Recent advancement and future strategies for the care and management of diabetic foot ulcer complications: A systemic approach to Pharmacotherapy for successful wound repair and healing

Authors

  • Shailesh Sahu Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India
  • S. Prakash Rao Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India
  • Trilochan Satapathy Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India https://orcid.org/0000-0001-6871-1288
  • Kalpana Sen Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India
  • Bharti Pradhan Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

Abstract

Diabetic foot ulcer is a pathological condition of multifactorial etiologies. The condition occurs in diabetic patients where the proper management and care is not adopted. Some important factors responsible for diabetic foot ulcer include peripheral neuropathy, peripheral arterial disease, foot deformities, and trauma. Diabetic foot ulcers affect approximately 15% of all individuals with diabetes at some point in their lives. India is often referred to as the "diabetes capital of the world" due to its large population and the increasing prevalence of diabetes. The International Diabetes Federation (IDF) estimated that in 2019, there were over 77 million adults aged 20-79 years living with diabetes in India. The prevalence of diabetic foot ulcers varies across different regions of the world, with higher rates typically observed in areas with poorer access to healthcare, lower socioeconomic status, and higher rates of diabetes. Complications of diabetic foot ulcers can be severe, leading to infections, gangrene, and ultimately, amputations if not properly managed. Hence, prevention, early detection, and effective management are crucial in reducing the burden of this condition. Herbal therapies for diabetic foot ulcers (DFUs) focus on targeting key pathological mechanisms such as inflammation, oxidative stress, infection, angiogenesis, and tissue regeneration. Bioactive such as Curcumin Inhibits NF-κB pathway, reduces pro-inflammatory cytokines (TNF-α, IL-6), and enhances collagen synthesis there by shown to accelerate wound healing by modulating inflammation and promoting fibroblast migration, Alovera, increase collagen deposition, and improve angiogenesis, Epigallocatechin gallate (EGCG) scavenges reactive oxygen species (ROS), reduces lipid peroxidation, Neem inhibit bacterial growth (Staphylococcus aureus, Pseudomonas aeruginosa) etc. This review highlights the systemic approach for management, care and pharmacotherapy for diabetic wound repair and healing

Keywords: Diabetic foot ulcer, NF-κB pathway, inflammatory cytokines, foot deformities, trauma, advanced therapies

Keywords:

Diabetic foot ulcer, NF-κB pathway, inflammatory cytokines, foot deformities, trauma, advanced therapies

DOI

https://doi.org/10.22270/jddt.v15i6.7242

Author Biographies

Shailesh Sahu, Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

S. Prakash Rao, Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

Trilochan Satapathy , Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

Kalpana Sen, Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

Bharti Pradhan, Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur, 493111, Chhattisgarh, India

References

1. Jeffcoate WJ, Price P, Harding KG. Wound healing and treatments for people with diabetic foot ulcers. Diabetes/metabolism research and reviews. 2004; 20(S1):S78-89. https://doi.org/10.1002/dmrr.476 PMid:15150819

2. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes research and clinical practice. 2019; 15:107843. https://doi.org/10.1016/j.diabres.2019.107843 PMid:31518657

3. Peltier A, Goutman SA, Callaghan BC. Painful diabetic neuropathy. Bmj. 2014; 348. https://doi.org/10.1136/bmj.g1799 PMid:24803311

4. Chao CY, Cheing GL. Microvascular dysfunction in diabetic foot disease and ulceration. Diabetes/metabolism research and reviews. 2009; 25(7):604-14. https://doi.org/10.1002/dmrr.1004 PMid:19681035

5. Trepman E, Nihal A, Pinzur MS. Current topics review: Charcot neuroarthropathy of the foot and ankle. Foot & Ankle International. 2005; 26(1): 46-63. https://doi.org/10.1177/107110070502600109 PMid:15680119

6. Peters EJ, Lipsky BA. Diagnosis and management of infection in the diabetic foot. Medical Clinics. 2013; 97(5):911-46. https://doi.org/10.1016/j.mcna.2013.04.005 PMid:23992901

7. Marco M, Valentina I, Daniele M, Valerio DR, Andrea P, et al. Peripheral arterial disease in persons with diabetic foot ulceration: a current comprehensive overview. Current Diabetes Reviews. 2021; 17(4):474-85. https://doi.org/10.2174/1573399816999201001203111 PMid:33023453

8. Tooke JE. Microvascular function in human diabetes: a physiological perspective. Diabetes. 1995; 44(7):721-6. https://doi.org/10.2337/diab.44.7.721 PMid:7789639

9. Dulmovits BM, Herman IM. Microvascular remodeling and wound healing: a role for pericytes. The international journal of biochemistry & cell biology. 2012; 44(11):1800-12. https://doi.org/10.1016/j.biocel.2012.06.031 PMid:22750474 PMCid:PMC3455116

10. Pertea M, Fotea M, Grosu OM, Luca S. E-POSTER SESSION: BURNS. InEWMA. 2023; 24 (2):152.

11. Jude EB. Studies on the pathogenesis and management of the neuropathic diabetic foot. The University of Manchester (United Kingdom); 2000.

