Oral Thin Films: A Modern Frontier in Drug Delivery Systems

Authors

Abstract

Oral thin films (OTFs) are gaining popularity in the pharmaceutical industry for their advantages over traditional oral dosage forms, especially for patients with swallowing difficulties, such as children and the elderly. OTFs provide a discreet, convenient, and fast-acting method of drug administration. They dissolve quickly in saliva, enabling rapid absorption through the oral mucosa, bypassing first-pass metabolism and enhancing bioavailability, which can reduce required doses and side effects. OTFs are particularly useful for poorly soluble drugs and allow for precise dosing, making them ideal for pediatric patients. They can also mask unpleasant tastes, improving patient acceptance. Research on OTFs is expanding, with innovations like pH-sensitive films, micro-pellet-loaded films, and the potential for delivering vaccines and probiotics. The OTF market is projected to reach $7.65 billion by 2028, growing at a 13.6% CAGR. Future developments focus on personalized OTFs, made possible by printing technologies like inkjet and 3D printing, offering tailored dosing and drug combinations. OTFs hold great promise to revolutionize drug delivery, benefiting both patients and healthcare providers.

Key words: Oral thin film, Pediatric and geriatric drug dosing, market growth of OTF, Technologies of preparation of film

Keywords:

Oral thin film, Pediatric and geriatric drug dosing, market growth of OTF, Technologies of preparation of film

DOI

https://doi.org/10.22270/jddt.v15i4.7067

Author Biographies

Rajveer Bhaskar , Department of Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule Maharashtra, India 425405.

Department of Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule Maharashtra, India 425405.

Monika Ola , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405.

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405. 

Shivani Khade , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405.

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405. 

Arun Pawar , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405.

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405. 

Rohini Tikhe , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405.

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405. 

Vaishnavi Madwe , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405.

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405. 

Sunil Shinde , Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405.

Department of Pharmaceutics, R. C. Patel Institute of Pharmacy, Shirpur, Dhule Maharashtra, India 425405. 

References

1. Reddy TUK, Reddy KSK, Manogna K, Thyagaraju K. A detailed review on fast dissolving oral films. Journal of Pharmaceutical Research. 2018;8(06).

2. Prajapati VD, Chaudhari AM, Gandhi AK, Maheriya P. Pullulan based oral thin film formulation of zolmitriptan: Development and optimization using factorial design. International journal of biological macromolecules. 2018;107:2075-2085. https://doi.org/10.1016/j.ijbiomac.2017.10.082 PMid:29074082

3. Karaman DṢ, Patrignani G, Rosqvist E, Smått J-H, Orłowska A, Mustafa R, et al. Mesoporous silica nanoparticles facilitating the dissolution of poorly soluble drugs in orodispersible films. European Journal of Pharmaceutical Sciences. 2018;122:152-159. https://doi.org/10.1016/j.ejps.2018.06.027 PMid:29966736

4. Oudah MH, Wais M, Al-lam S. Preparation and evaluation of meloxicam nanoparticles as oral thin film. Int J Drug Deliv Technol. 2021;11:676-84.

5. Speer I, Lenhart V, Preis M, Breitkreutz J. Prolonged release from orodispersible films by incorporation of diclofenac-loaded micropellets. International Journal of Pharmaceutics. 2019;554:149-60. https://doi.org/10.1016/j.ijpharm.2018.11.013 PMid:30414477

6. Visser JC, Woerdenbag HJ, Hanff LM, Frijlink HW. Personalized medicine in pediatrics: the clinical potential of orodispersible films. Aaps pharmscitech. 2017;18(2):267-72. https://doi.org/10.1208/s12249-016-0515-1 PMid:27044380

7. Yildiz ZI, Uyar T. Fast-dissolving electrospun nanofibrous films of paracetamol/cyclodextrin inclusion complexes. Applied Surface Science. 2019;492:626-33. https://doi.org/10.1016/j.apsusc.2019.06.220

8. Borges AF, Silva C, Coelho JF, Simões S. Oral films: Current status and future perspectives: I-Galenical development and quality attributes. Journal of Controlled Release. 2015;206:1-19. https://doi.org/10.1016/j.jconrel.2015.03.006 PMid:25747406

