

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Full Text Article

Review Article

Cuproptosis: A Copper-Triggered Unique Cell Death Targeting Cancer

Mohammad Altaf Khan^{1*} , Trilochan Satapathy¹ , Ashu Vishwakarma¹ , Kalpana Sen¹ , Ayushi Gupta¹ , Bharti Pradhan¹ , Shailesh Sahu¹ , Abinash Satapathy², Kunal Chandrakar³, Manisha Chandrakar³

¹ Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur- 493111, C.G., India

² College of Veterinary Science and Animal Husbandry, Anjora, Near Shivnath River, Durg-491001, C.G., India

³ University College of Pharmacy, G E Road, Raipur, C.G., 492001, India

Article Info:

Article History:

Received 24 Feb 2024

Reviewed 03 April 2024

Accepted 09 May 2024

Published 15 August 2024

Cite this article as:

Khan MA, Satapathy T, Vishwakarma A, Sen K, Gupta A, Pradhan B, Sahu S, Satapathy A, Chandrakar K, Chandrakar M, Cuproptosis: A Copper-Triggered Unique Cell Death Targeting Cancer, Journal of Drug Delivery and Therapeutics. 2024; 14(8):238-244

DOI: <http://dx.doi.org/10.22270/jddt.v14i8.6755>

*Address for Correspondence:

Mohammad Altaf Khan, Dept. of Pharmacology, Columbia Institute of Pharmacy, Tekari, Near Vidhansabha, Raipur- 493111, C.G., India

Abstract

A recently discovered type of copper-driven cell death is regarded as Cuproptosis. The significance of copper and copper-triggered cell death in the development of malignancies has garnered attention recently. Cuproptosis has shown remarkable promise for cancer therapy, which has sparked a great deal of interest in the cancer research community. Treatments based on copper have the potential to treat malignancies that are resistant to chemotherapy by impeding the growth of the tumor. We offer a critical examination of copper homeostasis and the part copper dysregulation plays in the onset and spread of cancer in this review. After outlining the fundamental molecular underpinnings of Cuproptosis and its connection to cancer, the present state of knowledge regarding copper-based cancer treatment agents - copper chelators, copper ionophores, and copper complexes-based dynamic therapy is summarized. We also provide an overview of the latest research on the use of copper ionophores and complexes-based medicines to reduce tumor treatment resistance in various cancer types. We also go over the small-molecule substances and nanoparticles (NPs) that have the potential to induce Cuproptosis in cancer cells, which will provide fresh insight into the future development of Cuproptosis-inducing anticancer medications. Ultimately, the key ideas and urgent issues surrounding Cuproptosis that need to be addressed in further research were covered. Targeting Cuproptosis may be a potential anticancer therapy and treatment approach to overcome drug resistance in cancer, according to this review article.

Keywords: Cuproptosis, cancer, chemo-resistance, malignancies, Cu homeostasis, Cu chelators

Introduction

Tsvetkov and associates coined the word Cuproptosis in 2022 to describe a particular type of controlled, copper (Cu)-induced cell death.¹ Cuproptosis is a type of cell death brought on by an accumulation of Cu in the mitochondria. This causes lipoylated dihydrolipoamide S-acetyltransferase (DLAT) to aggregate and is linked to the TCA cycle in the mitochondria. This results in proteotoxic stress and, eventually, cell death.² Cuproptosis generally arises in energy-producing cells that largely use OXPHOS, or oxidative phosphorylation, as their primary metabolic pathway. Iron-sulphur cluster (Fe-S) protein depletion and the aggregation of lipoylated mitochondrial enzymes DLAT are indicators of cuproptosis.³ Cells are poisonous to copper in excess or insufficient amounts.⁴ Research is beginning to indicate that cancer patients have far greater levels of Cu in their serum and tumor tissues than do healthy individuals.⁵ A number of tumors have high Cu levels, which are linked to the genesis, severity, and advancement of cancers. A growing body of research has demonstrated that copper promotes tumors primarily through the induction of drug resistance, stimulation of angiogenesis, enhancement of cell proliferation (cuproplasia), and metastasis, among other mechanisms.⁶ Since the term Cuproptosis was coined, scientists have investigated the part that copper and copper-triggered cell death play in the pathophysiology of malignan-

cies, bringing copper back into the forefront of the field. Cuproptosis has attracted a lot of attention in the field of cancer research lately, in part because of its immense therapeutic potential. Treatments based on copper are essential in preventing the formation of malignancies and have opened up new avenues for the treatment of tumors that are resistant to chemotherapy. Growing data indicates that copper-based therapy inhibits the growth of cancers, offering fresh hope for the treatment of chemotherapy-resistant malignancies. After discussing the fundamental molecular underpinnings of Cuproptosis and its function in cancer, the current understanding of employing copper-based medicines (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) to target Cuproptosis for cancer treatment is summarized. Additionally, we provide an overview of the latest research on the use of small molecules, nanoparticles (NPs), and nanomaterials in dynamic therapy to induce cuproptosis in various cancer types in order to suppress tumor chemotherapy resistance.⁷ Lastly, we address key ideas and urgent Cuproptosis-related issues that need to be the focus of further study. According to this review paper, Cuproptosis targeting may be a potential anticancer therapy and therapeutic approach for overcoming drug resistance.

