Leveraging the potential of carbon: carbon quantum dots as a versatile probe for cancer diagnosis and treatment

Authors

Abstract

In the global plane, cancer calls for creative strategies for diagnosis and treatment. Carbon quantum dots (CQDs) have emerged as a novel material for the field of cancer theranostics, showing their distinguishing features: biocompatibility, easy surface functionalization, and controllable fluorescence. Compared with semiconductor quantum dots, carbon-based fluorescent nanocrystals, called CQDs typically under 10 nm in size, are easier to synthesize and much less toxic. This paper reviews the synthesis, characterization and applications of CQDs synthesized from biomolecules and medicinal plants, which may be used to treat cancer. Depending on the method, several techniques have been developed for the synthesis of CQDs. Laser ablation, electrochemical oxidation, hydrothermal treatment and microwave synthesis are among the techniques developed for this purpose. Characterization techniques assist in gathering detailed information related to the structural and optical characteristics of CQDs. The review also discusses the challenges of CQDs and their future prospects by underlining the need for further research work to cope with the issues of toxicity, biocompatibility, and delivery specifically to the brain. Overall, the review holds enormous potential to revolutionize cancer treatment through a theranostic approach that combines diagnosis, imaging, and therapy.

Keywords: Carbon quantum dots, cancer, photodynamic therapy

Keywords:

Carbon quantum dots, cancer, photodynamic therapy

DOI

https://doi.org/10.22270/jddt.v15i2.6977

Author Biographies

Rajveer Bhaskar , Department of Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India, 425405.

Department of Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India, 425405.

Monika Ola , Department of Pharmaceutics, R. C. Patel College of Pharmacy, Shirpur, Maharashtra, India, 425405.

Department of Pharmaceutics, R. C. Patel College of Pharmacy, Shirpur, Maharashtra, India, 425405.

Tanushree Umashankar Kamthe, Department of Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India, 425405.

Department of Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India, 425405.

Pratik Patle, Department of Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India, 425405.

Department of Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India, 425405.

Vaibhav Wagh , Department of Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India, 425405.

Department of Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India, 425405.

References

1. Singh H, Bamrah A, Khatri M, Bhardwaj N. One-pot hydrothermal synthesis and characterization of carbon quantum dots (CQDs). Materials Today: Proceedings. 2020;28:1891-1894. https://doi.org/10.1016/j.matpr.2020.05.297

2. Zhang R, Chen W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions. Biosensors and Bioelectronics. 2014;55:83-90. https://doi.org/10.1016/j.bios.2013.11.074 PMid:24365697

3. Prasad KS, Shruthi G, Shivamallu C. One-pot synthesis of aqueous carbon quantum dots using bibenzoimidazolyl derivative and their antitumor activity against breast cancer cell lines. Inorganic Chemistry Communications. 2019;101:11-15. https://doi.org/10.1016/j.inoche.2019.01.001

4. Fahmi MZ, Haris A, Permana AJ, Wibowo DLN, Purwanto B, Nikmah YL, et al. Bamboo leaf-based carbon dots for efficient tumor imaging and therapy. RSC advances. 2018;8(67):38376-83. https://doi.org/10.1039/C8RA07944G PMid:35559085 PMCid:PMC9089817

5. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2024;74(3):229-263. https://doi.org/10.3322/caac.21834 PMid:38572751

6. Naik K, Chaudhary S, Ye L, Parmar AS. A strategic review on carbon quantum dots for cancer-diagnostics and treatment. Frontiers in Bioengineering and Biotechnology. 2022;10:882100. https://doi.org/10.3389/fbioe.2022.882100 PMid:35662840 PMCid:PMC9158127

7. Devi P, Saini S, Kim K-H. The advanced role of carbon quantum dots in nanomedical applications. Biosensors and Bioelectronics. 2019;141:111158. https://doi.org/10.1016/j.bios.2019.02.059 PMid:31323605

8. Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: A review. Materials today chemistry. 2018;8:96-109. https://doi.org/10.1016/j.mtchem.2018.03.003

9. Wang R, Lu K-Q, Tang Z-R, Xu Y-J. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A. 2017;5(8):3717-3734. https://doi.org/10.1039/C6TA08660H

10. Lai C, Lin S, Huang X, Jin Y. Synthesis and properties of carbon quantum dots and their research progress in cancer treatment. Dyes and Pigments. 2021;196:109766. https://doi.org/10.1016/j.dyepig.2021.109766

11. Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C. 2014;2(34):6921-6939. https://doi.org/10.1039/C4TC00988F

12. Lapshina N, Shishkin II, Nandi R, Noskov RE, Barhom H, Joseph S, et al. Bioinspired amyloid nanodots with visible fluorescence. Advanced Optical Materials. 2019;7(5):1801400. https://doi.org/10.1002/adom.201801400

13. Pei S, Zhang J, Gao M, Wu D, Yang Y, Liu R. A facile hydrothermal approach towards photoluminescent carbon dots from amino acids. Journal of colloid and interface science. 2015;439:129-133. https://doi.org/10.1016/j.jcis.2014.10.030 PMid:25463184