9. He M, Zhu L, Yang N, Li H, Yang Q. Recent advances of oral film as platform for drug delivery. International journal of pharmaceutics. 2021;604:120759. https://doi.org/10.1016/j.ijpharm.2021.120759 PMid:34098053

10. Qin Z-y, Jia X-W, Liu Q, Kong B-h, Wang H. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. International journal of biological macromolecules. 2019;137:224-31. https://doi.org/10.1016/j.ijbiomac.2019.06.224 PMid:31260763

11. Wang P, Li Y, Zhang C, Feng F, Zhang H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food chemistry. 2020;308:125599. https://doi.org/10.1016/j.foodchem.2019.125599 PMid:31648098

12. Scarpa M, Stegemann S, Hsiao W-K, Pichler H, Gaisford S, Bresciani M, et al. Orodispersible films: Towards drug delivery in special populations. International journal of pharmaceutics. 2017;523(1):327-35. https://doi.org/10.1016/j.ijpharm.2017.03.018 PMid:28302515

13. Eleftheriadis GK, Ritzoulis C, Bouropoulos N, Tzetzis D, Andreadis DA, Boetker J, et al. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics. 2019;144:180-92. https://doi.org/10.1016/j.ejpb.2019.09.018 PMid:31550525

14. Eleftheriadis GK, Monou PK, Bouropoulos N, Boetker J, Rantanen J, Jacobsen J, et al. Fabrication of mucoadhesive buccal films for local administration of ketoprofen and lidocaine hydrochloride by combining fused deposition modeling and inkjet printing. Journal of Pharmaceutical Sciences. 2020;109(9):2757-66. https://doi.org/10.1016/j.xphs.2020.05.022 PMid:32497597

15. Zayed GM, Abd-El Rasoul S, Ibrahim MA, Saddik MS, Alshora DH. In vitro and in vivo characterization of domperidone-loaded fast dissolving buccal films. Saudi pharmaceutical journal. 2020;28(3):266-73. https://doi.org/10.1016/j.jsps.2020.01.005 PMid:32194327 PMCid:PMC7078569

16. Bülbül EÖ, Mesut B, Cevher E, Öztaş E, Özsoy Y. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. Journal of Drug Delivery Science and Technology. 2019;54:101358. https://doi.org/10.1016/j.jddst.2019.101358

17. Tian Y, Lin J, Jing H, Wang Q, Wu Z, Duan Y. Recent progress in orodispersible films‐mediated therapeutic applications: A review. MedComm-Biomaterials and Applications. 2023;2(2):e34. https://doi.org/10.1002/mba2.34

18. Bajrovic I, Schafer SC, Romanovicz DK, Croyle MA. Novel technology for storage and distribution of live vaccines and other biological medicines at ambient temperature. Science Advances. 2020;6(10):eaau4819. https://doi.org/10.1126/sciadv.aau4819 PMid:32181330 PMCid:PMC7056310

19. Baral KC, Bajracharya R, Lee SH, Han H-K. Advancements in the pharmaceutical applications of probiotics: dosage forms and formulation technology. International journal of nanomedicine. 2021:7535-56. https://doi.org/10.2147/IJN.S337427 PMid:34795482 PMCid:PMC8594788

20. Dodoo CC, Stapleton P, Basit AW, Gaisford S. The potential of Streptococcus salivarius oral films in the management of dental caries: An inkjet printing approach. International Journal of Pharmaceutics. 2020;591:119962. https://doi.org/10.1016/j.ijpharm.2020.119962 PMid:33049357

21. Mazzarino L, Borsali R, Lemos‐Senna E. Mucoadhesive films containing chitosan‐coated nanoparticles: A new strategy for buccal curcumin release. Journal of pharmaceutical sciences. 2014;103(11):3764-71. https://doi.org/10.1002/jps.24142 Mid:25187001

22. Visser JC, Eugresya G, Hinrichs WL, Tjandrawinata RR, Avanti C, Frijlink HW, et al. Development of orodispersible films with selected Indonesian medicinal plant extracts. Journal of Herbal Medicine. 2017;7:37-46. https://doi.org/10.1016/j.hermed.2016.10.002

23. Van Nguyen K, Dang TK, Pham HT, Nguyen BTT, Vu GTT, Nguyen HT, et al. Development of Panax notoginseng saponins-loaded orodispersible films: A potential approach to enhance delivery efficacy in older adults. Journal of Applied Pharmaceutical Science. 2022;12(4):044-53. https://doi.org/10.7324/JAPS.2022.120405