12. Keogh RA, Huyvaert S, Moore GD, Horswill AR, Doran KS. Virulence characteristics of Gram-positive bacteria isolated from diabetic foot ulcers. FEMS microbes. 2024; 5:xtae013. https://doi.org/10.1093/femsmc/xtae013 PMid:38783991 PMCid:PMC11114470

13. Nair N, Biswas R, Gotz F, Biswas L. Impact of Staphylococcus aureus on pathogenesis in polymicrobial infections. Infection and immunity. 2014; 82(6):2162-9. https://doi.org/10.1128/IAI.00059-14 PMid:24643542 PMCid:PMC4019155

14. Stankowska M, Garbacz K, Korzon-Burakowska A, Bronk M, Skotarczak M, Szymanska-Dubowik A. Microbiological, clinical and radiological aspects of diabetic foot ulcers infected with methicillin-resistant and-sensitive Staphylococcus aureus. Pathogens. 2022; 11(6):701. https://doi.org/10.3390/pathogens11060701 PMid:35745555 PMCid:PMC9229747

15. Yazdanpanah L, Shahbazian H, Nazari I, Arti HR, Ahmadi F, et al. Incidence and risk factors of diabetic foot ulcer: a population‐based diabetic foot cohort (ADFC study)-two‐year follow‐up study. International journal of endocrinology. 2018; 2018(1):7631659. https://doi.org/10.1155/2018/7631659 PMid:29736169 PMCid:PMC5875034

16. Osayomi T. The emergence of a diabetes pocket in Nigeria: The result of a spatial analysis. GeoJournal. 2019; 84:1149-64. https://doi.org/10.1007/s10708-018-9911-2

17. Ugwu E, Adeleye O, Gezawa I, Okpe I, Enamino M, Ezeani I. Burden of diabetic foot ulcer in Nigeria: current evidence from the multicenter evaluation of diabetic foot ulcer in Nigeria. World journal of Diabetes. 2019; 10(3):200. https://doi.org/10.4239/wjd.v10.i3.200 PMid:30891155 PMCid:PMC6422858

18. Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Annals of medicine. 2017; 49(2):106-16. https://doi.org/10.1080/07853890.2016.1231932 PMid:27585063

19. Wang A, Lv G, Cheng X, Ma X, Wang W, et al. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition). Burns & trauma. 2020; 8:tkaa017. https://doi.org/10.1093/burnst/tkaa017 PMid:32685563 PMCid:PMC7336185

20. Silva RN, Ferreira AC, Ferreira DD, Barbosa BH. Non‐invasive method to analyse the risk of developing diabetic foot. Healthcare technology letters. 2014; 1(4):109-13. https://doi.org/10.1049/htl.2014.0076 PMid:26609394 PMCid:PMC4611851

21. Dayya D, O'Neill OJ, Huedo-Medina TB, Habib N, Moore J, Iyer K. Debridement of diabetic foot ulcers. Advances in wound care. 2022; 11(12):666-86. https://doi.org/10.1089/wound.2021.0016 PMid:34376065 PMCid:PMC9527061

22. David JA, Chiu ES. Surgical debridement. Interventional Treatment of Wounds: A Modern Approach for Better Outcomes. 2018:3-15. https://doi.org/10.1007/978-3-319-66990-8_1

23. Fry DE. Pressure irrigation of surgical incisions and traumatic wounds. Surgical Infections. 2017; 18(4):424-30. https://doi.org/10.1089/sur.2016.252 PMid:28437197

24. Serra MB, Barroso WA, Silva NN, Silva SD, Borges AC, et al. From inflammation to current and alternative therapies involved in wound healing. International journal of inflammation. 2017; 2017(1):3406215. https://doi.org/10.1155/2017/3406215 PMid:28811953 PMCid:PMC5547704

25. Kavitha KV, Tiwari S, Purandare VB, Khedkar S, Bhosale SS, Unnikrishnan AG. Choice of wound care in diabetic foot ulcer: A practical approach. World journal of diabetes. 2014; 5(4):546. https://doi.org/10.4239/wjd.v5.i4.546 PMid:25126400 PMCid:PMC4127589

26. Atiyeh BS, Hayek SN. An update on management of acute and chronic open wounds: the importance of moist environment in optimal wound healing. Medicinal Chemistry Reviews-Online (Discontinued). 2004; 1(2):111-21. https://doi.org/10.2174/1567203043480304

