Larochelle N, Minotti S, Gentil BJ. CK1α, FAM83H, and FAM83B contribute to bundling of neurofilaments and are sequestered in cellular and mice models of ARSACS. bioRxiv. 2024 Oct 1:2024-10.https://doi.org/10.1101/2024.10.01.616079

60. Chinopoulos C, Adam‐Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology: novel aspects of an enduring theme. The FEBS journal. 2006 Feb;273(3):433-50. https://doi.org/10.1111/j.1742-4658.2005.05103

61. Marchi S, Pinton P. The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. The Journal of physiology. 2014 Mar 1;592(5):829-39.https://doi.org/10.1113/jphysiol.2013.268235

62. Mammucari C, Raffaello A, Reane DV, Rizzuto R. Molecular structure and pathophysiological roles of the mitochondrial calcium uniporter. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2016 Oct 1;1863(10):2457-64.https://doi.org/10.1016/j.bbamcr.2016.03.006

63. Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiological reviews. 2022 Apr 1;102(2):893-992.https://doi.org/10.1152/physrev.00041.2020

64. Borkum JM. The tricarboxylic acid cycle as a central regulator of the rate of aging: implications for metabolic interventions. Advanced Biology. 2023 Jul;7(7):2300095. https://doi.org/10.1002/adbi.202300095

65. Penna C, Perrelli MG, Pagliaro P. Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxidants & redox signaling. 2013 Feb 10;18(5):556-99.https://doi.org/10.1089/ars.2011.4459

66. Feno S, Butera G, Vecellio Reane D, Rizzuto R, Raffaello A. Crosstalk between calcium and ROS in pathophysiological conditions. Oxidative medicine and cellular longevity. 2019;2019(1):9324018.https://doi.org/10.1155/2019/9324018

67. Oyewole AO, Birch‐Machin MA. Mitochondria‐targeted antioxidants. The FASEB Journal. 2015 Dec;29(12):4766-71. https://doi.org/10.1096/fj.15-275404

68. Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Frontiers in cell and developmental biology. 2023 Jan 24;11:1094356.https://doi.org/10.3389/fcell.2023.1094356

69. Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A, Więckowski MR. Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. International Journal of Molecular Sciences. 2017 Jul 20;18(7):1576. https://doi.org/10.3390/ijms18071576

70. Loncke J, Kerkhofs M, Kaasik A, Bezprozvanny I, Bultynck G. Recent advances in understanding IP3R function with focus on ER-mitochondrial Ca2+ transfers. Current Opinion in Physiology. 2020 Oct 1;17:80-8.https://doi.org/10.1016/j.cophys.2020.07.011

71. Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic reticulum-mitochondria contacts: a potential therapy target for cardiovascular remodeling-associated diseases. Frontiers in Cell and Developmental Biology. 2021 Nov 10;9:774989.https://doi.org/10.3389/fcell.2021.774989

72. Area-Gomez E, de Groof A, Bonilla E, Montesinos J, Tanji K, Boldogh I, Pon L, Schon EA. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell death & disease. 2018 Feb 28;9(3):335.https://doi.org/10.1038/s41419-017-0215-0

73. Tabassum N, Kheya IS, Asaduzzaman S, Maniha S, Fayz AH, Zakaria A, Noor R. A review on the possible leakage of electrons through the electron transport chain within mitochondria. Life Sci. 2020;6(1):105-13. https://doi.org/10.1111/j.1469-7793.2003.00335.

74. Wang Y, Zhang SX, Gozal D. Reactive oxygen species and the brain in sleep apnea. Respiratory physiology & neurobiology. 2010 Dec 31;174(3):307-16.https://doi.org/10.1016/j.resp.2010.09.001

75. Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. Journal of Inflammation research. 2020 Dec 2:1057-73.https://doi.org/10.2147/JIR.S275595

76. Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Ţiț DM, Pașcalău N, Nistor-Cseppentö DC. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of Alzheimer’s disease: therapeutic implications and future perspectives. Antioxidants. 2022 Oct 31;11(11):2167.https://doi.org/10.3390/antiox11112167

77. Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer's disease: role of amyloid‐β peptide alcohol dehydrogenase (ABAD). International journal of experimental pathology. 2005 Jun;86(3):161-71. https://doi.org/10.1111/j.0959-9673.2005.00427.

78. Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, Trillat AC, Stern DM, Arancio O, Yan SS. ABAD enhances Aβ‐induced cell stress via mitochondrial dysfunction. The FASEB Journal. 2005 Apr;19(6):1-25. https://doi.org/10.1096/fj.04-2582fje

79. R. Valaasani K, Sun Q, Hu G, Li J, Du F, Guo Y, A. Carlson E, Gan X, S. Yan S. Identification of human ABAD inhibitors for rescuing Aβ-mediated mitochondrial dysfunction. Current Alzheimer research. 2014 Feb 1;11(2):128-36.https://doi.org/10.2174/1567205011666140130150108

80. Swerdlow RH. The mitochondrial hypothesis: dysfunction, bioenergetic defects, and the metabolic link to Alzheimer's disease. International review of neurobiology. 2020 Jan 1;154:207-33.https://doi.org/10.1016/bs.irn.2020.01.008

81. Cheekatla SR. Benzothiazole-Based Therapeutics: FDA Insights and Clinical Advances. Chemistry. 2025 Jul 25;7(4):118. https://doi.org/10.3390/chemistry7040118

82. Pinho CM, Teixeira PF, Glaser E. Mitochondrial import and degradation of amyloid-β peptide. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2014 Jul 1;1837(7):1069-74.https://doi.org/10.1016/j.bbabio.2014.02.007

83. Plácido AI, Pereira CM, Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Oliveira CR, Moreira PI. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: implications for Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2014 Sep 1;1842(9):1444-53.https://doi.org/10.1016/j.bbadis.2014.05.003

84. Ottens F, Franz A, Hoppe T. Build-UPS and break-downs: metabolism impacts on proteostasis and aging. Cell Death & Differentiation. 2021 Feb;28(2):505-21.https://doi.org/10.1038/s41418-020-00682-y

85. Wang X, Zheng W. Ca2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles. The FASEB Journal. 2019 Jun;33(6):6697-712. https://doi.org/10.1096/fj.201801751R

86. Briston T, Hicks AR. Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention. Biochemical Society Transactions. 2018 Aug 20;46(4):829-42.https://doi.org/10.1042/BST20180025

87. Sahu P, Satapathy T. Immunopharmacology of senescence: targeting the senescence-associated secretory phenotype (SASP)-a mechanism-based review. Inflammopharmacology. 2025 Jul 26:1-20. https://doi.org/10.1007/s10787-025-01867-y

88. Cario A, Berger CL. Tau, microtubule dynamics, and axonal transport: New paradigms for neurodegenerative disease. Bioessays. 2023 Aug;45(8):2200138. https://doi.org/10.1002/bies.202200138

89. Zaninello M, Bean C. Highly specialized mechanisms for mitochondrial transport in neurons: from intracellular mobility to intercellular transfer of mitochondria. Biomolecules. 2023 Jun 3;13(6):938. https://doi.org/10.3390/biom13060938

90. Reddy PH. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease. Brain research. 2011 Sep 30;1415:136-48.https://doi.org/10.1016/j.brainres.2011.07.052

91. Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxidants & redox signaling. 2011 Apr 1;14(7):1275-88.https://doi.org/10.1089/ars.2010.3359

92. Chen H, Chan DC. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Human molecular genetics. 2009 Oct 15;18(R2):R169-76.https://doi.org/10.1093/hmg/ddp326

93. Wang S, Tan J, Miao Y, Zhang Q. Mitochondrial dynamics, mitophagy, and mitochondria–endoplasmic reticulum contact sites crosstalk under hypoxia. Frontiers in cell and developmental biology. 2022 Feb 25;10:848214.https://doi.org/10.3389/fcell.2022.848214

94. Westermann B. Mitochondrial fusion and fission in cell life and death. Nature reviews Molecular cell biology. 2010 Dec;11(12):872-84.https://doi.org/10.1038/nrm3013

95. Ganguly G, Chakrabarti S, Chatterjee U, Saso L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug design, development and therapy. 2017 Mar 16:797-810.https://doi.org/10.2147/DDDT.S130514

96. Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Human molecular genetics. 2010 Apr 15;19(R1):R28-37.https://doi.org/10.1093/hmg/ddq143

97. Tanaka K. The PINK1–Parkin axis: an overview. Neuroscience research. 2020 Oct 1;159:9-15.https://doi.org/10.1016/j.neures.2020.01.006

98. Kowalczyk P, Sulejczak D, Kleczkowska P, Bukowska-Ośko I, Kucia M, Popiel M, Wietrak E, Kramkowski K, Wrzosek K, Kaczyńska K. Mitochondrial oxidative stress—a causative factor and therapeutic target in many diseases. International journal of molecular sciences. 2021 Dec 13;22(24):13384. https://doi.org/10.3390/ijms222413384