24. Gupta MS, Kumar TP, Gowda DV. Orodispersible Thin Film: A new patient-centered innovation. Journal of Drug Delivery Science and Technology. 2020;59:101843. https://doi.org/10.1016/j.jddst.2020.101843

25. Nour EM, El-Habashy SE, Shehat MG, Essawy MM, El-Moslemany RM, Khalafallah NM. Atorvastatin liposomes in a 3D-printed polymer film: a repurposing approach for local treatment of oral candidiasis. Drug Delivery and Translational Research. 2023;13(11):2847-68. https://doi.org/10.1007/s13346-023-01353-4 PMid:37184748 PMCid:PMC10545585

26. Sato K, Yoshida K, Takahashi S, Anzai J-i. pH-and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Advanced drug delivery reviews. 2011;63(9):809-21. https://doi.org/10.1016/j.addr.2011.03.015 PMid:21510988

27. Muruganantham S, Kandasamy R, Alagarsamy S. Nanoparticle-loaded oral fast-dissolving film: New realistic approach of prospective generation in drug delivery-a review. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2021;38(1). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2020034002

28. Patel R, Shah D. Nanoparticles loaded sublingual film as an effective treatment of chemotherapy induced nausea and vomiting. Int J PharmTech Res. 2015;8(10):77-87.

29. Poovi G, Damodharan N. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Future Journal of Pharmaceutical Sciences. 2018;4(2):191-205. https://doi.org/10.1016/j.fjps.2018.04.001

30. Centkowska K, Szadkowska M, Basztura M, Sznitowska M. Homogeneity and mechanical properties of orodispersible films loaded with pellets. European Journal of Pharmaceutics and Biopharmaceutics. 2024;205:114537. https://doi.org/10.1016/j.ejpb.2024.114537 PMid:39437982

31. Chamsai B, Sriamornsak P. Novel disintegrating microcrystalline cellulose pellets with improved drug dissolution performance. Powder technology. 2013;233:278-85. https://doi.org/10.1016/j.powtec.2012.08.019

32. Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert opinion on drug delivery. 2005;2(2):335-51. https://doi.org/10.1517/17425247.2.1.335 PMid:16296758

33. Gharib R, Greige-Gerges H, Fourmentin S, Charcosset C, Auezova L. Liposomes incorporating cyclodextrin-drug inclusion complexes: Current state of knowledge. Carbohydrate Polymers. 2015;129:175-86. https://doi.org/10.1016/j.carbpol.2015.04.048 PMid:26050903

34. Özakar RS, Özakar E. Current overview of oral thin films. Turkish journal of pharmaceutical sciences. 2021;18(1):111. https://doi.org/10.4274/tjps.galenos.2020.76390 PMid:33634686 PMCid:PMC7957312

35. Jacob S, Boddu SH, Bhandare R, Ahmad SS, Nair AB. Orodispersible films: current innovations and emerging trends. Pharmaceutics. 2023;15(12):2753. https://doi.org/10.3390/pharmaceutics15122753 PMid:38140094 PMCid:PMC10747242

36. Dixit R, Puthli S. Oral strip technology: Overview and future potential. Journal of controlled release. 2009;139(2):94-107. https://doi.org/10.1016/j.jconrel.2009.06.014 PMid:19559740

37. Sheoran R. Fast dissolving oral films: a review with future prospects. International Journal of Pharmacy & Pharmaceutical Research. 2018;12(2):15-32.

38. Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi pharmaceutical journal. 2016;24(5):537-46. https://doi.org/10.1016/j.jsps.2015.02.024 PMid:27752225 PMCid:PMC5059831

39. Kathpalia H, Gupte A. An introduction to fast dissolving oral thin film drug delivery systems: a review. Current drug delivery. 2013;10(6):667-84. https://doi.org/10.2174/156720181006131125150249 PMid:24274635

40. Bala R, Pawar P, Khanna S, Arora S. Orally dissolving strips: A new approach to oral drug delivery system. International journal of pharmaceutical investigation. 2013;3(2):67. https://doi.org/10.4103/2230-973X.114897 PMid:24015378 PMCid:PMC3757902

41. Corniello C. Quick dissolving strips: from concept to commercialization. Drug Del Technol. 2006;6(2):68-71.

42. Singh S, Dixit S, Verma A, Faizan M, Jaiswal N. Fast Dissolving Oral Films: A Review. Int J Med Phar Drug Re. 2024;8:2.

