Nanocrystal System: A Comprehensive Review of Method of Preparation and their Characterization, Patents and Marketed Products
Abstract
Nanocrystal drug delivery systems have emerged as a promising method to improve the bioavailability, solubility and therapeutic efficacy of poorly water-soluble drugs. Developed many methods for their creation with top down, bottom down and combination technique. These nanosized particles, usually ranging from 100 to 1000 nm, provide increased surface area, improving dissolution rates and enabling drugs to reach their target more efficiently. This abstract outline the methods for preparing nanocrystals and their characterization, recent marketed formulations and the current trends in patent related to nanocrystal drug delivery systems and their applications.
Keywords: Nanocrystal, Method Nanocrystal, Patent, Application
Keywords:
Application, Method of preparation, PatentDOI
https://doi.org/10.22270/jddt.v15i2.6982References
1. Thipparaboina R, Chavan RB, Shastri NR. Nanocrystals for delivery of therapeutic agents. Particulate Technology for Delivery of Therapeutics. 2017:291-316. https://doi.org/10.1007/978-981-10-3647-7_9
2. Patravale V, Date AA, Kulkarni R. Nanosuspensions: a promising drug delivery strategy. Journal of pharmacy and pharmacology. 2004;56(7):827-840. https://doi.org/10.1211/0022357023691 PMid:15233860
3. Attari Z, Kalvakuntla S, Reddy MS, Deshpande M, Rao CM, Koteshwara K. Formulation and characterisation of nanosuspensions of BCS class II and IV drugs by combinative method. Journal of Experimental Nanoscience. 2016;11(4):276-88. https://doi.org/10.1080/17458080.2015.1055841
4. Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Crystal Growth & Design. 2011;11(7):2662-2679. https://doi.org/10.1021/cg200492w
5. Lv Y, Wu W, Corpstein CD, Li T, Lu Y. Biological and intracellular fates of drug nanocrystals through different delivery routes: Recent development enabled by bioimaging and PK modeling. Advanced Drug Delivery Reviews. 2022;188:114466. https://doi.org/10.1016/j.addr.2022.114466 PMid:35905948
6. Benet LZ, Amidon GL, Barends DM, Lennernäs H, Polli JE, Shah VP, et al. The use of BDDCS in classifying the permeability of marketed drugs. Pharmaceutical research. 2008;25:483-488. https://doi.org/10.1007/s11095-007-9523-x PMid:18236138 PMCid:PMC3580995
7. Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Advanced drug delivery reviews. 2011;63(6):427-440. https://doi.org/10.1016/j.addr.2010.12.007 PMid:21223990
8. Bergström CA, Wassvik CM, Johansson K, Hubatsch I. Poorly soluble marketed drugs display solvation limited solubility. Journal of medicinal chemistry. 2007;50(23):5858-5862. https://doi.org/10.1021/jm0706416 PMid:17929794
9. Guo C, Wang Y, Xie J, Zhu B, Qi M-H, Hong M, et al. Novel salts of the atypical antipsychotic drug lurasidone with improved solubility and bioavailability. Crystal Growth & Design. 2022;23(1):326-332. https://doi.org/10.1021/acs.cgd.2c01028
10. Drozd KV, Manin AN, Boycov DE, Perlovich GL. Simultaneous improvement of dissolution behavior and oral bioavailability of antifungal miconazole via cocrystal and salt formation. Pharmaceutics. 2022;14(5):1107. https://doi.org/10.3390/pharmaceutics14051107 PMid:35631693 PMCid:PMC9143750
11. Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. International journal of pharmaceutics. 2020;586:119560. https://doi.org/10.1016/j.ijpharm.2020.119560 PMid:32565285 PMCid:PMC8691091
12. Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Delivery. 2020;27(1):110-27. https://doi.org/10.1080/10717544.2019.1704940 PMid:31885288 PMCid:PMC6968646
13. Priemel P, Grohganz H, Rades T. Unintended and in situ amorphisation of pharmaceuticals. Advanced drug delivery reviews. 2016;100:126-32. https://doi.org/10.1016/j.addr.2015.12.014 PMid:26724250