99. Picca A, Guerra F, Calvani R, Romano R, Coelho-Júnior HJ, Bucci C, Marzetti E. Mitochondrial dysfunction, protein misfolding and neuroinflammation in Parkinson’s disease: roads to biomarker discovery. Biomolecules. 2021 Oct 13;11(10):1508.https://doi.org/10.3390/biom11101508

100. Haque ME, Akther M, Azam S, Kim IS, Lin Y, Lee YH, Choi DK. Targeting α‐synuclein aggregation and its role in mitochondrial dysfunction in Parkinson's disease. British Journal of Pharmacology. 2022 Jan;179(1):23-45. https://doi.org/10.1111/bph.15684

101. Vasquez V, Kodavati M, Mitra J, Vedula I, Hamilton DJ, Garruto RM, Rao KS, Hegde ML. Mitochondria-targeted oligomeric α-synuclein induces TOM40 degradation and mitochondrial dysfunction in Parkinson’s disease and parkinsonism-dementia of Guam. Cell Death & Disease. 2024 Dec 18;15(12):914.https://doi.org/10.1038/s41419-024-07258-5

102. Napolitano G, Fasciolo G, Venditti P. Mitochondrial management of reactive oxygen species. Antioxidants. 2021 Nov 17;10(11):1824. https://doi.org/10.3390/antiox10111824

103. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxidants & redox signaling. 2009 Jun 1;11(6):1373-414.https://doi.org/10.1089/ars.2008.2331

104. Martinez TN, Greenamyre JT. Toxin models of mitochondrial dysfunction in Parkinson's disease. Antioxidants & redox signaling. 2012 May 1;16(9):920-34.https://doi.org/10.1089/ars.2011.403

105. Kim-Han JS, Antenor-Dorsey JA, O'Malley KL. The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. Journal of Neuroscience. 2011 May 11;31(19):7212-21.https://doi.org/10.1523/JNEUROSCI.0711-11.2011

106. Fonck C, Baudry M. Rapid reduction of ATP synthesis and lack of free radical formation by MPP+ in rat brain synaptosomes and mitochondria. Brain research. 2003 Jun 13;975(1-2):214-21.https://doi.org/10.1016/S0006-8993(03)02675-1

107. Agnihotri A, Aruoma OI. Alzheimer’s disease and Parkinson’s disease: a nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. Journal of the American College of Nutrition. 2020 Jan 2;39(1):16-27.https://doi.org/10.1080/07315724.2019.1683379

108. Carmo C, Naia L, Lopes C, Rego AC. Mitochondrial dysfunction in Huntington’s disease. Polyglutamine disorders. 2018 Feb 10:59-83.https://doi.org/10.1007/978-3-319-71779-1_3

109. Satapathy T, Sahu D, Sahu H, Pandey RK, Shukla SS, Gidwani B. Trends on Nanomedicines as Novel therapeutics Approach in Targeting Nociceptors for Relieving Pain. Current Drug Targets. 2024 Sep; 25(12):796-818. https://doi.org/10.2174/0113894501315521240725065617

110. Gualtieri R, Kalthur G, Barbato V, Di Nardo M, Adiga SK, Talevi R. Mitochondrial dysfunction and oxidative stress caused by cryopreservation in reproductive cells. Antioxidants. 2021 Feb 24;10(3):337.https://doi.org/10.3390/antiox10030337

111. Oliveira JM. Nature and cause of mitochondrial dysfunction in Huntington’s disease: focusing on huntingtin and the striatum. Journal of neurochemistry. 2010 Jul;114(1):1-2. https://doi.org/10.1111/j.1471-4159.2010.06741.x

112. Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response. Antioxidants. 2023 May 10;12(5):1075.https://doi.org/10.3390/antiox12051075

113. Scarpulla RC. Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2012 Sep 1;1819(9-10):1088-97.https://doi.org/10.1016/j.bbagrm.2011.10.011

114. Intihar TA, Martinez EA, Gomez-Pastor R. Mitochondrial dysfunction in Huntington’s disease; interplay between HSF1, p53 and PGC-1α transcription factors. Frontiers in cellular neuroscience. 2019 Mar 19;13:103.https://doi.org/10.3389/fncel.2019.00103