43. Mahboob MBH, Riaz T, Jamshaid M, Bashir I, Zulfiqar S. Oral films: A comprehensive review. International Current Pharmaceutical Journal. 2016;5(12):111-7. https://doi.org/10.3329/icpj.v5i12.30413

44. Brown GL. Formation of films from polymer dispersions. Journal of Polymer science. 1956;22(102):423-34. https://doi.org/10.1002/pol.1956.1202210208

45. Pathare YS, Hastak VS, Bajaj AN. Polymers used for fast disintegrating oral films: a review. Polymer. 2013;14:169-78.

46. Russo E, Selmin F, Baldassari S, Gennari C, Caviglioli G, Cilurzo F, et al. A focus on mucoadhesive polymers and their application in buccal dosage forms. Journal of drug delivery Science and Technology. 2016;32:113-25. https://doi.org/10.1016/j.jddst.2015.06.016

47. Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients: Libros Digitales-Pharmaceutical Press; 2009.

48. Caviglioli G, Baldassari S, Cirrincione P, Russo E, Parodi B, Gatti P, et al. An innovative matrix controlling drug delivery produced by thermal treatment of DC tablets containing polycarbophil and ethylcellulose. International Journal of Pharmaceutics. 2013;458(1):74-82. https://doi.org/10.1016/j.ijpharm.2013.10.014 PMid:24144954

49. Bonacucina G, Martelli S, Palmieri GF. Rheological, mucoadhesive and release properties of Carbopol gels in hydrophilic cosolvents. International journal of pharmaceutics. 2004;282(1-2):115-30. https://doi.org/10.1016/j.ijpharm.2004.06.012 PMid:15336387

50. Cilurzo F, Minghetti P, Selmin F, Casiraghi A, Montanari L. Polymethacrylate salts as new low-swellable mucoadhesive materials. Journal of controlled release. 2003;88(1):43-53. https://doi.org/10.1016/S0168-3659(02)00459-5 PMid:12586502

51. Scott JE, Heatley F. Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. Proceedings of the National Academy of Sciences. 1999;96(9):4850-5. https://doi.org/10.1073/pnas.96.9.4850 PMid:10220382 PMCid:PMC21780

52. Sandri G, Rossi S, Ferrari F, Bonferoni MC, Zerrouk N, Caramella C. Mucoadhesive and penetration enhancement properties of three grades of hyaluronic acid using porcine buccal and vaginal tissue, Caco‐2 cell lines, and rat jejunum. Journal of pharmacy and pharmacology. 2004;56(9):1083-90. https://doi.org/10.1211/0022357044085 PMid:15324476

53. Pritchard K, Lansley AB, Martin GP, Helliwell M, Marriott C, Benedetti LM. Evaluation of the bioadhesive properties of hyaluronan derivatives: detachment weight and mucociliary transport rate studies. International journal of pharmaceutics. 1996;129(1-2):137-45. https://doi.org/10.1016/0378-5173(95)04280-6

54. Hägerström H, Edsman K. Interpretation of mucoadhesive properties of polymer gel preparations using a tensile strength method. Journal of Pharmacy and Pharmacology. 2001;53(12):1589-99. https://doi.org/10.1211/0022357011778197 PMid:11804389

55. Ilium L. Chitosan and its use as a pharmaceutical excipient. Pharmaceutical research. 1998;15:1326-31. https://doi.org/10.1023/A:1011929016601 PMid:9755881

56. Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008;9(7):1837-42. https://doi.org/10.1021/bm800276d PMid:18540644

57. He P, Davis SS, Illum L. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. International journal of pharmaceutics. 1998;166(1):75-88. https://doi.org/10.1016/S0378-5173(98)00027-1

58. Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Advanced drug delivery reviews. 2005;57(11):1666-91. https://doi.org/10.1016/j.addr.2005.07.003 PMid:16183164

59. Parodi B, Russo E, Gatti P, Cafaggi S, Bignardi G. Development and in vitro evaluation of buccoadhesive tablets using a new model substrate for bioadhesion measures: the eggshell membrane. Drug development and industrial pharmacy. 1999;25(3):289-95. https://doi.org/10.1081/DDC-100102173 PMid:10071821