14. Qiang W, Löbmann K, McCoy CP, Andrews GP, Zhao M. Microwave-induced in situ amorphization: A new strategy for tackling the stability issue of amorphous solid dispersions. Pharmaceutics. 2020;12(7):655. https://doi.org/10.3390/pharmaceutics12070655 PMid:32664477 PMCid:PMC7408542
15. dos Santos Lima B, Shanmugam S, de Souza Siqueira Quintans J, Quintans-Junior LJ, de Souza Araujo AA. Inclusion complex with cyclodextrins enhances the bioavailability of flavonoid compounds: A systematic review. Phytochemistry Reviews. 2019;18:1337-1359. https://doi.org/10.1007/s11101-019-09650-y
16. Jacob S, Nair AB. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug development research. 2018;79(5):201-217. https://doi.org/10.1002/ddr.21452 PMid:30188584
17. Bavishi DD, Borkhataria CH. Spring and parachute: How cocrystals enhance solubility. Progress in Crystal Growth and Characterization of Materials. 2016;62(3):1-8. https://doi.org/10.1016/j.pcrysgrow.2016.07.001
18. Bolla G, Sarma B, Nangia AK. Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs. Chemical reviews. 2022;122(13):11514-11603. https://doi.org/10.1021/acs.chemrev.1c00987 PMid:35642550
19. Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. International journal of pharmaceutics. 2013;453(1):101-125. https://doi.org/10.1016/j.ijpharm.2012.10.043 PMid:23207015
20. Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Advanced drug delivery reviews. 2016;100:116-125. https://doi.org/10.1016/j.addr.2015.12.009 PMid:26805787
21. Han J, Wei Y, Lu Y, Wang R, Zhang J, Gao Y, et al. Co-amorphous systems for the delivery of poorly water-soluble drugs: Recent advances and an update. Expert opinion on drug delivery. 2020;17(10):1411-1435. https://doi.org/10.1080/17425247.2020.1796631 PMid:32683996
22. Breitenbach J. Melt extrusion: from process to drug delivery technology. European journal of pharmaceutics and biopharmaceutics. 2002;54(2):107-117. https://doi.org/10.1016/S0939-6411(02)00061-9 PMid:12191680
23. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. Journal of Nanoparticle Research. 2008;10:845-862. https://doi.org/10.1007/s11051-008-9357-4
24. Kesisoglou F, Panmai S, Wu Y. Nanosizing-oral formulation development and biopharmaceutical evaluation. Advanced drug delivery reviews. 2007;59(7):631-644. https://doi.org/10.1016/j.addr.2007.05.003 PMid:17601629
25. Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size-reduction technique. International journal of pharmaceutics. 1998;160(2):229-37. https://doi.org/10.1016/S0378-5173(97)00311-6
26. Yu Q, Wu X, Zhu Q, Wu W, Chen Z, Li Y, et al. Enhanced transdermal delivery of meloxicam by nanocrystals: Preparation, in vitro and in vivo evaluation. Asian journal of pharmaceutical sciences. 2018;13(6):518-526. https://doi.org/10.1016/j.ajps.2017.10.004 PMid:32104426 PMCid:PMC7032118
27. Chogale MM, Ghodake VN, Patravale VB. Performance parameters and characterizations of nanocrystals: A brief review. Pharmaceutics. 2016;8(3):26. https://doi.org/10.3390/pharmaceutics8030026 PMid:27589788 PMCid:PMC5039445
28. YUE P-f, LIU Y, XIE J, CHEN Y-c, YANG M. Review and prospect on preparation technology of drug nanocrystals in the past thirty years. Acta Pharmaceutica Sinica. 2018:529-537.
29. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharmaceutical research. 2013;30:307-24. https://doi.org/10.1007/s11095-012-0889-z PMid:23073665
30. Lu Y, Qi J, Dong X, Zhao W, Wu W. The in vivo fate of nanocrystals. Drug Discovery Today. 2017;22(4):744-750. https://doi.org/10.1016/j.drudis.2017.01.003 PMid:28088442
31. Dongsheng M, Yuan L, Xiaoshun Z, Jiangling W, Xiangliang Y. Advances in Nanocrystal Medicine. HERALD OF MEDICINE. 2020;39(9):1257-61.