14. Song T, Zhu X, Zhou S, Yang G, Gan W, Yuan Q. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution. Applied Surface Science. 2015;347:505-513. https://doi.org/10.1016/j.apsusc.2015.04.143

15. Wang M, Tsukamoto M, Sergeyev VG, Zinchenko A. Metal ions sensing by biodots prepared from dna, rna, and nucleotides. Biosensors. 2021;11(9):333. PMid:34562923 PMCid:PMC8466223 https://doi.org/10.3390/bios11090333

16. Li Y, Zhong X, Rider AE, Furman SA, Ostrikov KK. Fast, energy-efficient synthesis of luminescent carbon quantum dots. Green Chemistry. 2014;16(5):2566-2570. https://doi.org/10.1039/C3GC42562B

17. Wang C, Wallace GG. Flexible electrodes and electrolytes for energy storage. Electrochimica Acta. 2015;175:87-95. https://doi.org/10.1016/j.electacta.2015.04.067

18. Niino S, Takeshita S, Iso Y, Isobe T. Influence of chemical states of doped nitrogen on photoluminescence intensity of hydrothermally synthesized carbon dots. Journal of Luminescence. 2016;180:123-131. https://doi.org/10.1016/j.jlumin.2016.08.021

19. Carneiro S, De Queiroz V, Cruz A, Fechine L, Denardin J, Freire R, et al. Sensing strategy based on Carbon Quantum Dots obtained from riboflavin for the identification of pesticides. Sensors and Actuators B: Chemical. 2019;301:127149. https://doi.org/10.1016/j.snb.2019.127149

20. Nasrin A, Hassan M, Mann G, Gomes VG. Conjugated ternary doped carbon dots from vitamin B derivative: Multispectral nanoprobes for targeted melanoma bioimaging and photosensitization. Journal of Luminescence. 2020;217:116811. https://doi.org/10.1016/j.jlumin.2019.116811

21. Xu HV, Zheng XT, Zhao Y, Tan YN. Uncovering the design principle of amino acid-derived photoluminescent biodots with tailor-made structure-properties and applications for cellular bioimaging. ACS applied materials & interfaces. 2018;10(23):19881-19888. https://doi.org/10.1021/acsami.8b04864 PMid:29786414

22. Otzen DE. Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophysical journal. 2002;83(4):2219-2230. https://doi.org/10.1016/S0006-3495(02)73982-9 PMid:12324439

23. Liang Q, Ma W, Shi Y, Li Z, Yang X. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon. 2013;60:421-8. https://doi.org/10.1016/j.carbon.2013.04.055

24. Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chemistry of Materials. 2009;21(23):5563-5565. https://doi.org/10.1021/cm901593y

25. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communications. 2009(34):5118-5120. https://doi.org/10.1039/b907612c PMid:20448965

26. Demir-Cakan R, Baccile N, Antonietti M, Titirici M-M. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chemistry of materials. 2009;21(3):484-490. https://doi.org/10.1021/cm802141h

27. Wang Y, Shi Z, Yin J. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS applied materials & interfaces. 2011;3(4):1127-1133. https://doi.org/10.1021/am1012613 PMid:21438576

28. Ma Z, Ming H, Huang H, Liu Y, Kang Z. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New Journal of Chemistry. 2012;36(4):86186-4. https://doi.org/10.1039/c2nj20942j

29. Qiao L, Sun T, Zheng X, Zheng M, Xie Z. Exploring the optimal ratio of d-glucose/l-aspartic acid for targeting carbon dots toward brain tumor cells. Materials Science and Engineering: C. 2018;85:1-6. https://doi.org/10.1016/j.msec.2017.12.011 PMid:29407137

30. Liu X, Li T, Hou Y, Wu Q, Yi J, Zhang G. Microwave synthesis of carbon dots with multi-response using denatured proteins as carbon source. RSC advances. 2016;6(14):11711-8. https://doi.org/10.1039/C5RA23081K

31. Guo CX, Xie J, Wang B, Zheng X, Yang HB, Li CM. A new class of fluorescent-dots: long luminescent lifetime bio-dots self-assembled from DNA at low temperatures. Scientific Reports. 2013;3(1):2957. https://doi.org/10.1038/srep02957 PMid:24129792 PMCid:PMC3797422

32. Ding H, Du F, Liu P, Chen Z, Shen J. DNA-carbon dots function as fluorescent vehicles for drug delivery. ACS applied materials & interfaces. 2015;7(12):6889-6897. https://doi.org/10.1021/acsami.5b00628 PMid:25742297

33. Zheng XT, Lai YC, Tan YN. Nucleotide-derived theranostic nanodots with intrinsic fluorescence and singlet oxygen generation for bioimaging and photodynamic therapy. Nanoscale Advances. 2019;1(6):2250-2257. https://doi.org/10.1039/C9NA00058E PMid:36131960 PMCid:PMC9417059

34. Luo L, Song T, Wang H, Yuan Q, Zhou S. A highly selective fluorescence sensing platform for nanomolar Hg (II) detection based on cytosine derived quantum dot. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2018;193:95-101. https://doi.org/10.1016/j.saa.2017.11.044 PMid:29223059