27. Kammona O, Tsanaktsidou E, Kiparissides C. Recent Developments in 3D-(Bio) printed Hydrogels as Wound Dressings. Gels. 2024; 10(2):147. https://doi.org/10.3390/gels10020147 PMid:38391477 PMCid:PMC10887944

28. Whitaker IS, Twine C, Whitaker MJ, Welck M, Brown CS, Shandall A. Larval therapy from antiquity to the present day: mechanisms of action, clinical applications and future potential. Postgraduate medical journal. 2007; 83(980):409-13. https://doi.org/10.1136/pgmj.2006.055905 PMid:17551073 PMCid:PMC2600045

29. Bazalinski D, Kozka M, Karnas M, Więch P. Effectiveness of chronic wound debridement with the use of larvae of Lucilia sericata. Journal of clinical medicine. 2019; 8(11):1845. https://doi.org/10.3390/jcm8111845 PMid:31684038 PMCid:PMC6912827

30. Dehghan S, Mirshahi R, Shoae-Hassani A, Naseripour M. Human-induced pluripotent stem cells-derived retinal pigmented epithelium, a new horizon for cells-based therapies for age-related macular degeneration. Stem Cell Research & Therapy. 2022; 13(1):217. https://doi.org/10.1186/s13287-022-02894-0 PMid:35619143 PMCid:PMC9137077

31. Choukroun J, Adda F, Schoeffler C, Vervelle AP. Une opportunitéenparo-implantologie: le PRF. Implantodontie. 2001; 42(55):e62.

32. Miron RJ, Fujioka-Kobayashi M, Bishara M, Zhang Y, Hernandez M, Choukroun J. Platelet-rich fibrin and soft tissue wound healing: a systematic review. Tissue Engineering Part B: Reviews. 2017; 23(1):83-99. https://doi.org/10.1089/ten.teb.2016.0233 PMid:27672729

33. Ou Yang H, Tang Y, Yang F, Ren X, Yang J, Cao H, Yin Y. Platelet-rich plasma for the treatment of diabetic foot ulcer: a systematic review. Frontiers in Endocrinology. 2023; 14:1256081. https://doi.org/10.3389/fendo.2023.1256081 PMid:38169990 PMCid:PMC10760804

34. Hesseler MJ, Shyam N. Platelet-rich plasma and its utility in medical dermatology: a systematic review. Journal of the American Academy of Dermatology. 2019; 81(3):834-46. https://doi.org/10.1016/j.jaad.2019.04.037 PMid:31009668

35. Smolle C, Lindenmann J, Kamolz L, Smolle-Juettner FM. The history and development of hyperbaric oxygenation (HBO) in thermal burn injury. Medicina. 2021; 57(1):49. https://doi.org/10.3390/medicina57010049 PMid:33430046 PMCid:PMC7827759

36. Kahle AC, Cooper JS. Hyperbaric physiological and pharmacological effects of gases. StatPearls Publishing, Treasure Island (FL). 2017.

37. Goldman RJ. Hyperbaric oxygen therapy for wound healing and limb salvage: a systematic review. PM&R. 2009; 1(5):471-89. https://doi.org/10.1016/j.pmrj.2009.03.012 PMid:19627935

38. Plafki C, Peters P, Almeling M, Welslau W, Busch R. Complications and side effects of hyperbaric oxygen therapy. Aviation Space and Environmental Medicine. 2000; 71(2):119-24.

39. Seymour RJ. WTEC Panel on Research Submersibles and Undersea Technologies. Final report. Loyola College; 1994.

40. Wang L, Yang Y, Zhu Y, Ma X, et al. Characterization of placenta-derived mesenchymal stem cells cultured in autologous human cord blood serum. Molecular medicine reports. 2012; 6(4):760-6. https://doi.org/10.3892/mmr.2012.1000 PMid:22824952

41. Roy A, Mantay M, Brannan C, Griffiths S. Placental tissues as biomaterials in regenerative medicine. BioMed Research International. 2022; 2022(1):6751456. https://doi.org/10.1155/2022/6751456 PMid:35496035 PMCid:PMC9050314

42. Yang YC, Zhang N, Van Crombruggen K, Hu GH, Hong SL, Bachert C. Transforming growth factor‐beta1 in inflammatory airway disease: a key for understanding inflammation and remodelling . Allergy. 2012; 67(10):1193-202. https://doi.org/10.1111/j.1398-9995.2012.02880.x PMid:22913656