60. Menchicchi B, Fuenzalida J, Hensel A, Swamy M, David L, Rochas C, et al. Biophysical analysis of the molecular interactions between polysaccharides and mucin. Biomacromolecules. 2015;16(3):924-35. https://doi.org/10.1021/bm501832y PMid:25630032

61. Whistler R. Industrial gums: polysaccharides and their derivatives: Elsevier; 2012.

62. Sriamornsak P, Wattanakorn N, Takeuchi H. Study on the mucoadhesion mechanism of pectin by atomic force microscopy and mucin-particle method. Carbohydrate polymers. 2010;79(1):54-9. https://doi.org/10.1016/j.carbpol.2009.07.018

63. Joergensen L, Klösgen B, Simonsen AC, Borch J, Hagesaether E. New insights into the mucoadhesion of pectins by AFM roughness parameters in combination with SPR. International journal of pharmaceutics. 2011;411(1-2):162-8. https://doi.org/10.1016/j.ijpharm.2011.04.001 PMid:21501673

64. Singh RS, Kaur N, Rana V, Kennedy JF. Pullulan: A novel molecule for biomedical applications. Carbohydrate Polymers. 2017;171:102-21. https://doi.org/10.1016/j.carbpol.2017.04.089 PMid:28578944

65. Singh RS, Kaur N, Kennedy JF. Pullulan production from agro-industrial waste and its applications in food industry: A review. Carbohydrate polymers. 2019;217:46-57. https://doi.org/10.1016/j.carbpol.2019.04.050 PMid:31079684

66. Rezaee F, Ganji F. Formulation, characterization, and optimization of captopril fast-dissolving oral films. AAPS PharmSciTech. 2018;19:2203-12. https://doi.org/10.1208/s12249-018-1027-y PMid:29728997

67. Chachlioutaki K, Tzimtzimis EK, Tzetzis D, Chang M-W, Ahmad Z, Karavasili C, et al. Electrospun orodispersible films of isoniazid for pediatric tuberculosis treatment. Pharmaceutics. 2020;12(5):470. https://doi.org/10.3390/pharmaceutics12050470 PMid:32455717 PMCid:PMC7284807

68. Pechová V, Gajdziok J, Muselík J, Vetchý D. Development of orodispersible films containing benzydamine hydrochloride using a modified solvent casting method. AAPS PharmSciTech. 2018;19:2509-18. https://doi.org/10.1208/s12249-018-1088-y PMid:29948980

69. Nagar P, Chauhan I, Yasir M. Insights into Polymers: Film Formers in Mouth Dissolving Films. Drug invention today. 2011;3(12).

70. Jyothi S, Krishna K, Kusuma D, Shankar CU. Formulation and in-vitro evaluation of benazepril mouth dissolving films. Indo American Journal of Pharmaceutical Sciences. 2018;5(1):552-60.

71. Vishvakarma P. Design and development of montelukast sodium fast dissolving films for better therapeutic efficacy. Journal of the Chilean Chemical Society. 2018;63(2):3988-93. https://doi.org/10.4067/s0717-97072018000203988

72. dos Santos Garcia VA, Borges JG, Osiro D, Vanin FM, de Carvalho RA. Orally disintegrating films based on gelatin and pregelatinized starch: new carriers of active compounds from acerola. Food Hydrocolloids. 2020;101:105518. https://doi.org/10.1016/j.foodhyd.2019.105518

73. Bodini RB, Guimarães JdGL, Monaco-Lourenço CA, de Carvalho RA. Effect of starch and hydroxypropyl methylcellulose polymers on the properties of orally disintegrating films. Journal of Drug Delivery Science and Technology. 2019;51:403-10. https://doi.org/10.1016/j.jddst.2019.03.028

74. León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed collagen-sources and applications. Molecules. 2019;24(22):4031. https://doi.org/10.3390/molecules24224031 PMid:31703345 PMCid:PMC6891674

75. Banker GS. Film coating theory and practice. Journal of pharmaceutical sciences. 1966;55(1):81-9. https://doi.org/10.1002/jps.2600550118 PMid:5918657