35. Zeng X, Zhang L, Yang J, Guo Y, Huang Y, Yuan H, et al. A novel carbon dots derived from reduced l-glutathione as fluorescent probe for the detection of the l-/d-arginine. New Journal of Chemistry. 2017;41(24):15216-15228. https://doi.org/10.1039/C7NJ03320F

36. Gong X, Zhang Q, Gao Y, Shuang S, Choi MM, Dong C. Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging. ACS applied materials & interfaces. 2016;8(18):11288-11297. https://doi.org/10.1021/acsami.6b01577 PMid:27088972

37. Chah K, Eze C, Emuelosi C, Esimone C. Antibacterial and wound healing properties of methanolic extracts of some Nigerian medicinal plants. Journal of ethnopharmacology. 2006;104(1-2):164-167. https://doi.org/10.1016/j.jep.2005.08.070 PMid:16226414

38. Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J, et al. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC complementary and alternative medicine. 2012;12:1-14. https://doi.org/10.1186/1472-6882-12-173 PMid:23038995 PMCid:PMC3534023

39. Joshi B, Lekhak S, Sharma A. Antibacterial property of different medicinal plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum majorana. Kathmandu University Journal of Science Engineering and Technology. 2009;5(1). https://doi.org/10.3126/kuset.v5i1.2854

40. Kumarapppan C, Jaswanth A, Kumarasunderi K. Antihaemolytic and snake venom neutralizing effect of some Indian medicinal plants. Asian Pacific journal of tropical medicine. 2011;4(9):743-747. https://doi.org/10.1016/S1995-7645(11)60185-5 PMid:21967700

41. Ndlovu G, Fouche G, Tselanyane M, Cordier W, Steenkamp V. In vitro determination of the anti-aging potential of four southern African medicinal plants. BMC complementary and alternative medicine. 2013;13:1-7. https://doi.org/10.1186/1472-6882-13-304 PMid:24188320 PMCid:PMC4228251

42. Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H. Medicinal plants: Past history and future perspective. Journal of herbmed pharmacology. 2017;7(1):1-7. https://doi.org/10.15171/jhp.2018.01

43. Itharat A, Houghton PJ, Eno-Amooquaye E, Burke P, Sampson JH, Raman A. In vitro cytotoxic activity of Thai medicinal plants used traditionally to treat cancer. Journal of ethnopharmacology. 2004;90(1):33-38. https://doi.org/10.1016/j.jep.2003.09.014 PMid:14698505

44. Kumar VB, Sheinberger J, Porat Z, Shav-Tal Y, Gedanken A. A hydrothermal reaction of an aqueous solution of BSA yields highly fluorescent N doped C-dots used for imaging of live mammalian cells. Journal of Materials Chemistry B. 2016;4(17):2913-2920. https://doi.org/10.1039/C6TB00519E PMid:32262969

45. Park H-R, Park SB, Hong H-D, Suh HJ, Shin K-S. Structural elucidation of anti-metastatic rhamnogalacturonan II from the pectinase digest of citrus peels (Citrus unshiu). International journal of biological macromolecules. 2017;94:161-169. https://doi.org/10.1016/j.ijbiomac.2016.09.100 PMid:27693835

46. Naik GG, Shah J, Balasubramaniam AK, Sahu AN. Applications of natural product-derived carbon dots in cancer biology. Nanomedicine. 2021;16(7):587-608. https://doi.org/10.2217/nnm-2020-0424 PMid:33660530

47. Li C-L, Ou C-M, Huang C-C, Wu W-C, Chen Y-P, Lin T-E, et al. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. Journal of Materials Chemistry B. 2014;2(28):4564-4571. https://doi.org/10.1039/c4tb00216d PMid:32261557

48. He Z, Cheng J, Yan W, Long W, Ouyang H, Hu X, et al. One-step preparation of green tea ash derived and polymer functionalized carbon quantum dots via the thiol-ene click chemistry. Inorganic Chemistry Communications. 2021;130:108743. https://doi.org/10.1016/j.inoche.2021.108743

49. Arkan E, Barati A, Rahmanpanah M, Hosseinzadeh L, Moradi S, Hajialyani M. Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells. Advanced pharmaceutical bulletin. 2018;8(1):149. https://doi.org/10.15171/apb.2018.018 PMid:29670850 PMCid:PMC5896389

50. Radad K, Gille G, Liu L, Rausch W-D. Use of ginseng in medicine with emphasis on neurodegenerative disorders. Journal of pharmacological sciences. 2006;100(3):175-186. https://doi.org/10.1254/jphs.CRJ05010X PMid:16518078

51. Yao H, Li J, Song Y, Zhao H, Wei Z, Li X, et al. Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. International Journal of Nanomedicine. 2018:6249-6264. PMid:30349248 PMCid:PMC6188153 https://doi.org/10.2147/IJN.S176176