115. Jurcau A, Jurcau CM. Mitochondria in Huntington’s disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regeneration Research. 2023 Jul 1;18(7):1472-7.https://doi.org/10.4103/1673-5374.360289

116. Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response. Antioxidants. 2023 May 10;12(5):1075. https://doi.org/10.1155/2020/1452696

117. Palabiyik AA, Palabiyik E. Pharmacological approaches to enhance mitochondrial biogenesis: focus on PGC-1Α, AMPK, and SIRT1 in cellular health. Molecular Biology Reports. 2025 Dec;52(1):270.https://doi.org/10.1139/apnm-2020-0005

118. Vercruysse P, Vieau D, Blum D, Petersén Å, Dupuis L. Hypothalamic alterations in neurodegenerative diseases and their relation to abnormal energy metabolism. Frontiers in molecular neuroscience. 2018 Jan 19;11:2.https://doi.org/10.3389/fnmol.2018.00002

119. Satapathy T, Kumar D. A comprehensive review and recent advancement in the application of tannins for treating Parkinson disease. Pharmacological Research-Modern Chinese Medicine. 2024 Sep 1; 12:100499. https://doi.org/10.1016/j.prmcm.2024.100499

120. BYGRAVE FL. Mitochondria and the control of intracellular calcium. Biological Reviews. 1978 Feb;53(1):43-79.https://doi.org/10.1111/j.1469-185X.1978.tb00992.x

121. Endlicher R, Drahota Z, Štefková K, Červinková Z, Kučera O. The mitochondrial permeability transition pore—current knowledge of its structure, function, and regulation, and optimized methods for evaluating its functional state. Cells. 2023 Apr 27;12(9):1273.https://doi.org/10.3390/cells12091273

122. Bonora M, Patergnani S, Ramaccini D, Morciano G, Pedriali G, Kahsay AE, Bouhamida E, Giorgi C, Wieckowski MR, Pinton P. Physiopathology of the permeability transition pore: molecular mechanisms in human pathology. Biomolecules. 2020 Jul 4;10(7):998. https://doi.org/10.3390/biom10070998

123. Cai J, Yang J, Jones D. Mitochondrial control of apoptosis: the role of cytochrome c. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1998 Aug 10;1366(1-2):139-49.https://doi.org/10.1016/S0005-2728(98)00109-1

124. Dolgacheva LP, Zinchenko VP, Goncharov NV. Molecular and cellular interactions in pathogenesis of sporadic Parkinson disease. International journal of molecular sciences. 2022 Oct 27;23(21):13043.https://doi.org/10.3390/ijms232113043

125. Tafuri F, Ronchi D, Magri F, Comi GP, Corti S. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Frontiers in cellular neuroscience. 2015 Aug 25;9:336.https://doi.org/10.3389/fncel.2015.00336

126. Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circulation research. 2020 Jan 17;126(2):280-93.https://doi.org/10.1161/CIRCRESAHA.119.316306

127. Buratti E. Trends in understanding the pathological roles of TDP-43 and FUS proteins. InFrontotemporal Dementias: Emerging Milestones of the 21st Century 2021 Jan 13 (pp. 243-267). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-030-51140-1_15

128. Zayani Z, Matinahmadi A, Tavakolpournegari A, Bidooki SH. Exploring Stressors: Impact on Cellular Organelles and Implications for Cellular Functions. Stresses. 2025 Apr 4;5(2):26.https://doi.org/10.3390/stresses5020026

129. Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca2+ transport in the pathogenesis of diseases. Acta Pharmacologica Sinica. 2025 Feb;46(2):271-91.https://doi.org/10.1038/s41401-024-01359-9

130. Jagaran K, Singh M. Nanomedicine for neurodegenerative disorders: Focus on Alzheimer’s and Parkinson’s diseases. International journal of molecular sciences. 2021 Aug 23;22(16):9082.https://doi.org/10.3390/ijms22169082

131. Gao XY, Yang T, Gu Y, Sun XH. Mitochondrial dysfunction in Parkinson’s disease: from mechanistic insights to therapy. Frontiers in aging neuroscience. 2022 Jun 20;14:885500.https://doi.org/10.3389/fnagi.2022.885500

132. Martí iLíndez AA, Reith W. Arginine-dependent immune responses. Cellular and Molecular Life Sciences. 2021 Jul;78(13):5303-24.https://doi.org/10.1007/s00018-021-03828-4