43. Huerta CT, Voza FA, Ortiz YY, Liu ZJ, Velazquez OC. Mesenchymal stem cell-based therapy for non-healing wounds due to chronic limb-threatening ischemia: a review of preclinical and clinical studies. Frontiers in Cardiovascular Medicine. 2023; 10:1113982. https://doi.org/10.3389/fcvm.2023.1113982 PMid:36818343 PMCid:PMC9930203

44. Protzman NM, Mao Y, Long D, Sivalenka R, Gosiewska A, et al. Placental-derived biomaterials and their application to wound healing: a review. Bioengineering. 2023; 10(7):829. https://doi.org/10.3390/bioengineering10070829 PMid:37508856 PMCid:PMC10376312

45. Kaur S, Kartha CC. Stem cells: Concepts and prospects. Current Trends in Science Platinum Jubilee Special, Ed. N. Mukunda, Bangalore, Indian Academy of Science. 2009.

46. Ho J, Yue D, Cheema U, Hsia HC, Dardik A. Innovations in stem cell therapy for diabetic wound healing. Advances in Wound Care. 2023; 12(11):626-43. https://doi.org/10.1089/wound.2021.0104 PMid:35176896 PMCid:PMC10468561

47. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nature Reviews Immunology. 2006; 6(2):93-106. https://doi.org/10.1038/nri1779 PMid:16491134

48. Dehghan O, Mehdi TS, Rafinejad J, Toutonnchy M, Tiyuri A, Akbarzadeh K, Motevalli HS. A new approach to maggot therapy for healing of diabetic foot ulcers. Acta facultatismedicaeNaissensis. 2020; 37(4):387-95. https://doi.org/10.5937/afmnai2004387D

49. El Hage R, Knippschild U, Arnold T, Hinterseher I. Stem cell-based therapy: a promising treatment for diabetic foot ulcer. Biomedicines. 2022; 10(7):1507. https://doi.org/10.3390/biomedicines10071507 PMid:35884812 PMCid:PMC9312797

50. Liras A. Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. Journal of translational medicine. 2010; 8:1-5. https://doi.org/10.1186/1479-5876-8-131 PMid:21143967 PMCid:PMC3014893

51. Kloth L, Polak A, Watson T. Electrical stimulation for wounds. Electro Physical Agents E-Book: Evidence-Based Practice. 2020; 359.

52. Gardner SE, Frantz RA, Schmidt FL. Effect of electrical stimulation on chronic wound healing: a meta‐analysis. Wound Repair and Regeneration. 1999; 7(6):495-503. https://doi.org/10.1046/j.1524-475X.1999.00495.x PMid:10633009

53. Auersperg V, Trieb K. Extracorporeal shock wave therapy: an update. EFORT open reviews. 2020; 5(10):584-92. https://doi.org/10.1302/2058-5241.5.190067 PMid:33204500 PMCid:PMC7608508

54. Wang L, Yang Y, Han W, Ding H. Novel design and development of Centella Asiatica extract - loaded poloxamer/ZnO nanocomposite wound closure material to improve anti-bacterial action and enhanced wound healing efficacy in diabetic foot ulcer. Regen Ther. 2024 Mar 18; 27:92-103. https://doi.org/10.1016/j.reth.2024.03.006 PMid:38532843 PMCid:PMC10963185

55. Loske AM, Loske AM. Extracorporeal Shock Wave Therapy. Medical and Biomedical Applications of Shock Waves. 2017:189-250. https://doi.org/10.1007/978-3-319-47570-7_6

56. Rola P, Włodarczak A, Barycki M, Doroszko A. Use of the shock wave therapy in basic research and clinical applications-From bench to bedsite. Biomedicines. 2022; 10(3):568. https://doi.org/10.3390/biomedicines10030568 PMid:35327369 PMCid:PMC8944950

57. Omar MT, Gwada RF, Shaheen AA, Saggini R. Extracorporeal shockwave therapy for the treatment of chronic wound of lower extremity: current perspective and systematic review. International Wound Journal. 2017; 14(6):898-908. https://doi.org/10.1111/iwj.12723 PMid:28198141 PMCid:PMC7950187

58. Roelandts R. The history of phototherapy: something new under the sun?. Journal of the American Academy of Dermatology. 2002; 46(6):926-30. https://doi.org/10.1067/mjd.2002.121354 PMid:12063493

59. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. InSeminars in cutaneous medicine and surgery. 2013; 32 (1):41.