52. Limosani F, Bauer EM, Cecchetti D, Biagioni S, Orlando V, Pizzoferrato R, et al. Top-down N-doped carbon quantum dots for multiple purposes: Heavy metal detection and intracellular fluorescence. Nanomaterials. 2021;11(9):2249. https://doi.org/10.3390/nano11092249 PMid:34578565 PMCid:PMC8465409

53. Guo L, Li L, Liu M, Wan Q, Tian J, Huang Q, et al. Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. Materials Science and Engineering: C. 2018;84:60-6. https://doi.org/10.1016/j.msec.2017.11.034 PMid:29519444

54. Mahmoud ME, Fekry NA, Abdelfattah AM. Removal of uranium (VI) from water by the action of microwave-rapid green synthesized carbon quantum dots from starch-water system and supported onto polymeric matrix. Journal of hazardous materials. 2020;397:122770. https://doi.org/10.1016/j.jhazmat.2020.122770 PMid:32388094

55. Li X, Wang H, Shimizu Y, Pyatenko A, Kawaguchi K, Koshizaki N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chemical Communications. 2011;47(3):932-934. https://doi.org/10.1039/C0CC03552A PMid:21079826

56. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, et al. Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society. 2007;129(37):11318-9. PMid:17722926 PMCid:PMC2691414 https://doi.org/10.1021/ja073527l

57. Hu S, Liu J, Yang J, Wang Y, Cao S. Laser synthesis and size tailor of carbon quantum dots. Journal of Nanoparticle Research. 2011;13:7247-7252. https://doi.org/10.1007/s11051-011-0638-y

58. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society. 2006;128(24):7756-7757. https://doi.org/10.1021/ja062677d PMid:16771487

59. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, et al. Water‐soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte Chemie. 2010;26(122):4532-4536. https://doi.org/10.1002/ange.200906154

60. Ma Z, Zhang Y-L, Wang L, Ming H, Li H, Zhang X, et al. Bioinspired photoelectric conversion system based on carbon-quantum-dot-doped dye-semiconductor complex. ACS applied materials & interfaces. 2013;5(11):5080-5084. https://doi.org/10.1021/am400930h PMid:23668995

61. Zhou J, Booker C, Li R, Zhou X, Sham T-K, Sun X, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). Journal of the American Chemical Society. 2007;129(4):744-745. https://doi.org/10.1021/ja0669070 PMid:17243794

62. Liu M, Xu Y, Niu F, Gooding JJ, Liu J. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst. 2016;141(9):2657-2664. https://doi.org/10.1039/C5AN02231B PMid:26878217

63. Li H, He X, Liu Y, Yu H, Kang Z, Lee S-T. Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Materials Research Bulletin. 2011;46(1):147-151. https://doi.org/10.1016/j.materresbull.2010.10.013

64. Wang J, Sahu S, Sonkar SK, Tackett II KN, Sun KW, Liu Y, et al. Versatility with carbon dots-from overcooked BBQ to brightly fluorescent agents and photocatalysts. Rsc Advances. 2013;3(36):15604-15607. https://doi.org/10.1039/c3ra42302f

65. Zhou X, Zhang Y, Wang C, Wu X, Yang Y, Zheng B, et al. Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS nano. 2012;6(8):6592-6599. https://doi.org/10.1021/nn301629v PMid:22813062

66. Qiao Z-A, Wang Y, Gao Y, Li H, Dai T, Liu Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chemical Communications. 2010;46(46):8812-8814. https://doi.org/10.1039/c0cc02724c PMid:20953494

67. Park SY, Lee HU, Park ES, Lee SC, Lee J-W, Jeong SW, et al. Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS applied materials & interfaces. 2014;6(5):3365-3370. https://doi.org/10.1021/am500159p PMid:24512145

68. Zhuo S, Shao M, Lee S-T. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS nano. 2012;6(2):1059-1064. https://doi.org/10.1021/nn2040395 PMid:22221037

69. Wang Q, Liu X, Zhang L, Lv Y. Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst. 2012;137(22):5392-5397. https://doi.org/10.1039/c2an36059d PMid:23037913

70. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS nano. 2012;6(6):5102-5110. https://doi.org/10.1021/nn300760g PMid:22559247

71. Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical communications. 2012;48(64):7955-7. https://doi.org/10.1039/c2cc33869f PMid:22763501

72. Liu Q, Zhang N, Shi H, Ji W, Guo X, Yuan W, et al. One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ions in aqueous solution. New Journal of Chemistry. 2018;42(4):3097-3101. https://doi.org/10.1039/C7NJ05000C

73. Ma C-B, Zhu Z-T, Wang H-X, Huang X, Zhang X, Qi X, et al. A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale. 2015;7(22):10162-10629. https://doi.org/10.1039/C5NR01757B PMid:25985855

74. Chen B, Li F, Li S, Weng W, Guo H, Guo T, et al. Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale. 2013;5(5):1967-1971. https://doi.org/10.1039/c2nr32675b PMid:23361842

75. Ludmerczki R, Mura S, Carbonaro CM, Mandity IM, Carraro M, Senes N, et al. Carbon dots from citric acid and its intermediates formed by thermal decomposition. Chemistry-A European Journal. 2019;25(51):11963-74. https://doi.org/10.1002/chem.201902497 PMid:31254368