133. Su Y. Three-Dimensional Network of Creatine Metabolism: from Intracellular Energy Shuttle to Systemic Metabolic Regulatory Switch. Molecular Metabolism. 2025 Aug 6:102228.https://doi.org/10.1016/j.molmet.2025.102228

134. Muddapu VR, Dharshini SA, Chakravarthy VS, Gromiha MM. Neurodegenerative diseases–is metabolic deficiency the root cause? Frontiers in neuroscience. 2020 Mar 31;14:213.https://doi.org/10.3389/fnins.2020.00213

135. Correia JP, Gromicho M, Pronto-Laborinho AC, Oliveira Santos M, de Carvalho M. Creatine kinase and respiratory decline in amyotrophic lateral sclerosis. Brain Sciences. 2024 Jun 28;14(7):661.https://doi.org/10.3390/brainsci14070661

136. Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FS. Mitochondria: a promising convergent target for the treatment of amyotrophic lateral sclerosis. Cells. 2024 Jan 29;13(3):248.https://doi.org/10.3390/cells13030248

137. Schoenmann N, Tannenbaum N, Hodgeman RM, Raju RP. Regulating mitochondrial metabolism by targeting pyruvate dehydrogenase with dichloroacetate, a metabolic messenger. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2023 Oct 1;1869(7):166769.https://doi.org/10.1016/j.bbadis.2023.166769

138. Kumar Jha M, Jeon S, Suk K. Pyruvate dehydrogenase kinases in the nervous system: their principal functions in neuronal-glial metabolic interaction and neuro-metabolic disorders. Current neuropharmacology. 2012 Dec 1;10(4):393-403.https://doi.org/10.2174/157015912804499528

139. ŠkorjaMilić N, Dolinar K, Miš K, Matkovič U, Bizjak M, Pavlin M, Podbregar M, Pirkmajer S. Suppression of pyruvate dehydrogenase kinase by dichloroacetate in cancer and skeletal muscle cells is isoform specific and partially independent of HIF-1α. International journal of molecular sciences. 2021 Aug 10;22(16):8610. https://doi.org/10.3390/ijms22168610

140. Liang R, Hou X, Zhou D, Zhu L, Teng L, Song W, Tang Q. Exercise preconditioning mitigates Ischemia-Reperfusion injury in rats by enhancing mitochondrial respiration. Neuroscience. 2024 Dec 6;562:64-74.https://doi.org/10.1016/j.neuroscience.2024.10.045

141. Zhang Y, Sun M, Zhao H, Wang Z, Shi Y, Dong J, Wang K, Wang X, Li X, Qi H, Zhao X. Neuroprotective effects and therapeutic potential of dichloroacetate: targeting metabolic disorders in nervous system diseases. International Journal of Nanomedicine. 2023 Dec 31:7559-81.https://doi.org/10.2147/IJN.S439728

142. Amorim R, Benfeito S, Teixeira J, Cagide F, Oliveira PJ, Borges F. Targeting mitochondria: the road to mitochondriotropic antioxidants and beyond. InMitochondrial biology and experimental therapeutics 2018 Mar 22 (pp. 333-358). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-319-73344-9_16

143. Kaushik S, Jain P, Satapathy T, Purabiya P, Roy A. Evaluation of anti-arthritic and anti-inflammatory activities of Martynia annua L. Ethanolic extract. Clinical Phytoscience. 2021 Jan 16 ; 7(1):7. https://doi.org/10.1186/s40816-021-00250-y

144. Mishima E, Conrad M. Nutritional and metabolic control of ferroptosis. Annual Review of Nutrition. 2022 Aug 22;42:275-309.https://doi.org/10.1146/annurev-nutr-062320-114541

145. Enns GM, Kinsman SL, Perlman SL, Spicer KM, Abdenur JE, Cohen BH, Amagata A, Barnes A, Kheifets V, Shrader WD, Thoolen M. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Molecular genetics and metabolism. 2012 Jan 1;105(1):91-102.https://doi.org/10.1016/j.ymgme.2011.10.009

146. Kowaltowski AJ, Vercesi AE. Mitochondrial damage induced by conditions of oxidative stress. Free Radical Biology and Medicine. 1999 Feb 1;26(3-4):463-71.https://doi.org/10.1016/S0891-5849(98)00216-0

147. Satapathy T, Sahu D, Sahu H, Pandey RK, Shukla SS, Gidwani B. Trends on Nanomedicines as Novel therapeutics Approach in Targeting Nociceptors for Relieving Pain. Current Drug Targets. 2024 Sep; 25(12):796-818. https://doi.org/10.2174/0113894501315521240725065617