Molecular mechanism of Cuproptosis

Tsvetkov and associates presented the idea of Cuproptosis in 2022. Disulfiram (DSF) has been demonstrated to exhibit anti-cancer activity; cell death is induced by a copper-based anti-cancer compound;⁸ copper induces non-apoptotic programmed cancer cell death;⁸ elesclomol induces apoptosis in cancer cells;⁸ ferredoxin (FDX1) and lipoyl synthase (LIAS) were found to be important regulators of Cu toxicity.⁹ copper preferentially delivers copper to the mitochondria to kill cancer cells.¹⁰ copper enhances the anti-tumor action of disulfiram.⁸ based on significant discoveries on copper-induced apoptosis, which offer the fundamental knowledge of Cuproptosis. As seen in Figure 1, Cuproptosis is distinct from necroptosis, apoptosis, pyroptosis, and ferroptosis.¹¹ Copper is a trace metal that is necessary for life as an essential micronutrient. Redox active Cu serves as a crucial structural or catalytic cofactor for enzymes and is necessary for a variety of biological processes in practically all organisms, such as signal transmission, bio compound synthesis, OXPHOS, connective tissue cross-linking, ROS detoxification, and bio compound synthesis.¹² Cu is sometimes cytotoxicity. Iron-sulphur cofactors are disrupted and harmful ROS production is induced by Cu overload through Cu-mediated Fenton reactions. Chronic or extended exposure to copper causes toxicity, and elevated intracellular copper is linked to a number of illnesses, including but not limited to malignancies. Cu is essential for the growth and spread of tumors.¹³ The chemical pathways behind copper-induced toxicity and copper-induced cell death, however, are still poorly understood. Furthermore, the way that cells respond to Cu toxicity is not entirely described by the recognized cellular machinery and enzyme targets for Cu. Tsvetkov made the discovery of Cuproptosis in an effort to comprehend how copper build-up results in cellular damage. Tsvetkov reported on Cu-dependent death while delving into the mechanism underlying elesclomol's (Cu ionophores anticancer action. They discovered that in a mouse model of multiple myeloma, ES lessens the cancer cells' resistance to the damage caused by proteasome inhibitors. The process by which ES-bound Cu²⁺ interacts with the mitochondrial enzyme ferredoxin 1 (FDX1) and is reduced to Cu⁺ raises ROS levels. Lipid peroxidation was once thought to be the cause of ES's lethality.¹⁴ Cuproptosis, a distinct kind of Cu-dependent cell death characterized by the aggregation of lipoylated mitochondrial enzymes and a loss of

Fe-S proteins, was termed after this discovery in 2022.¹ Tsvetkov et al.'s study made significant progress in defining how copper excess impairs mitochondrial function by discovering that copper-induced toxicity entails the disruption of particular mitochondrial metabolic enzymes.¹ Ionophores have the ability to carry extracellular Cu²⁺ to the mitochondria. Cu²⁺ is reduced to Cu⁺ by the FDX1. Cu⁺ concentration increases cause lipoylated DLAT to directly attach to it. This causes the lipoylated proteins to aggregate and destabilize Fe-S cluster proteins, which causes proteotoxic stress and ultimately cuproptosis.¹ Interestingly, in some cancer cell lines, pharmacological or genetic inhibition of ferroptosis, necroptosis, and apoptosis was unable to prevent ES-Cu complex-induced cell death. N-acetylcysteine, α -tocopherol, ebselene, and JP4-039 are among the other antioxidants that were unable to reverse the growth inhibition mediated by ES-Cu, indicating that ROS, especially mitochondrial ROS, are not necessary for Cuproptosis. Interestingly, by chelating intracellular Cu, the hydrophilic antioxidant glutathione (GSH) prevents ES-Cu-induced damage. These findings imply that Cuproptosis is distinct from other cell death pathways that have been previously discovered.¹ According to Tsvetkov et al., there is a direct correlation between copper poisoning activity and mitochondria. They discovered that compared to cells that rely on glucose-induced glycolysis, lung cancer cells that depend on galactose-mediated mitochondrial respiration were almost 1000 times more sensitive to ES-Cu-induced growth suppression. Therefore, Cuproptosis is stopped by rotenone, antimycin A (which inhibits respiratory chain complexes I and III), UK5099 (which inhibits mitochondrial pyruvate uptake), or genetic inhibiting complex I. The sensitivity of cancer cells to Cuproptosis is decreased by hypoxia (1% O₂), which forces cells to rely on glycolysis rather than OXPHOS. However, ES-Cu has no effect on basal or adenosine 5'-triphosphate-linked respiration in cells. This distinguishes ferroptosis, which necessitates pyruvate oxidation and glucose absorption, from Cuproptosis. Therefore, there are specific changes in energy metabolism and mitochondrial function associated with Cuproptosis and ferroptosis. When combined, Cuproptosis represents a novel type of mitochondrial-induced, oxidative stress-independent, and Cu-dependent cell death.