76. Hu C, Liu Y, Lei B, Zheng M, Xiao Y. Extraction of graphitic carbon quantum dots by hydrothermal treatment commercially activated carbon: the role of cation-π interaction. Journal of Nanoparticle Research. 2015;17:1-10. https://doi.org/10.1007/s11051-015-3294-9

77. Kwon W, Do S, Rhee S-W. Formation of highly luminescent nearly monodisperse carbon quantum dots via emulsion-templated carbonization of carbohydrates. RSC advances. 2012;2(30):11223-11226. https://doi.org/10.1039/c2ra22186a

78. Chen W, Hu C, Yang Y, Cui J, Liu Y. Rapid synthesis of carbon dots by hydrothermal treatment of lignin. Materials. 2016;9(3):184. https://doi.org/10.3390/ma9030184 PMid:28773309 PMCid:PMC5456677

79. Hua X-W, Bao Y-W, Chen Z, Wu F-G. Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale. 2017;9(30):10948-10960. https://doi.org/10.1039/C7NR03658B PMid:28736787

80. Sun S, Chen Q, Tang Z, Liu C, Li Z, Wu A, et al. Tumor microenvironment stimuli‐responsive fluorescence imaging and synergistic cancer therapy by carbon‐dot-Cu2+ nanoassemblies. Angewandte Chemie. 2020;132(47):21227-21234. https://doi.org/10.1002/ange.202007786

81. Qu S, Wang X, Lu Q, Liu X, Wang L. A biocompatible fluorescent ink based on water‐soluble luminescent carbon nanodots. Angewandte Chemie-International Edition. 2012;51(49):12215. https://doi.org/10.1002/anie.201206791 PMid:23109224

82. Liu Y, Zhang J, Zuo C, Zhang Z, Ni D, Zhang C, et al. Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Research. 2016;9:3257-3266. https://doi.org/10.1007/s12274-016-1204-9

83. Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers in medical science. 2002;17:173-86. https://doi.org/10.1007/s101030200027 PMid:12181632

84. Sengee G-I, Badraa N, Shim YK. Synthesis and photodynamic activity of new imidazole substituted pyropheophorbide-a derivatives. Journal of Porphyrins and Phthalocyanines. 2009;13(07):818-822. https://doi.org/10.1142/S1088424609001017

85. Kim M, Jung HY, Park HJ. Topical PDT in the treatment of benign skin diseases: principles and new applications. International journal of molecular sciences. 2015;16(10):23259-23278. https://doi.org/10.3390/ijms161023259 PMid:26404243 PMCid:PMC4632697

86. Bagheri AR, Aramesh N, Bilal M, Xiao J, Kim H-W, Yan B. Carbon nanomaterials as emerging nanotherapeutic platforms to tackle the rising tide of cancer-A review. Bioorganic & medicinal chemistry. 2021;51:116493. https://doi.org/10.1016/j.bmc.2021.116493 PMid:34781082

87. Mangalath S, Saneesh Babu PS, Nair RR, Manu PM, Krishna S, Nair SA, et al. Graphene quantum dots decorated with boron dipyrromethene dye derivatives for photodynamic therapy. ACS Applied Nano Materials. 2021;4(4):4162-4171. https://doi.org/10.1021/acsanm.1c00486

88. Liu H, Yao J, Guo H, Cai X, Jiang Y, Lin M, et al. Tumor microenvironment-responsive nanomaterials as targeted delivery carriers for photodynamic anticancer therapy. Frontiers in Chemistry. 2020;8:758. PMid:33134254 PMCid:PMC7550754 https://doi.org/10.3389/fchem.2020.00758

89. Chen H, Wen K, Chen J, Xing W, Wu X, Shi Q, et al. Ultra-stable tellurium-doped carbon quantum dots for cell protection and near-infrared photodynamic application. Science Bulletin. 2020;65(18):1580-1586. https://doi.org/10.1016/j.scib.2020.05.021 PMid:36738076

90. Tedesco AC, Rotta J, Lunardi CN. Synthesis, photophysical and photochemical aspects of phthalocyanines for photodynamic therapy. Current Organic Chemistry. 2003;7(2):187-196. https://doi.org/10.2174/1385272033373076

91. Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Physics in Medicine & Biology. 2008;53(9):R61. https://doi.org/10.1088/0031-9155/53/9/R01 PMid:18401068

92. Yang H-Y, Zhang W-G, Ma L-P, Wang S-W, Zhang Z-Y. An approach to enhancing the phototoxicity of a novel hypocrellin congener to MGC803 cells. Dyes and pigments. 2001;51(2-3):103-110. https://doi.org/10.1016/S0143-7208(01)00059-6

93. Gonschior P, Pahl C, Huehns TY, Gerheuser F, Erdemci A, Larisch K, et al. Comparison of local intravascular drug-delivery catheter systems. American heart journal. 1995;130(6):1174-1181. https://doi.org/10.1016/0002-8703(95)90139-6 PMid:7484766