148. Cheng X, Feng D, Lv J, Cui X, Wang Y, Wang Q, Zhang L. Application prospects of triphenylphosphine-based mitochondria-targeted cancer therapy. Cancers. 2023 Jan 21;15(3):666.https://doi.org/10.3390/cancers15030666

149. Arenas‐Jal M, Suñé‐Negre JM, García‐Montoya E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Comprehensive reviews in food science and food safety. 2020 Mar;19(2):574-94.https://doi.org/10.1111/1541-4337.12539

150. Jayatunga DP, Hone E, Khaira H, Lunelli T, Singh H, Guillemin GJ, Fernando B, Garg ML, Verdile G, Martins RN. Therapeutic potential of mitophagy-inducing microflora metabolite, urolithin A for Alzheimer’s disease. Nutrients. 2021 Oct 23;13(11):3744.https://doi.org/10.3390/nu13113744

151. Iorio R, Celenza G, Petricca S. Mitophagy: molecular mechanisms, new concepts on parkin activation and the emerging role of AMPK/ULK1 axis. Cells. 2021 Dec 23;11(1):30.https://doi.org/10.3390/cells11010030

152. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry. 2017 Nov 17;44(2):532-53.https://doi.org/10.1159/000485089

153. Zhang Q, Zhang W, Yuan X, Peng X, Hu G. Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges. Biomedicines. 2025 Jun 25;13(7):1553.https://doi.org/10.3390/biomedicines13071553

154. Ghosh D, Kumar A. Harnessing mitophagy for therapeutic advances in aging and chronic neurodegenerative diseases. Neuroglia. 2024 Oct 15;5(4):391-409.https://doi.org/10.3390/neuroglia5040026

155. Alegre GF, Pastore GM. NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR): potential dietary contribution to health. Current nutrition reports. 2023 Sep;12(3):445-64.

https://doi.org/10.1007/s13668-023-00475-y

156. Lei P, Li W, Luo J, Xu N, Wang Y, Xie D, Guan H, Huang B, Huang X, Zhou P. PARP (Poly ADP‐ribose Polymerase) Family in Health and Disease. MedComm. 2025 Sep;6(9):e70314.https://doi.org/10.1002/mco2.70314

157. Abeti R, Duchen MR. Activation of PARP by oxidative stress induced by β-amyloid: implications for Alzheimer’s disease. Neurochemical research. 2012 Nov;37(11):2589-96.https://doi.org/10.1007/s11064-012-0895-x

158. Huang P, Chen G, Jin W, Mao K, Wan H, He Y. Molecular mechanisms of parthanatos and its role in diverse diseases. International journal of molecular sciences. 2022 Jun 30;23(13):7292.https://doi.org/10.3390/ijms23137292

159. Santos L, Benitez-Rosendo A, Bresque M, Camacho-Pereira J, Calliari A, Escande C. Sirtuins: the NAD+-dependent multifaceted modulators of inflammation. Antioxidants & Redox Signaling. 2023 Dec 1;39(16):1185-208.https://doi.org/10.1089/ars.2023.0295

160. Lloret A, Beal MF. PGC-1α, sirtuins and PARPs in Huntington’s disease and other neurodegenerative conditions: NAD+ to rule them all. Neurochemical research. 2019 Oct;44(10):2423-34.https://doi.org/10.1007/s11064-019-02809-1

161. Di Lisa F, Carpi A, Giorgio V, Bernardi P. The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2011 Jul 1;1813(7):1316-22.https://doi.org/10.1016/j.bbamcr.2011.01.031

162. Elrod JW, Molkentin JD. Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore. Circulation Journal. 2013;77(5):1111-22.https://doi.org/10.1253/circj.CJ-13-0321

163. Stockburger C, Eckert S, Eckert GP, Friedland K, Müller WE. Mitochondrial function, dynamics, and permeability transition: a complex love triangle as a possible target for the treatment of brain aging and Alzheimer’s disease. Journal of Alzheimer’s Disease. 2018 Jun 12;64(s1):S455-67.https://doi.org/10.3233/JAD-179915

164. Liao Y, Dong Y, Cheng J. The function of the mitochondrial calcium uniporter in neurodegenerative disorders. International journal of molecular sciences. 2017 Feb 10;18(2):248.https://doi.org/10.3390/ijms18020248