76. Wu C, McGinity JW. Influence of ibuprofen as a solid-state plasticizer in Eudragit® RS 30 D on the physicochemical properties of coated beads. AAPS PharmSciTech. 2001;2:35-43. https://doi.org/10.1208/pt020424 PMid:14727861 PMCid:PMC2784839

77. Jantrawut P, Chaiwarit T, Jantanasakulwong K, Brachais CH, Chambin O. Effect of plasticizer type on tensile property and in vitro indomethacin release of thin films based on low-methoxyl pectin. Polymers. 2017;9(7):289. https://doi.org/10.3390/polym9070289 PMid:30970971 PMCid:PMC6432188

78. Gibson J, Beeley JA. Natural and synthetic saliva: a stimulating subject. Biotechnology and Genetic Engineering Reviews. 1994;12(1):39-62. https://doi.org/10.1080/02648725.1994.10647908 PMid:7727034

79. Siddiqui M, Garg G, Sharma PK. A short review on "A novel approach in oral fast dissolving drug delivery system and their patents". Adv Biol Res. 2011;5(6):291-303.

80. Sharma N, Sharma TK, Chaudhary A, Pandit V, Ashawat M. A Detailed Review on Fast Dissolving Niosomal Films for Sublingual Drug Delivery. 2022. https://doi.org/10.52711/0975-4377.2022.00026

81. Raihan R, Wafa A, Zhakfar AM, CK S. Oral Disintegrating Films: A Review. Journal of Natural Science Review. 2024;2(2):60-74. https://doi.org/10.62810/jnsr.v2i2.42

82. Susarla R, Afolabi A, Patel D, Bilgili E, Davé RN. Novel use of superdisintegrants as viscosity enhancing agents in biocompatible polymer films containing griseofulvin nanoparticles. Powder Technology. 2015;285:25-33. https://doi.org/10.1016/j.powtec.2015.06.024

83. Sathish SK, Janakiraman K, Muthumani P. Development and Characterization of Fast-Dissolving Tablets to Enhance Bioavailability of BCS Class II Drugs by Solid Dispersion Method. Current Pharmaceutical Analysis. 2024;20(9):1005-23. https://doi.org/10.2174/0115734129341966241023105918

84. Dingalwar A, Pethe A, Telange D, Telrandhe U. Fabrication and Characterisation of Oral Fast-Dissolving Film of Metoprolol Succinate. Current Drug Therapy. 2024. https://doi.org/10.2174/0115748855329005241015093907

85. Sengar A, Yadav S, Niranjan S. Formulation and evaluation of mouth-dissolving films of propranolol hydrochloride. World Journal of Pharmaceutical Research. 2024;13(16):850-61.

86. Maheshwari S, Singh A, Varshney AP, Sharma A. Advancing oral drug delivery: The science of fast dissolving tablets (FDTs). Intelligent Pharmacy. 2024. https://doi.org/10.1016/j.ipha.2024.01.011

87. Felton LA, O'Donnell PB, McGinity JW. Mechanical properties of polymeric films prepared from aqueous dispersions. Aqueous polymeric coatings for pharmaceutical dosage forms: CRC Press; 2008. p. 125-48. https://doi.org/10.3109/9780849387883-7

88. Kshirsagar T, Jaiswal N, Chavan G, Zambre K, Ramkrushna S, Dinesh D. Formulation & evaluation of fast dissolving oral film. World J Pharm Res. 2021;10(9):503-61.

89. Shah KA, Gao B, Kamal R, Razzaq A, Qi S, Zhu Q-N, et al. Development and characterizations of pullulan and maltodextrin-based oral fast-dissolving films employing a box-behnken experimental design. Materials. 2022;15(10):3591. https://doi.org/10.3390/ma15103591 PMid:35629620 PMCid:PMC9146677

90. Alaei S, Omidi Y, Omidian H. In vitro evaluation of adhesion and mechanical properties of oral thin films. European Journal of Pharmaceutical Sciences. 2021;166:105965. https://doi.org/10.1016/j.ejps.2021.105965 PMid:34375679

91. Tamer MA, Hammid S, Ahmed B. Formulation and in vitro evaluation of bromocriptine mesylate as fast dissolving oral film. Int J App Pharm. 2018;10(1):7-20. https://doi.org/10.22159/ijap.2018v10i1.22615

92. KUMAR CC. Design of novel oral films as drug delivery system. International Journal of Life Sciences Biotechnology and Pharma Sciences. 2018;14(4):1-10.