60. Huang F, Lu X, Yang Y, Yang Y, Li Y, et al. Microenvironment‐based diabetic foot ulcer nanomedicine. Advanced Science. 2023; 10(2):2203308. https://doi.org/10.1002/advs.202203308 PMid:36424137 PMCid:PMC9839871

61. Oyebode OA, Jere SW, Houreld NN. Current therapeutic modalities for the management of chronic diabetic wounds of the foot. Journal of diabetes research. 2023; 2023(1):1359537. https://doi.org/10.1155/2023/1359537 PMid:36818748 PMCid:PMC9937766

62. Tchanque‐Fossuo CN, Ho D, Dahle SE, Koo E, Li CS, Isseroff RR, Jagdeo J. A systematic review of low‐level light therapy for treatment of diabetic foot ulcer. Wound repair and regeneration. 2016; 24(2):418-26. https://doi.org/10.1111/wrr.12399 PMid:26748691

63. Fields B. Bioelectromagnetism. Triangle. 1995; 7:207-11.

64. Kuhfeld AW. The retrospectroscope: medical electricity. I. Electrostatics. IEEE Engineering in Medicine and Biology Magazine. 1995; 14(1):101-2. https://doi.org/10.1109/51.340762

65. Hunckler J, De Mel A. A current affair: electrotherapy in wound healing. Journal of multidisciplinary healthcare. 2017:179-94. https://doi.org/10.2147/JMDH.S127207 PMid:28461755 PMCid:PMC5404801

66. Kloth LC. Electrical stimulation technologies for wound healing. Advances in wound care. 2014; 3(2):81-90. https://doi.org/10.1089/wound.2013.0459 PMid:24761348 PMCid:PMC3929255

67. Khan M, Faisal M, Ahmad L. Biophysical therapy using the pulsating electromagnetic field as adjunctive therapy for implant osseointegration-A review. National Journal of Maxillofacial Surgery. 2022; 13(Suppl 1):S11-8. https://doi.org/10.4103/njms.njms_400_21 PMid:36393938 PMCid:PMC9651243

68. Kwan RL, Wong WC, Yip SL, Chan KL, Zheng YP, Cheing GL. Pulsed electromagnetic field therapy promotes healing and microcirculation of chronic diabetic foot ulcers: a pilot study. Advances in skin & wound care. 2015; 28(5):212-9. https://doi.org/10.1097/01.ASW.0000462012.58911.53 PMid:25882659

69. Palmieri B, Vadalà M, Laurino C. Electromedical devices in wound healing management: A narrative review. Journal of Wound Care. 2020; 29(7):408-18. https://doi.org/10.12968/jowc.2020.29.7.408 PMid:32654604

70. El Rasheed NA, Mahmoud NF, Hamada HA, El Khatib A. Pulsed electromagnetic fields versus laser therapy on enhancing recovery of diabetic foot ulcer: A single blind randomized controlled trial. Biomedical Research (0970-938X). 2017; 28(19).

71. Dissemond J, Augustin M, Eming SA, Goerge T, et al. Modern wound care-practical aspects of non‐interventional topical treatment of patients with chronic wounds. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2014; 12(7):541-54. https://doi.org/10.1111/ddg.12351 PMid:24813380

72. Betancourt-arlos MA, González-Cisneros AC, JIMÉNEZ-AVILA JO. Modification of the negative pressure therapy technique for treatment of wound infection after spinal surgery. Coluna/Columna. 2019; 18:246-50. https://doi.org/10.1590/s1808-185120191803222148

73. Vemulapalli S, Shivananda D, Balasubramanya K, Pala T. A Comparitive Study on Negative Pressure Dressing Versus Conventional Dressing in the Management of Diabetic Foot Ulcer. Niger J Surg. 2020; 25(1):14. https://doi.org/10.36349/easms.2020.v03i10.001

74. Tayyib NA. Advancements in vacuum therapy for musculoskeletal wound care: A comprehensive analysis of chronic wounds and acute injuries. Journal of Musculoskeletal Surgery and Research. 2024; 8(2):108-18. https://doi.org/10.25259/JMSR_253_2023

75. Green H. The birth of therapy with cultured cells. Bioessays. 2008; 30(9):897-903. https://doi.org/10.1002/bies.20797 PMid:18693268

76. Mastrogiacomo M, Nardini M, Collina MC, Di Campli C, Filaci G, et al. Innovative cell and platelet rich plasma therapies for diabetic foot ulcer treatment: The allogeneic approach. Frontiers in Bioengineering and Biotechnology. 2022; 10:869408. https://doi.org/10.3389/fbioe.2022.869408 PMid:35586557 PMCid:PMC9108368

77. Sethuram L, Thomas J, Mukherjee A, Chandrasekaran N. A review on contemporary nanomaterial-based therapeutics for the treatment of diabetic foot ulcers (DFUs) with special reference to the Indian scenario. Nanoscale Advances. 2022; 4(11):2367-98. https://doi.org/10.1039/D1NA00859E PMid:36134136 PMCid:PMC9418054