165. Sun L, Wei H. Ryanodine receptors: a potential treatment target in various neurodegenerative disease. Cellular and molecular neurobiology. 2021 Nov;41(8):1613-24.https://doi.org/10.1007/s10571-020-00936-w

166. Grattagliano I, Di Ciaula A, Baj J, Molina-Molina E, Shanmugam H, Garruti G, Wang DQ, Portincasa P. Protocols for mitochondria as the target of pharmacological therapy in the context of nonalcoholic fatty liver disease (NAFLD). Mitochondrial Regulation: Methods and Protocols. 2021 Jun 7:201-46.https://doi.org/10.1007/978-1-0716-1433-4_12

167. Sen K, Satapathy T. Efficient and Safe Induction of Diabetes in Experimental Animals: A Review on Alternative Models and Techniques. Journal of Lab Animal Research. 2024 Oct 31; 3(5):27-39. https://doi.org/10.58803/jlar.v3i5.47

168. Vaughan RA, Mermier CM, Bisoffi M, Trujillo KA, Conn CA. Dietary stimulators of the PGC-1 superfamily and mitochondrial biosynthesis in skeletal muscle. A mini-review. Journal of physiology and biochemistry. 2014 Mar;70(1):271-84.https://doi.org/10.1007/s13105-013-0301-4

169. Dasgupta A, Chen KH, Wu D, Hoskin V, Mewburn J, Lima PD, Parlow LR, Hindmarch CC, Martin A, Sykes EA, Tayade C. An epigenetic increase in mitochondrial fission by MiD49 and MiD51 regulates the cell cycle in cancer: Diagnostic and therapeutic implications. The FASEB Journal. 2020 Apr;34(4):5106-27.https://doi.org/10.1096/fj.201903117R

170. Ruiz A, Alberdi E, Matute C. Mitochondrial division inhibitor 1 (mdivi-1) protects neurons against excitotoxicity through the modulation of mitochondrial function and intracellular Ca2+ signaling. Frontiers in Molecular Neuroscience. 2018 Jan 17;11:3.https://doi.org/10.3389/fnmol.2018.00003

171. Li M, Li CM, Ye ZC, Huang J, Li Y, Lai W, Peng H, Lou TQ. Sirt3 modulates fatty acid oxidation and attenuates cisplatin‐induced AKI in mice. Journal of Cellular and Molecular Medicine. 2020 May;24(9):5109-21.https://doi.org/10.1111/jcmm.15148

172. Cacabelos R, Carril JC, Cacabelos N, Kazantsev AG, Vostrov AV, Corzo L, Cacabelos P, Goldgaber D. Sirtuins in Alzheimer’s disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics. International journal of molecular sciences. 2019 Mar 12;20(5):1249.https://doi.org/10.3390/ijms20051249

173. Chen L, Qin Y, Liu B, Gao M, Li A, Li X, Gong G. PGC-1 α-mediated mitochondrial quality control: molecular mechanisms and implications for heart failure. Frontiers in cell and developmental biology. 2022 May 27;10:871357.https://doi.org/10.3389/fcell.2022.871357

174. Wang Y, Liu N, Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS neuroscience & therapeutics. 2019 Jul;25(7):859-75.https://doi.org/10.1111/cns.13140.

175. Chen LB. Mitochondrial membrane potential in living cells. Annual review of cell biology. 1988 Nov;4(1):155-81.https://doi.org/10.1146/annurev.cb.04.110188.001103

176. Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal transduction and targeted therapy. 2022 Nov 19;7(1):379.https://doi.org/10.1038/s41392-022-01243-0

177. Satapathy T, Sahu D, Sahu H, Pandey RK, Shukla SS, Gidwani B. Trends on Nanomedicines as Novel therapeutics Approach in Targeting Nociceptors for Relieving Pain. Current Drug Targets. 2024 Sep; 25(12):796-818. https://doi.org/10.2174/0113894501315521240725065617

178. Zahariev N, Boyuklieva R, Penkov D, Lukova P, Katsarov P. Functionalized Magnetic Nanoparticles: Can They Revolutionize the Treatment of Neurodegenerative Disorders? Materials. 2025 Sep 14;18(18):4302.https://doi.org/10.3389/fimmu.2024.1451989

179. Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol.. 2007 Feb 10;47(1):629-56.https://doi.org/10.1146/annurev.pharmtox.47.120505.105110

180. Matés JM, Sánchez-Jiménez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. The international journal of biochemistry & cell biology. 2000 Feb 1;32(2):157-70.https://doi.org/10.1016/S1357-2725(99)00088-6