94. LaMuraglia GM, Klyachkin ML, Adili F, Abbott WM. Photodynamic therapy of vein grafts: suppression of intimal hyperplasia of the vein graft but not the anastomosis. Journal of vascular surgery. 1995;21(6):882-890. https://doi.org/10.1016/S0741-5214(95)70215-6 PMid:7776467

95. Nyamekye I, Anglin S, McEwan J, MacRobert A, Bown S, Bishop C. Photodynamic therapy of normal and balloon-injured rat carotid arteries using 5-amino-levulinic acid. Circulation. 1995;91(2):417-425. https://doi.org/10.1161/01.CIR.91.2.417 PMid:7805246

96. Hsiang Y, Houston G, Crespo T, To E, Todd M, Sobeh M, et al. Preventing intimal hyperplasia with photodynamic therapy using an intravascular probe. Annals of Vascular Surgery. 1995;9(1):80-86. https://doi.org/10.1007/BF02015320 PMid:7703066

97. Dartsch PC, Wunderlich K, Ben-Hur E. Aluminium phthalocyanines-induced photolysis of human vascular wall cells in culture and the effect of fluoride on photodynamic action. Coronary Artery Disease. 1994;5(10):851-856.

98. Calin M, Parasca S. Photodynamic therapy in oncology. Journal of Optoelectronics and advanced materials. 2006;8(3):1173.

99. Sharman WM, Allen CM, Van Lier JE. Photodynamic therapeutics: basic principles and clinical applications. Drug discovery today. 1999;4(11):507-517. https://doi.org/10.1016/S1359-6446(99)01412-9 PMid:10529768

100. Huang Z. A review of progress in clinical photodynamic therapy. Technology in cancer research & treatment. 2005;4(3):283-293. https://doi.org/10.1177/153303460500400308 PMid:15896084 PMCid:PMC1317568

101. Stefflova K, Li H, Chen J, Zheng G. Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjugate chemistry. 2007;18(2):379-388. https://doi.org/10.1021/bc0602578 PMid:17298029 PMCid:PMC2535810

102. Kovačova M, Špitalská E, Markovic Z, Špitálský Z. Carbon quantum dots as antibacterial photosensitizers and their polymer nanocomposite applications. Particle & Particle Systems Characterization. 2020;37(1):1900348. https://doi.org/10.1002/ppsc.201900348

103. Vrouenraets MB, Visser G, Snow GB, Van Dongen G. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer research. 2003;23(1B):505-522.

104. Huang P, Xu C, Lin J, Wang C, Wang X, Zhang C, et al. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics. 2011;1:240. https://doi.org/10.7150/thno/v01p0240 PMid:21562631 PMCid:PMC3092447

105. Pham SH, Choi Y, Choi J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics. 2020;12(7):630. https://doi.org/10.3390/pharmaceutics12070630 PMid:32635539 PMCid:PMC7408499

106. Nie X, Wu S, Mensah A, Lu K, Wei Q. Carbon quantum dots embedded electrospun nanofibers for efficient antibacterial photodynamic inactivation. Materials Science and Engineering: C. 2020;108:110377. https://doi.org/10.1016/j.msec.2019.110377 PMid:31924045

107. Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology B: Biology. 1997;39(1):1-18. PMid:9210318 https://doi.org/10.1016/S1011-1344(96)07428-3

108. Li B, Zhao S, Huang L, Wang Q, Xiao J, Lan M. Recent advances and prospects of carbon dots in phototherapy. Chemical engineering journal. 2021;408:127245. https://doi.org/10.1016/j.cej.2020.127245

109. Nowak-Stepniowska A, Pergoł P, Padzik-Graczyk A. Photodynamic method of cancer diagnosis and therapy--mechanisms and applications. Postepy biochemii. 2013;59(1):53-63.

110. Luksiene Z. Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas, Lithuania). 2003;39(12):1137-1150.

111. Juzeniene A, Moan J. The history of PDT in Norway: Part one: Identification of basic mechanisms of general PDT. Photodiagnosis and photodynamic therapy. 2007;4(1):3-11. https://doi.org/10.1016/j.pdpdt.2006.11.002 PMid:25047184

112. Fonseca S, Pina J, Arnaut L, Seixas de Melo J, Burrows H, Chattopadhyay N, et al. Triplet-state and singlet oxygen formation in fluorene-based alternating copolymers. The Journal of Physical Chemistry B. 2006;110(16):8278-8283. https://doi.org/10.1021/jp060251f PMid:16623508

113. Chen Y, Zhao Y, Zou X, Sun L. Porous silica nanocarriers with gold/carbon quantum dots for photo-chemotherapy and cellular imaging. Journal of Drug Delivery Science and Technology. 2021;61:102141. https://doi.org/10.1016/j.jddst.2020.102141

114. Kessel D, Oleinick NL. Photodynamic therapy and cell death pathways. Photodynamic Therapy: Methods and Protocols. 2010:35-46. https://doi.org/10.1007/978-1-60761-697-9_3 PMid:20552338 PMCid:PMC4455965

115. Willard DM, Carillo LL, Jung J, Van Orden A. CdSe− ZnS quantum dots as resonance energy transfer donors in a model protein− protein binding assay. Nano Letters. 2001;1(9):469-474. https://doi.org/10.1021/nl015565n

116. Mamedova NN, Kotov NA, Rogach AL, Studer J. Albumin− CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Letters. 2001;1(6):281-286. https://doi.org/10.1021/nl015519n

117. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angewandte Chemie International Edition. 2010;49(38):67266744. https://doi.org/10.1002/anie.200906623 PMid:20687055

118. Morris RL, Azizuddin K, Lam M, Berlin J, Nieminen A-L, Kenney ME, et al. Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy. Cancer research. 2003;63(17):5194-5197.