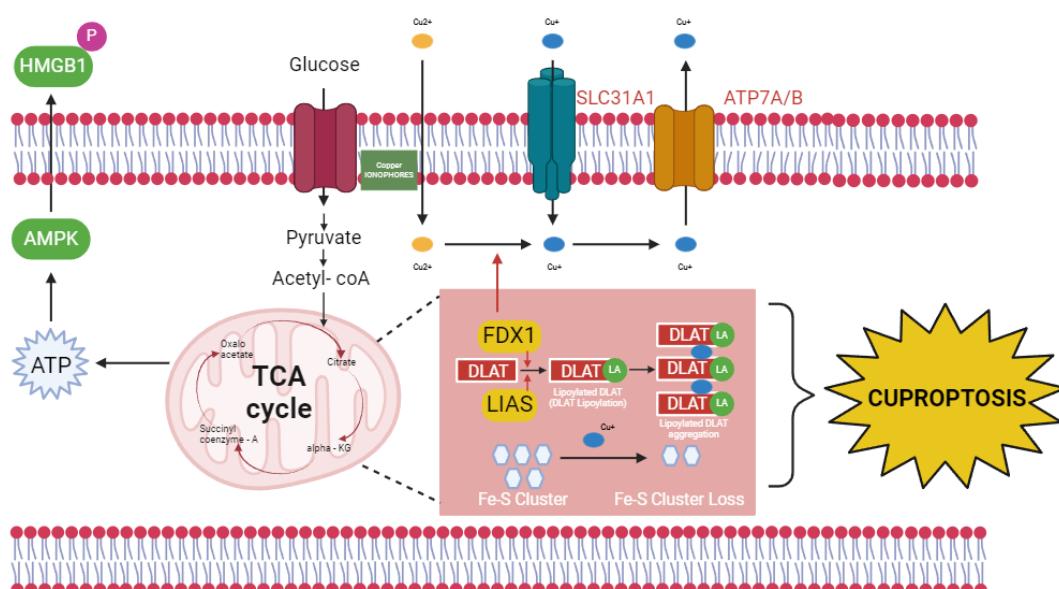


Figure 1: molecular mechanism of Cuproptosis

Application of copper-based agents to treat cancer by inducing Cuproptosis

Copper chelators

Two major strategies to address Cu homeostasis are Cu chelators that bind to Cu and decrease Cu bioavailability. According to Gupte and Mumper (2009), Cu plays a crucial part in the metastatic cascade that occurs inside tumor cells and the surrounding environment. This suggests that depleting Cu may be a desirable therapeutic approach for the treatment of cancer.¹⁵ Cu chelators are an appealing target for anti-cancer treatments since they decrease tumor growth in cultured cell models and animal tumor models,¹⁶ suppress angiogenesis, and hinder cancer growth and spread.¹⁷ Baldari et al. identified D-penicillamine (D-Pen), ammonium tetrathiomolybdate (TTM), and trientine triethylenetetramine dihydrochloride as representative examples of Cu chelators with anti-cancer activity, along with their chemical structures and clinical trials.¹⁸ According to Brewer et al. (1991), TTM, a copper chelating agent, dramatically reduces copper absorption. In 1999, Brewer and Merajver published the first report on TTM's anticancer properties. TTM has anti-tumor actions by reducing NF- κ B activity, down regulating HIF-1 α , and lowering SOD1 activity, which all work together to prevent angiogenesis. Moreover, TTM inhibits ATOX1 copper chaperone action by binding the cytoplasmic copper transport protein ATOX1, forming a stable TTM-ATOX1 complex that transfers Cu to LOX.¹⁹ Recent research has demonstrated that TTM inhibits MEK1/2 kinase activity by lowering Cu levels, consequently suppressing papillary thyroid and colon cancer as well as BRAFV600E-driven carcinogenesis in melanoma.²⁰ TTM specifically increases the antitumor activity of BRAFV600E and MEK1/2 inhibitors, including vemurafenib and sorafenib.²⁰ It has been demonstrated that trientine, a copper chelating agent first created in 1969, reduces Cu-chelating ability in comparison to D-Pen.⁵ When high-grade epithelial cells in ovarian cancer patients have platinum resistance, trentin suppresses this resistance.²¹ Cu-lowering drugs have the ability to overcome cDDP resistance by up-regulating Sp1 in cultured cells, which enhances human CTR1 expression. This provides a molecular basis for Cu chelators to overcome cDDP resistance in ovarian cancer. Cu chelators have been shown to exhibit antitumor activities against a variety of tumor types, such as head and neck squamous cell carcinoma (HNSCC), colorectal cancer (CRC), breast cancer (BC), hepatocellular carcinoma (HCC), cervical cancer (CC), malignant melanoma (MM), non-small-cell lung cancer (NSCLC), and pancreatic ductal adenocarcinoma (PDAC) (Table 1).