181. Satapathy T, Panda PK, Mishra G. Comparative Evaluation of in Vitro Antioxidant, Amylase Inhibition and Cytotoxic Activity of Cur-Pip Dual Drug Loaded Nanoparticles. InAdvances in Biomedical Engineering and Technology: Select Proceedings of ICBEST 2018 2020 Sep 29 (pp. 129-139). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-6329-4_12

182. Singh D. A sojourn on mitochondria targeted drug delivery systems for cancer: Strategies, clinical and future prospects. Mitochondrion. 2024 Jan 1;74:101826.https://doi.org/10.1016/j.mito.2023.101826

183. Song M, Ye L, Yan Y, Li X, Han X, Hu S, Yu M. Mitochondrial diseases and mtDNA editing. Genes & Diseases. 2024 May 1;11(3):101057.https://doi.org/10.1016/j.gendis.2023.06.026

184. Yang Y, Wu H, Kang X, Liang Y, Lan T, Li T, Tan T, Peng J, Zhang Q, An G, Liu Y. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein & cell. 2018 Mar;9(3):283-97.https://doi.org/10.1007/s13238-017-0499-y

185. Torres AK, Jara C, Llanquinao J, Lira M, Cortés-Díaz D, Tapia-Rojas C. Mitochondrial bioenergetics, redox balance, and calcium homeostasis dysfunction with defective ultrastructure and quality control in the Hippocampus of aged female C57BL/6J mice. International Journal of Molecular Sciences. 2023 Mar 13;24(6):5476. https://doi.org/10.3390/ijms24065476

186. Li CL, Liu JF, Liu SF. Mitochondrial dysfunction in chronic obstructive pulmonary disease: unraveling the molecular nexus. Biomedicines. 2024 Apr 7;12(4):814.https://doi.org/10.3390/biomedicines12040814

187. Liang X, Kristiansen CK, Vatne GH, Hong Y, Bindoff LA. Patient-specific neural progenitor cells derived from induced pluripotent stem cells offer a promise of good models for mitochondrial disease. Cell and tissue research. 2020 Apr;380(1):15-30.https://doi.org/10.1007/s00441-019-03164-x

188. Liu S, Liang Q. Sepsis toxicity network reconstruction—Dynamic signaling and multi-organ injury: A review. Biomolecules and Biomedicine. 2025 Sep 2.https://doi.org/10.17305/bb.2025.12931

189. Hu SY, Zhuang QQ, Qiu Y, Zhu XF, Yan QF. Cell models and drug discovery for mitochondrial diseases. Journal of Zhejiang University-SCIENCE B. 2019 May;20(5):449-56.https://doi.org/10.1631/jzus.B1900196

190. Milani L, Ghiselli F. Faraway, so close. The comparative method and the potential of non-model animals in mitochondrial research. Philosophical Transactions of the Royal Society B. 2020 Jan 20;375(1790):20190186.https://doi.org/10.1098/rstb.2019.0186

191. Hong L, Sklar LA. Targeting GTPases in Parkinson’s disease: comparison to the historic path of kinase drug discovery and perspectives. Frontiers in molecular neuroscience. 2014 Jun 5;7:52.https://doi.org/10.3389/fnmol.2014.00052

Published

2025-10-15
Statistics
Abstract Display: 212
PDF Downloads: 156
PDF Downloads: 26

How to Cite

1.
Patel N, Satapathy T, Sahu P, Satapathy A, Bhardwaj SK, Satapathy A, et al. Molecular Mechanisms of Mitochondrial Dysfunction in Neurodegenerative Diseases: Pharmacological Targets and Therapeutic Advances. J. Drug Delivery Ther. [Internet]. 2025 Oct. 15 [cited 2025 Nov. 15];15(10):272-94. Available from: https://jddtonline.info/index.php/jddt/article/view/7424

How to Cite

1.
Patel N, Satapathy T, Sahu P, Satapathy A, Bhardwaj SK, Satapathy A, et al. Molecular Mechanisms of Mitochondrial Dysfunction in Neurodegenerative Diseases: Pharmacological Targets and Therapeutic Advances. J. Drug Delivery Ther. [Internet]. 2025 Oct. 15 [cited 2025 Nov. 15];15(10):272-94. Available from: https://jddtonline.info/index.php/jddt/article/view/7424

Most read articles by the same author(s)

> >>