78. Frank S, Hübner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes.: implications for normal and impaired wound healing. Journal of Biological Chemistry. 1995; 270(21):12607-13. https://doi.org/10.1074/jbc.270.21.12607 PMid:7759509

79. Basso FG, Pansani TN, Turrioni AP, Bagnato VS, Hebling J, de Souza Costa CA. In vitro wound healing improvement by low‐level laser therapy application in cultured gingival fibroblasts. International journal of dentistry. 2012; 2012(1):719452. https://doi.org/10.1155/2012/719452 PMid:22844284 PMCid:PMC3403309

80. Spiekstra SW, Breetveld M, Rustemeyer T, Scheper RJ, Gibbs S. Wound‐healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair and Regeneration. 2007; 15(5):708-17. https://doi.org/10.1111/j.1524-475X.2007.00280.x PMid:17971017

81. Karri VV, Gowthamarajan K, Satish Kumar M, Rajkumar M. Multiple biological actions of curcumin in the management of diabetic foot ulcer complications: a systematic review. Trop Med Surg. 2015;3(179):2. https://doi.org/10.4172/2329-9088.1000179

82. Ekom SE, Kuete V. Methanol extract from the seeds of Persea americana displays antibacterial and wound healing activities in rat model. Journal of Ethnopharmacology. 2022 Jan 10; 282:114573. https://doi.org/10.1016/j.jep.2021.114573 PMid:34464699

83. Daburkar M, Lohar V, Rathore AS, Bhutada P, Tangadpaliwar S. An in-vivo and in-vitro investigation of the effect of Aloe vera gel ethanolic extract using animal model with diabetic foot ulcer. J Pharm Bio Allied Sci. 2014;6:212e9. https://doi.org/10.4103/0975-7406.135248 PMid:25035641 PMCid:PMC4097935

84. Hakim RF. Effect of Carica papaya extract toward incised wound healing process in mice (Mus musculus) clinically and histologically. Evidence-Based Complementary and Alternative Medicine. 2019 Nov 19;2019. https://doi.org/10.1155/2019/8306519 PMid:31827564 PMCid:PMC6885773

85. Singh A, Bajpai S, Singh N, Kumar V, Gour JK, Singh PK, Singh RK. Wound healing activity of standardized extract of Curculigoorchioides in streptozotocin-induced diabetic mice. Asian Pacific Journal of Tropical Disease. 2014 Jan 1;4:S48-53. https://doi.org/10.1016/S2222-1808(14)60414-X

86. Santram L, Singhai AK. Preliminary pharmacological evaluation of Martynia annua Linn leaves for wound healing. Asian Pac J Trop Biomed. 2011;1(6):421-427. https://doi.org/10.1016/S2221-1691(11)60093-2 PMid:23569806

87. Al-Warhi T, Zahran EM, Selim S, et al. Antioxidant and Wound Healing Potential of Vitis vinifera Seeds Supported by Phytochemical Characterization and Docking Studies. Antioxidants (Basel). 2022;11(5):881. Published 2022 Apr 29. https://doi.org/10.3390/antiox11050881 PMid:35624745 PMCid:PMC9137519

88. Mohajeri G, Safaee M, SaneiMH. Effects of topical Kiwifruit on healing of neuropathic diabetic foot ulcer. J Res Med Sci 2014;19:520e4. PMID: 25197293;PMCID:PMC4155706.

89. Abu-Al-Basal MA. Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c mice. Journal of ethnopharmacology. 2010 Sep 15;131(2):443-50. https://doi.org/10.1016/j.jep.2010.07.007 PMid:20633625

90. Kapoor N, Yadav R. Manuka honey: A promising wound dressing material for the chronic nonhealing discharging wounds: A retrospective study. Natl J Maxillofac Surg. 2021; 12(2):233-237. https://doi.org/10.4103/njms.NJMS_154_20 PMid:34483582 PMCid:PMC8386265

91. Rajesh J, Lakshmi SM, Thamizhvanan K, Viswasanthi T. Formulation, characterization and evaluation of methanolic extract of abutilon indicum loaded solid lipid nanoparticles against microorganisms causing diabetic foot and urinary tract infection. JGlobalTrendsPharmaceutSci2014; 5:2093e102.

92. Yu wono HS. The New paradigm of wound management using Coffee powder. J Surg. 2014;2:25e9.

93. Srinivasan JM. Effect of neem leaves extract irrigation on the wound healing outcome in nurse managed diabetic foot ulcers. Natl J Physiol Pharm Pharmacol. 2020;10:1e9. https://doi.org/10.5455/ njppp.2021.10.09238202008092020.