119. Samia AC, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. Journal of the American Chemical Society. 2003;125(51):15736-7. https://doi.org/10.1021/ja0386905 PMid:14677951

120. Dougherty TJ. Photosensitizers: therapy and detection of malignant tumors. Photochemistry and Photobiology. 1987;45:879-889. https://doi.org/10.1111/j.1751-1097.1987.tb07898.x PMid:2957705

121. Wang H, Shen J, Li Y, Wei Z, Cao G, Gai Z, et al. Magnetic iron oxide-fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy. Biomaterials Science. 2014;2(6):915-923. https://doi.org/10.1039/C3BM60297D

PMid:32481822 122. De la Zerda A, Gambhir SS. Keeping tabs on nanocarriers. Nature nanotechnology. 2007;2(12):745-746. https://doi.org/10.1038/nnano.2007.399 PMid:18654423

123. Alaghmandfard A, Sedighi O, Rezaei NT, Abedini AA, Khachatourian AM, Toprak MS, et al. Recent advances in the modification of carbon-based quantum dots for biomedical applications. Materials Science and Engineering: C. 2021;120:111756. https://doi.org/10.1016/j.msec.2020.111756 PMid:33545897

124. Bharali DJ, Mousa SA. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacology & therapeutics. 2010;128(2):324-335. https://doi.org/10.1016/j.pharmthera.2010.07.007 PMid:20705093

125. Muhammad F, Guo M, Guo Y, Qi W, Qu F, Sun F, et al. Acid degradable ZnO quantum dots as a platform for targeted delivery of an anticancer drug. Journal of materials chemistry. 2011;21(35):13406-13412. https://doi.org/10.1039/c1jm12119g

126. Surendran P, Lakshmanan A, Priya SS, Balakrishnan K, Rameshkumar P, Kannan K, et al. Bioinspired fluorescence carbon quantum dots extracted from natural honey: efficient material for photonic and antibacterial applications. Nano-Structures & Nano-Objects. 2020;24:100589. https://doi.org/10.1016/j.nanoso.2020.100589

127. Prajapati SK, Maurya SD, Das MK, Tilak VK, Verma KK, Dhakar RC, Dendrimers in drug delivery, diagnosis and therapy: basics and potential applications, Journal of Drug Delivery and Therapeutics. 2016;6(1):67-92 https://doi.org/10.22270/jddt.v6i1.1190

128. Srujana S, Anjamma M, Alimuddin, Singh B, Dhakar RC, Natarajan S, Hechhu R. A Comprehensive Study on the Synthesis and Characterization of TiO2 Nanoparticles Using Aloe vera Plant Extract and Their Photocatalytic Activity against MB Dye. Adsorption Science & Technology. 2022;2022 https://doi.org/10.1155/2022/7244006

129. Zeng Q, Shao D, He X, Ren Z, Ji W, Shan C, et al. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. Journal of Materials Chemistry B. 2016;4(30):5119-5126. https://doi.org/10.1039/C6TB01259K PMid:32263509

130. D'souza SL, Deshmukh B, Bhamore JR, Rawat KA, Lenka N, Kailasa SK. Synthesis of fluorescent nitrogen-doped carbon dots from dried shrimps for cell imaging and boldine drug delivery system. RSC advances. 2016;6(15):12169-12179. https://doi.org/10.1039/C5RA24621K

131. Kailasa SK, Bhamore JR, Koduru JR, Park TJ. Carbon dots as carriers for the development of controlled drug and gene delivery systems. Biomedical applications of nanoparticles. 2019:295-317. https://doi.org/10.1016/B978-0-12-816506-5.00006-1

132. Wurden GA, Hsu SC, Intrator TP, Grabowski T, Degnan J, Domonkos M, et al. Magneto-inertial fusion. Journal of Fusion Energy. 2016;35:69-77. https://doi.org/10.1007/s10894-015-0038-x

133. Niazvand F, Wagh PR, Khazraei E, Dastjerdi MB, Patil C, Najar IA. Application of carbon allotropes composites for targeted cancer therapy drugs: A review. Journal of Composites and Compounds. 2021;3(7):140-151. https://doi.org/10.52547/jcc.3.2.7

134. Zavareh HS, Pourmadadi M, Moradi A, Yazdian F, Omidi M. Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5-fluorouracil. International Journal of Biological Macromolecules. 2020;165:1422-1430. https://doi.org/10.1016/j.ijbiomac.2020.09.166 PMid:32987067