93. Speer I, Steiner D, Thabet Y, Breitkreutz J, Kwade A. Comparative study on disintegration methods for oral film preparations. European Journal of Pharmaceutics and Biopharmaceutics. 2018;132:50-61. https://doi.org/10.1016/j.ejpb.2018.09.005 PMid:30201569

94. Saab M, Mehanna MM. Disintegration time of orally dissolving films: Various methodologies and in-vitro/in-vivo correlation. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2019;74(4):227-30.

95. Gandhi NV, Deokate UA, Angadi SS. Formulation, optimization and evaluation of nanoparticulate oral fast dissolving film dosage form of nitrendipine. AAPS PharmSciTech. 2021;22(6):218. https://doi.org/10.1208/s12249-021-02100-z PMid:34389913

96. Chaudhary H, Gauri S, Rathee P, Kumar V. Development and optimization of fast dissolving oro-dispersible films of granisetron HCl using Box-Behnken statistical design. Bulletin of Faculty of Pharmacy, Cairo University. 2013;51(2):193-201. https://doi.org/10.1016/j.bfopcu.2013.05.002

97. Zhou Y, Yan P, Zhao X, Zhang H, Yang Y, Ding J. Development and in vitro/in vivo evaluation of taste-masked orodispersible films of dapoxetine hydrochloride using ion exchange resins. Drug Delivery and Translational Research. 2025:1-12. https://doi.org/10.1007/s13346-024-01764-x

98. Tedesco MP, dos Santos Garcia VA, Borges JG, Osiro D, Vanin FM, Yoshida CMP, et al. Production of oral films based on pre-gelatinized starch, CMC and HPMC for delivery of bioactive compounds extract from acerola industrial waste. Industrial Crops and Products. 2021;170:113684. https://doi.org/10.1016/j.indcrop.2021.113684

99. Arslan D, Akbal Dağıstan Ö, Sagirli O, Mulazimoglu L, Cevher E, Yildiz-Pekoz A. Development and evaluation of combined effect buccal films for treatment of oral candidiasis. AAPS PharmSciTech. 2022;24(1):23. https://doi.org/10.1208/s12249-022-02477-5 PMid:36539628

100. Garsuch V, Breitkreutz J. Novel analytical methods for the characterization of oral wafers. European Journal of Pharmaceutics and Biopharmaceutics. 2009;73(1):195-201. https://doi.org/10.1016/j.ejpb.2009.05.010 PMid:19482082

101. Khurana R, Ahuja A, Khar R. Development and evaluation of mucoadhesive films of miconazole nitrate. Indian journal of pharmaceutical sciences. 2000;62(6):447-53.

102. Ibrahim HM, Ahmed TA, Lila AE, Samy AM, Kaseem AA, Nutan MT. Mucoadhesive controlled release microcapsules of indomethacin: Optimization and stability study. Journal of microencapsulation. 2010;27(5):377-86. https://doi.org/10.3109/02652040903243445 PMid:20690789

103. BAUSCH W, SQUIER C, editors. SPATIAL RELATIONSHIPS BETWEEN FIBROBLASTS AND COLLAGEN IN DENSE REGULAR CONNECTIVE-TISSUE. JOURNAL OF DENTAL RESEARCH; 1981: AMER ASSOC DENTAL RESEARCH 1619 DUKE ST, ALEXANDRIA, VA 22314

Published

15-04-2025
Statistics
Abstract Display: 172
PDF Downloads: 154
PDF Downloads: 1

How to Cite

1.
Bhaskar R, Ola M, Khade S, Pawar A, Tikhe R, Madwe V, et al. Oral Thin Films: A Modern Frontier in Drug Delivery Systems. J. Drug Delivery Ther. [Internet]. 2025 Apr. 15 [cited 2025 Apr. 26];15(4):150-64. Available from: https://jddtonline.info/index.php/jddt/article/view/7067

How to Cite

1.
Bhaskar R, Ola M, Khade S, Pawar A, Tikhe R, Madwe V, et al. Oral Thin Films: A Modern Frontier in Drug Delivery Systems. J. Drug Delivery Ther. [Internet]. 2025 Apr. 15 [cited 2025 Apr. 26];15(4):150-64. Available from: https://jddtonline.info/index.php/jddt/article/view/7067

Most read articles by the same author(s)