32. Zhou Y, Du J, Wang L, Wang Y. Nanocrystals technology for improving bioavailability of poorly soluble drugs: a mini-review. Journal of nanoscience and nanotechnology. 2017;17(1):18-28. https://doi.org/10.1166/jnn.2017.13108 PMid:29616786
33. Rabinow BE. Nanosuspensions in drug delivery. Nature reviews Drug discovery. 2004;3(9):785-796. https://doi.org/10.1038/nrd1494 PMid:15340388
34. Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. International journal of pharmaceutics. 2013;453(1):142-156. https://doi.org/10.1016/j.ijpharm.2012.09.034 PMid:23000841
35. Roos C, Dahlgren D, Sjögren E, Sjöblom M, Hedeland M, Lennernäs H. Jejunal absorption of aprepitant from nanosuspensions: role of particle size, prandial state and mucus layer. European journal of pharmaceutics and biopharmaceutics. 2018;132:222-230. https://doi.org/10.1016/j.ejpb.2018.09.022 PMid:30266667
36. Müller RH, Gohla S, Keck CM. State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery. European journal of pharmaceutics and biopharmaceutics. 2011;78(1):1-9. https://doi.org/10.1016/j.ejpb.2011.01.007 PMid:21266197
37. Junghanns J-UA, Müller RH. Nanocrystal technology, drug delivery and clinical applications. International journal of nanomedicine. 2008;3(3):295-310. https://doi.org/10.2147/IJN.S595 PMid:18990939 PMCid:PMC2626933
38. Chawla SP, Grunberg SM, Gralla RJ, Hesketh PJ, Rittenberg C, Elmer ME, et al. Establishing the dose of the oral NK1 antagonist aprepitant for the prevention of chemotherapy‐induced nausea and vomiting. Cancer: Interdisciplinary International Journal of the American Cancer Society. 2003;97(9):2290-300. https://doi.org/10.1002/cncr.11320 PMid:12712486
39. Keck CM, Müller RH. SmartCrystals-review of the second generation of drug nanocrystals. Handbook of materials for nanomedicine. 2011:555-580. https://doi.org/10.1201/9780429111570-13
40. Bitterlich A, Laabs C, Krautstrunk I, Dengler M, Juhnke M, Grandeury A, et al. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling. European journal of pharmaceutics and biopharmaceutics. 2015;92:171-9. https://doi.org/10.1016/j.ejpb.2015.02.031 PMid:25766272
41. Chen Z, Wu W, Lu Y. What is the future for nanocrystal-based drug-delivery systems? : Taylor & Francis; 2020. p. 225-229. https://doi.org/10.4155/tde-2020-0016 PMid:32157960
42. Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian journal of pharmaceutical sciences. 2015;10(1):13-23. https://doi.org/10.1016/j.ajps.2014.08.005
43. Jarvis M, Krishnan V, Mitragotri S. Nanocrystals: A perspective on translational research and clinical studies. Bioengineering & translational medicine. 2019;4(1):5-16. https://doi.org/10.1002/btm2.10122 PMid:30680314 PMCid:PMC6336669
44. Funahashi I, Kondo K, Ito Y, Yamada M, Niwa T. Novel contamination-free wet milling technique using ice beads for poorly water-soluble compounds. International Journal of Pharmaceutics. 2019;563:413-425. https://doi.org/10.1016/j.ijpharm.2019.04.008 PMid:30953764
45. Katiyar NK, Biswas K, Tiwary C. Cryomilling as environmentally friendly synthesis route to prepare nanomaterials. International Materials Reviews. 2021;66(7):493-532. https://doi.org/10.1080/09506608.2020.1825175
46. He Y, Ho C. Amorphous solid dispersions: utilization and challenges in drug discovery and development. Journal of pharmaceutical sciences. 2015;104(10):3237-3258. https://doi.org/10.1002/jps.24541 PMid:26175316
47. Ran Q, Wang M, Kuang W, Ouyang J, Han D, Gao Z, et al. Advances of combinative nanocrystal preparation technology for improving the insoluble drug solubility and bioavailability. Crystals. 2022;12(9):1200. https://doi.org/10.3390/cryst12091200
48. Karadag A, Ozcelik B, Huang Q. Quercetin nanosuspensions produced by high-pressure homogenization. Journal of agricultural and food chemistry. 2014;62(8):1852-1859. https://doi.org/10.1021/jf404065p PMid:24471519
49. Sun W, Mao S, Shi Y, Li LC, Fang L. Nanonization of itraconazole by high pressure homogenization: stabilizer optimization and effect of particle size on oral absorption. Journal of pharmaceutical sciences. 2011;100(8):3365-3373. https://doi.org/10.1002/jps.22587 Mid:21520089
50. Liu J, Sun Y, Cheng M, Liu Q, Liu W, Gao C, et al. Improving oral bioavailability of luteolin nanocrystals by surface modification of sodium dodecyl sulfate. AAPS PharmSciTech. 2021;22:1-11. https://doi.org/10.1208/s12249-021-02012-y PMid:33855636
51. Joshi K, Chandra A, Jain K, Talegaonkar S. Nanocrystalization: an emerging technology to enhance the bioavailability of poorly soluble drugs. Pharmaceutical nanotechnology. 2019;7(4):259-278. https://doi.org/10.2174/2211738507666190405182524 PMid:30961518 PMCid:PMC6967137
52. TIAN Y, PENG Y-f, ZHANG Z-w, ZHANG H, GAO X. Research progress on preparation technology of nanocrystal drugs. Acta Pharmaceutica Sinica. 2021:1902-1910.