135. Han C, Zhang X, Wang F, Yu Q, Chen F, Shen D, et al. Duplex metal co-doped carbon quantum dots-based drug delivery system with intelligent adjustable size as adjuvant for synergistic cancer therapy. Carbon. 2021;183:789-808. https://doi.org/10.1016/j.carbon.2021.07.063

136. Chen BB, Liu ML, Huang CZ. Recent advances of carbon dots in imaging-guided theranostics. TrAC Trends in Analytical Chemistry. 2021;134:116116. https://doi.org/10.1016/j.trac.2020.116116

137. Tajik S, Dourandish Z, Zhang K, Beitollahi H, Van Le Q, Jang HW, et al. Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC advances. 2020;10(26):15406-15429. PMid:35495425 PMCid:PMC9052380 https://doi.org/10.1039/D0RA00799D

138. Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreeprasad TS, et al. Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. Journal of Materials Chemistry B. 2016;4(45):7204-7219. https://doi.org/10.1039/C6TB02131J PMid:32263722

139. Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chemical Communications. 2012;48(3):380-382. https://doi.org/10.1039/C1CC15678K PMid:22080285

140. Wu J-B, Lin M-L, Cong X, Liu H-N, Tan P-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews. 2018;47(5):1822-1873. https://doi.org/10.1039/C6CS00915H PMid:29368764

141. Li X, Vinothini K, Ramesh T, Rajan M, Ramu A. Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system. Drug delivery. 2020;27(1):791-804. PMid:32420760 PMCid:PMC7301704 https://doi.org/10.1080/10717544.2020.1765431

142. Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, et al. Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst. 2013;138(21):6551-6557. https://doi.org/10.1039/c3an01003a PMid:23982153

143. Algarra M, González-Calabuig A, Radotić K, Mutavdzic D, Ania C, Lázaro-Martínez JM, et al. Enhanced electrochemical response of carbon quantum dot modified electrodes. Talanta. 2018;178:679-685. https://doi.org/10.1016/j.talanta.2017.09.082 PMid:29136880

144. Rooj B, Mandal U. A review on characterization of carbon quantum dots. Vietnam Journal of Chemistry. 2023;61(6):693-718. https://doi.org/10.1002/vjch.202300022

145. Wei Y, Chen L, Zhao S, Liu X, Yang Y, Du J, et al. Green-emissive carbon quantum dots with high fluorescence quantum yield: Preparation and cell imaging. Frontiers of Materials Science. 2021;15:253-265. https://doi.org/10.1007/s11706-021-0544-x

146. Mohammadi S, Salimi A. Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO 2 nanosheets as a donor-acceptor pair. Microchimica Acta. 2018;185:1-10. https://doi.org/10.1007/s00604-018-2868-5 PMid:29995191

147. Alarfaj NA, El-Tohamy MF, Oraby HF. New immunosensing-fluorescence detection of tumor marker cytokeratin-19 fragment (CYFRA 21-1) via carbon quantum dots/zinc oxide nanocomposite. Nanoscale Research Letters. 2020;15:1-14. https://doi.org/10.1186/s11671-020-3247-9 PMid:31940100 PMCid:PMC6962423

148. Desmond LJ, Phan AN, Gentile P. Critical overview on the green synthesis of carbon quantum dots and their application for cancer therapy. Environmental Science: Nano. 2021;8(4):848-62. https://doi.org/10.1039/D1EN00017A

149. Soumya K, More N, Choppadandi M, Aishwarya D, Singh G, Kapusetti G. A comprehensive review on carbon quantum dots as an effective photosensitizer and drug delivery system for cancer treatment. Biomedical Technology. 2023;4:11-20. https://doi.org/10.1016/j.bmt.2023.01.005

150. Cai R, Xiao L, Liu M, Du F, Wang Z. Recent advances in functional carbon quantum dots for antitumour. International Journal of Nanomedicine. 2021:7195-229. PMCid:PMC8550800 https://doi.org/10.2147/IJN.S334012 PMid:34720582

Published

15-02-2025
Statistics
Abstract Display: 314
PDF Downloads: 66
PDF Downloads: 13

How to Cite

1.
Bhaskar R, Ola M, Kamthe TU, Patle P, Wagh V. Leveraging the potential of carbon: carbon quantum dots as a versatile probe for cancer diagnosis and treatment. J. Drug Delivery Ther. [Internet]. 2025 Feb. 15 [cited 2025 Mar. 21];15(2):156-70. Available from: https://jddtonline.info/index.php/jddt/article/view/6977

How to Cite

1.
Bhaskar R, Ola M, Kamthe TU, Patle P, Wagh V. Leveraging the potential of carbon: carbon quantum dots as a versatile probe for cancer diagnosis and treatment. J. Drug Delivery Ther. [Internet]. 2025 Feb. 15 [cited 2025 Mar. 21];15(2):156-70. Available from: https://jddtonline.info/index.php/jddt/article/view/6977

Most read articles by the same author(s)