94. Romero-Cerecero O, Roman-Ramos R, Zamilpa A, Jimenez-Ferrer JE, Rojas Bribiesca G, Tortoriello J. Clinical trial to compare the effectiveness of two concentrations of the Ageratinapichinchensis extract in the topical treatment of onychomycosis. J Ethnopharmacol 2009;126:74e8. https://doi.org/10.1016/j.jep.2009.08.007 PMid:19683043

95. Romero-Cerecero O, Zamilpa A, Tortoriello J. Effectiveness and tolerability of a standardized extract from Ageratinapichinchensis in patients with diabetic foot ulcer: a randomized, controlled pilot study. Planta Med. 2015;81:272e8. https://doi.org/10.1055/s-0034-1396315 PMid:25714724

96. Steffy K, Shanthi G, Maroky AS, Selvakumar S. Synthesis and characterization of ZnOphyto-nano composite using Strychnosnux-vomica L. (Loganiaceae) and antimicrobial activity against multidrug-resistantbacterial strains fromdiabetic foot ulcer. J Adv Res 2018;9:69e77. https://doi.org/10.1016/j.jare.2017.11.001 PMid:30046488 PMCid:PMC6057447

97. Chorepsima S, Tentolouris K, Dimitroulis D, Tentolouris N. Melilotus: Contribution to wound healing in the diabetic foot. Journal of Herbal Medicine 2013; 3:81-6. https://doi.org/10.1016/j.hermed.2013.04.005

98. Khodaie SA, Khalilzadeh SH, Emadi F, Kamalinejad M, Jafari Hajati R, Naseri M. Management of a diabetic foot ulcer with a Myrtle (M. communis) gel based on Persian medicine: a case report. Adv Integr Med 2021; 8:236e9. https://doi.org/10.1016/j.aimed.2020.08.008

99. Mohammadi N, Bahramib G, Ghiasvand N, Miraghaei S, Madani SH, Karimie I, et al. The wound healing effect of various extracts from Onosmamicrocarpum Root in a diabetic animal model. J Reports Pharm Sci. 2017; 6:59e67. https://doi.org/10.4103/2322-1232.222614

100. Aksoy H, Sen A, Sancar M, Sekerler T, Akakin D, Bitis L, Uras F, Kultur S, Izzettin FV. Ethanol extract of Cotinus coggygria leaves accelerates wound healing process in diabetic rats. Pharmaceut Biol. 2016,54,2732-2736. https://doi.org/10.1080/13880209.2016.1181660 PMid:27180800

101. Kandimalla R, Kalita S, Choudhury B, Dash S, Kalita K, Kotoky J. Chemical Composition and Anti-Candidiasis Mediated Wound Healing Property of Cymbopogon nardus Essential Oilon Chronic Diabetic Wounds. Front. Pharmacol. 2016,7,198. https://doi.org/10.3389/fphar.2016.00198

102. Nascimento IAM, Pinheiro Gomes MEPG, Gomes Fernandes NE, Medeiros Azevedo Ítalo, de Alcantara Oliveira Ramalho Borges R, Cunha Medeiros A. Healing of wounds in diabetic rats treated with Rosa rubiginosa oil. J Surg Cl Res [Internet]. 2023 Feb. 5 [cited 2024 Mar. 18]; 13(2):38-49. https://doi.org/10.20398/jscr.v13i2.31122

103. Saravanan VS, Kalpana Krishnaraju, Manimekalai Pichaivel, Krishnaraju Venkatesan, Premalatha Paulsamy, Divya Kuppan. Calendula Officinalis enhance the wound healing potential in diabetic rats. World J Pharm Sci 2021; 9(8): 147-150.

104. Deli J, González-Beiras C, Guldan GS, Moses RL, Dally J, Moseley R, Lundy FT, Corbacho-Monne M, Walker SL, Cazorla MU, Ouchi D. Ficus septica exudate, a traditional medicine used in Papua New Guinea for treating infected cutaneous ulcers: in vitro evaluation and clinical efficacy assessment by cluster randomised trial. Phytomedicine. 2022 May 1; 99:154026. https://doi.org/10.1016/j.phymed.2022.154026 PMid:35278903

105. Boukhatem MN, Chader H, Houche A, Oudjida F, Benkebaili F, Hakim Y. Topical Emulsion Containing Lavandula stoechas Essential Oil as a Therapeutic Agent for Cutaneous Wound Healing. J. 2021; 4(3):288-307. https://doi.org/10.3390/j4030023

106. Amish Burn Study Group, Kolacz NM, Jaroch MT, Bear ML, Hess RF. The effect of Burns & Wounds (B&W)/burdock leaf therapy on burn-injured Amish patients: a pilot study measuring pain levels, infection rates, and healing times. J Holist Nurs. 2014;32(4):327-340. https://doi.org/10.1177/0898010114525683 PMid:24668061