53. Guo Z, Zhang M, Li H, Wang J, Kougoulos E. Effect of ultrasound on anti-solvent crystallization process. Journal of Crystal Growth. 2005;273(3-4):555-563. https://doi.org/10.1016/j.jcrysgro.2004.09.049
54. Srivalli KMR, Mishra B. Drug nanocrystals: A way toward scale-up. Saudi Pharmaceutical Journal. 2016;24(4):386-404. https://doi.org/10.1016/j.jsps.2014.04.007 PMid:27330370 PMCid:PMC4908054
55. Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. International journal of pharmaceutics. 2013;453(1):126-141. https://doi.org/10.1016/j.ijpharm.2013.01.019 PMid:23333709
56. Yue P-F, Wang Y, Wan J, Wu Z-F, Hu P-Y, Zheng Q, et al. The research progress of preparation methods of solid nanocrystal delivery system. Yao xue xue bao= Acta Pharmaceutica Sinica. 2012;47(9):1120-1127.
57. Chen J-F, Wang Y-H, Guo F, Wang X-M, Zheng C. Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation. Industrial & engineering chemistry research. 2000;39(4):948-954. https://doi.org/10.1021/ie990549a
58. Chiou H, Chan H-K, Prud'homme RK, Raper JA. Evaluation on the use of confined liquid impinging jets for the synthesis of nanodrug particles. Drug development and industrial pharmacy. 2008;34(1):59-64. https://doi.org/10.1080/03639040701508011 PMid:18214756
59. Chow SF, Wan KY, Cheng KK, Wong KW, Sun CC, Baum L, et al. Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization. European Journal of Pharmaceutics and Biopharmaceutics. 2015;94:436-449. https://doi.org/10.1016/j.ejpb.2015.06.022 PMid:26143368
60. Chen T, Li C, Li Y, Yi X, Wang R, Lee SM-Y, et al. Small-sized mPEG-PLGA nanoparticles of Schisantherin A with sustained release for enhanced brain uptake and anti-parkinsonian activity. ACS applied materials & interfaces. 2017;9(11):9516-9527. https://doi.org/10.1021/acsami.7b01171 PMid:28247754
61. Zheng A, Shi J. Research progress in nanocrystal drugs. J Int Pharm Res. 2012;39(3):177-183.
62. Padrela L, Rodrigues MA, Duarte A, Dias AM, Braga ME, de Sousa HC. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals-a comprehensive review. Advanced drug delivery reviews. 2018;131:122-78. https://doi.org/10.1016/j.addr.2018.07.010 PMid:30026127
63. Paisana MC, Müllers KC, Wahl MA, Pinto JF. Production and stabilization of olanzapine nanoparticles by rapid expansion of supercritical solutions (RESS). The Journal of Supercritical Fluids. 2016;109:124-133. https://doi.org/10.1016/j.supflu.2015.11.012
64. Franco P, De Marco I. Supercritical antisolvent process for pharmaceutical applications: A review. Processes. 2020;8(8):938. https://doi.org/10.3390/pr8080938
65. Han X, Wang M, Ma Z, Xue P, Wang Y. A new approach to produce drug nanosuspensions CO2-assisted effervescence to produce drug nanosuspensions. Colloids and Surfaces B: Biointerfaces. 2016;143:107-110. https://doi.org/10.1016/j.colsurfb.2016.03.017 PMid:26998871
66. Mohammed NK, Tan CP, Manap YA, Muhialdin BJ, Hussin ASM. Spray drying for the encapsulation of oils-A review. Molecules. 2020;25(17):3873. https://doi.org/10.3390/molecules25173873 PMid:32858785 PMCid:PMC7503953
67. Corrigan OI, Crean AM. Comparative physicochemical properties of hydrocortisone-PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying. International journal of pharmaceutics. 2002;245(1-2):75-82. https://doi.org/10.1016/S0378-5173(02)00326-5 PMid:12270244
68. Yin SX, Franchini M, Chen J, Hsieh A, Jen S, Lee T, et al. Bioavailability enhancement of a COX-2 inhibitor, BMS-347070, from a nanocrystalline dispersion prepared by spray-drying. Journal of pharmaceutical sciences. 2005;94(7):1598-607. https://doi.org/10.1002/jps.20366 PMid:15929069