107. Tam JC, Lau KM, Liu CL, To MH, Kwok HF, Lai KK, Lau CP, Ko CH, Leung PC, Fung KP, San Lau CB. The in vivo and in vitro diabetic wound healing effects of a 2-herb formula and its mechanisms of action. Journal of Ethnopharmacology. 2011 Apr 12; 134(3):831-8. https://doi.org/10.1016/j.jep.2011.01.032 PMid:21291991

108. Al-Rawaf HA, Gabr SA, Alghadir AH. Potential roles of circulating microRNAs in the healing of type 1 diabetic wounds treated with green tea extract: molecular and biochemical study. Heliyon. 2023;9(11):e22020. Published 2023 Nov 3. https://doi.org/10.1016/j.heliyon.2023.e22020 PMid:38027999 PMCid:PMC10665742

109. Lee K, Lee B, Lee MH, et al. Effect of Ampelopsis Radix on wound healing in scalded rats. BMC Complement Altern Med. 2015;15:213. Published 2015 Jul 8. https://doi.org/10.1186/s12906-015-0751-z PMid:26152211 PMCid:PMC4495638

110. Al-Bayaty FH, Abdulla MA, Hassan MIA, & Ali HM. (2012). Effect of Andrographis paniculata leaf extract on wound healing in rats. Natural Product Research, 26(5), 423-429. https://doi.org/10.1080/14786419.2010.496114 PMid:21660840

111. Masyudi M, Hanafiah M, Usman S, Marlina M. Effectiveness of gel formulation of capa leaf (Blumea balsamifera L.) on wound healing in white rats. Vet World. 2022; 15(8):2059-2066. https://doi.org/10.14202/vetworld.2022.2059-2066 PMid:36313855 PMCid:PMC9615488

112. Tie L, Yang HQ, An Y, et al. Ganoderma lucidum polysaccharide accelerates refractory wound healing by inhibition of mitochondrial oxidative stress in type 1 diabetes. Cell PhysiolBiochem. 2012;29(3-4):583-594. https://doi.org/10.1159/000338512 PMid:22508065

113. Gupta A, Kumar R, Upadhyay NK, Pal K, Kumar R, Sawhney RC. Effects of Rhodiola imbricata on dermal wound healing. Planta Med. 2007;73(8):774-777. https://doi.org/10.1055/s-2007-981546 PMid:17611935

114. Chaniad P, Tewtrakul S, Sudsai T, Langyanai S, Kaewdana K (2020) Anti-inflammatory, wound healing and antioxidant potential of compounds from Dioscorea bulbifera L. bulbils. PLoS ONE 15(12): e0243632. https://doi.org/10.1371/journal.pone.0243632 PMid:33306733 PMCid:PMC7732089

115. Muhammad, A.A.; Fakurazi, S.; Arulselvan, P.; See, C.P.; Abas, F. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model. Drug Des. Dev. Ther. 2016, 10, 1715-1730. https://doi.org/10.2147/DDDT.S96968 PMid:27307703 PMCid:PMC4887066

116. Wang CJ. An overview of shock wave therapy in musculoskeletal disorders. Chang Gung medical journal. 2003; 26(4):220-32.

117. Begum, F., Manandhar, S., Kumar, G., Keni, R., Sankhe, R., Gurram, P. C., Beegum, F., Teja, M. S., Nandakumar, K., & Shenoy, R. R. (2023). Dehydrozingerone promotes healing of diabetic foot ulcers: a molecular insight. Journal of cell communication and signaling, 17(3), 673-688. https://doi.org/10.1007/s12079-022-00703-0 PMid:36280629 PMCid:PMC10409929

Published

2025-06-15
Statistics
Abstract Display: 851
PDF Downloads: 850
PDF Downloads: 122

How to Cite

1.
Sahu S, Rao SP, Satapathy T, Sen K, Pradhan B. Recent advancement and future strategies for the care and management of diabetic foot ulcer complications: A systemic approach to Pharmacotherapy for successful wound repair and healing. J. Drug Delivery Ther. [Internet]. 2025 Jun. 15 [cited 2026 Jan. 21];15(6):297-326. Available from: https://jddtonline.info/index.php/jddt/article/view/7242

How to Cite

1.
Sahu S, Rao SP, Satapathy T, Sen K, Pradhan B. Recent advancement and future strategies for the care and management of diabetic foot ulcer complications: A systemic approach to Pharmacotherapy for successful wound repair and healing. J. Drug Delivery Ther. [Internet]. 2025 Jun. 15 [cited 2026 Jan. 21];15(6):297-326. Available from: https://jddtonline.info/index.php/jddt/article/view/7242

Most read articles by the same author(s)

> >>