69. Siow CRS, Wan Sia Heng P, Chan LW. Application of freeze-drying in the development of oral drug delivery systems. Expert opinion on drug delivery. 2016;13(11):1595-1608. https://doi.org/10.1080/17425247.2016.1198767 PMid:27267745
70. Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharmaceutical research. 2004;21:191-200. https://doi.org/10.1023/B:PHAM.0000016234.73023.75 PMid:15032301
71. Kasper JC, Friess W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. European journal of pharmaceutics and biopharmaceutics. 2011;78(2):248-263. https://doi.org/10.1016/j.ejpb.2011.03.010 PMid:21426937
72. Jakubowska E, Lulek J. The application of freeze-drying as a production method of drug nanocrystals and solid dispersions-a review. Journal of Drug Delivery Science and Technology. 2021;62:102357. https://doi.org/10.1016/j.jddst.2021.102357
73. Nguyen DN, Clasen C, Van den Mooter G. Pharmaceutical applications of electrospraying. Journal of pharmaceutical sciences. 2016;105(9):2601-2620. https://doi.org/10.1016/j.xphs.2016.04.024 PMid:27287515
74. Bock N, Dargaville TR, Woodruff MA. Electrospraying of polymers with therapeutic molecules: State of the art. Progress in polymer science. 2012;37(11):1510-1151. https://doi.org/10.1016/j.progpolymsci.2012.03.002
75. Mabrouk AB, Dufresne A, Boufi S. Cellulose nanocrystal as ecofriendly stabilizer for emulsion polymerization and its application for waterborne adhesive. Carbohydrate polymers. 2020;229:115504. https://doi.org/10.1016/j.carbpol.2019.115504 PMid:31826525
76. Salazar J, Müller RH, Möschwitzer JP. Combinative particle size reduction technologies for the production of drug nanocrystals. Journal of pharmaceutics. 2014;2014(1):265754. https://doi.org/10.1155/2014/265754 PMid:26556191 PMCid:PMC4590828
77. Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. International journal of pharmaceutics. 2010;399(1-2):129-139. https://doi.org/10.1016/j.ijpharm.2010.07.044 PMid:20674732
78. Romero GB, Chen R, Keck CM, Müller RH. Industrial concentrates of dermal hesperidin smartCrystals®-production, characterization & long-term stability. International Journal of Pharmaceutics. 2015;482(1-2):54-60. https://doi.org/10.1016/j.ijpharm.2014.11.039 PMid:25448556
79. Müller RH, Möschwitzer J. Method and device for producing very fine particles and coating such particles. Google Patents; 2015.
80. Ding Y, Zhao T, Fang J, Song J, Dong H, Liu J, et al. Recent developments in the use of nanocrystals to improve bioavailability of APIs. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2024;16(2):e1958. https://doi.org/10.1002/wnan.1958 PMid:38629192
81. Möschwitzer J, Lemke A. Method for carefully producing ultrafine particle suspensions and ultrafine particles and use thereof. EP000001868574 B. 2006;1.
82. Petersen R. Nanocrystals for use in topical cosmetic formulations and method of production thereof. Google Patents; 2015.
83. Malamatari M, Taylor KM, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discovery Today. 2018;23(3):534-547. https://doi.org/10.1016/j.drudis.2018.01.016 PMid:29326082
84. Morakul B, Suksiriworapong J, Leanpolchareanchai J, Junyaprasert VB. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability. International journal of pharmaceutics. 2013;457(1):187-196. https://doi.org/10.1016/j.ijpharm.2013.09.022 PMid:24076396
85. Jin S-Y, Yuan H-L, Jin S-X, Lv Q-Y, Bai J-X, Han J. Preparation of baicalin nanocrystal pellets and preliminary study on its pharmacokinetics. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica. 2013;38(8):1156-1159.
86. Zhang H, Meng Y, Wang X, Dai W, Wang X, Zhang Q. Pharmaceutical and pharmacokinetic characteristics of different types of fenofibrate nanocrystals prepared by different bottom-up approaches. Drug delivery. 2014;21(8):588-594. https://doi.org/10.3109/10717544.2013.865815 PMid:24320001
87. Liu D, Xu H, Tian B, Yuan K, Pan H, Ma S, et al. Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation-ultrasonication method for the improvement of dissolution rate and oral bioavailability. Aaps Pharmscitech. 2012;13:295-304. https://doi.org/10.1208/s12249-011-9750-7 PMid:22246736 PMCid:PMC3299468
88. Zhang J. Lurasidone and its preparation method thereof. CN104814926. 2015.
89. Chen MJ, Hui H-W, Lee T, Kurtulik P, Surapaneni S. Nanosuspension of a poorly soluble drug via microfluidization process. Google Patents; 2015.
90. Kablitz C. New treatment of fish with a nanosus pens ion of lufenuron or hexaflumuron. Google Patents; 2015.
91. Bommagani M, Bhowmick SB, Kane P, Dubey V. Method of preparing nanoparticulate topical composition. Google Patents; 2018. https://doi.org/10.1136/bmj.l2298
92. Mao S, Guan J, Helgerud T, Zhang Y. Nanosuspension formulation. WO2016081593Al. 2016.
93. Inghelbrecht SKK, Beirowski JA, Gieseler H. Freeze dried drug nanosuspensions. Google Patents; 2022.
94. Goel S, Sachdeva M, Agarwal V. Nanosuspension technology: recent patents on drug delivery and their characterizations. Recent patents on drug delivery & formulation. 2019;13(2):91-104. https://doi.org/10.2174/1872211313666190614151615 PMid:31203813 PMCid:PMC6806604
95. Borchard G. Drug nanocrystals. Non-Biological Complex Drugs: The Science and the Regulatory Landscape. 2015:171-189. https://doi.org/10.1007/978-3-319-16241-6_6
96. Gholap A, Borude S, Mahajan A, Gholap MAD. Smart Crystals Technology: A Review. Pharmacologyonline. 2011;3:238-43.
97. Shi Y, Porter W, Merdan T, Li LC. Recent advances in intravenous delivery of poorly water-soluble compounds. Expert opinion on drug delivery. 2009;6(12):1261-1282. https://doi.org/10.1517/17425240903307423 PMid:19941409
98. Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. International journal of pharmaceutics. 2019;562:187-202. https://doi.org/10.1016/j.ijpharm.2019.02.045 PMid:30851386
99. Zheng JY, Bosch HW. Sterile filtration of NanoCrystal™ drug formulations. Drug development and industrial pharmacy. 1997;23(11):1087-1093. https://doi.org/10.3109/03639049709150497
100. Pardhi VP, Verma T, Flora S, Chandasana H, Shukla R. Nanocrystals: an overview of fabrication, characterization and therapeutic applications in drug delivery. Current pharmaceutical design. 2018;24(43):5129-5146. https://doi.org/10.2174/1381612825666190215121148 PMid:30767737
101. Gassmann P, List M, Schweitzer A, Sucker H. Hydrosols: alternatives for the parenteral application of poorly water soluble drugs. European journal of pharmaceutics and biopharmaceutics. 1994;40(2):64-72.
102. Sharma OP, Patel V, Mehta T. Nanocrystal for ocular drug delivery: hope or hype. Drug delivery and translational research. 2016;6:399-413. https://doi.org/10.1007/s13346-016-0292-0 PMid:27165145
103. Lohan SB, Saeidpour S, Colombo M, Staufenbiel S, Unbehauen M, Wolde-Kidan A, et al. Nanocrystals for improved drug delivery of dexamethasone in skin investigated by EPR spectroscopy. Pharmaceutics. 2020;12(5):400. https://doi.org/10.3390/pharmaceutics12050400 PMid:32349460 PMCid:PMC7284345
104. Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery. Acta Pharmaceutica Sinica B. 2016;6(2):106-113. https://doi.org/10.1016/j.apsb.2015.11.005 PMid:27006893 PMCid:PMC4788714
Published



How to Cite
Issue
Section
Copyright (c) 2025 Rajveer Bhaskar , Monika Ola , Vaishnavi Pingle, Vidya Bari, Rajdeep Patil

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).