Copper ionophores

Compounds or substances that can increase intracellular copper levels are known as copper ionophores.⁵ Using distinct processes, copper ionophores cause cancer cells to die instead of dying from oxidative stress, necrosis, or apoptosis. Cuproptosis can be induced by copper ionophores. The extra intracellular Cu²⁺ is transported by elesclomol into the mitochondria, where it is reduced to Cu⁺ by ferredoxin 1 (FDX1). Cu⁺ concentration increases cause lipoylated DLAT to directly attach to it. This causes lipoylated proteins to aggregate and destabilize Fe-S cluster proteins, which causes proteotoxic stress and cuproptosis.¹ The copper ionophores that have the ability to eradicate cancer are elesclomol (ES), Disulfiram (DSF), and NSC319726. Copper is essential to elesclomol's anticancer actions. It is well known that elesclomol has an anticancer effect by inducing mitochondrial oxidative stress and consequent death via the Cu II-I redox cycling pathway.²² There is growing evidence that intracellular copper build-up may also facilitate ferroptosis.²³ Cu²⁺ is maintained inside cells due to the rise in mitochondrial Cu²⁺ concentration and down regulation of ATP7A expression caused by ES.¹³ This accumulation of ROS

ultimately results in the destruction of SLC7A11 and ferroptosis in CRC cells. Fe²⁺ might be directly bonded by ES.²⁴ By turning on the copper-dependent iron import machinery; ES raised the amount of copper in cells and indirectly raised the quantities of iron in mitochondria. Dysregulation of iron homeostasis results from the use of ES-Cu²⁺ derived-Cu²⁺ that pumps into the Golgi lumen to metalate the iron transport multicopper oxidase Fet3, which oxidizes Fe²⁺ to Fe³⁺ and permits mitochondrial iron enrichment via the iron importer transferrin receptor 1 (TfR1). Anti-proliferation, reversal of drug resistance, and immunomodulatory action are the anti-cancer mechanisms of DSF for cancer treatment.²⁵ DSF can cause ferroptosis by down regulating GPX4, which in turn can cause apoptosis.²⁶ Cuproptosis can also be induced by DSF.¹ The possibility that these copper ionophores may target drug-resistant cancer cells as well as cancer stem cells provides a significant motivation for their development.

Copper complexes-based dynamic therapy

Solid tumours can be effectively treated with a unique dynamic therapy mediated by Nanosensitizers. Nanosensitizers with special physicochemical properties that react to highly penetrating excitations have been developed in recent years to kill a variety of deep-seated malignant tumours. These techniques include photo thermal therapy (PTT), X-ray-induced photodynamic therapy (PDT),²⁷ chemo dynamic therapy (CDT),²⁸ and others. Many studies have reported on the use of copper in the treatment of cancer, including CDT,²⁹ PDT,³⁰ PTT,³¹ chemotherapy³² or a mix of these treatments.³³

Small compounds inducing Cuproptosis in cancer

Cuproptosis is a unique cell death mechanism that has generated a lot of interest in the field of cancer research because, like ferroptosis, it may be able to reverse cancer drug resistance and provide novel therapeutic regimens by inhibiting tumor cell proliferation.³⁴ It's interesting to note that in pre-clinical settings, newly developed drugs have been shown to encourage Cuproptosis. In colorectal cancer primary tumor tissues, the genes FDX1, DLAT, SDHB, and DLST were down-regulated.³⁵ A better prognosis is shown in patients whose tumor tissues express more of these genes, indicating a potential role for Cuproptosis in the advancement of colorectal cancer.³⁶ In CRC cells, ES-Cu treatment dramatically reduces cell viability. TTM significantly inhibits Cuproptosis as copper chelators, suggesting that TTM has a Cuproptosis-inhibiting role. 2-Deoxy-D-glucose, an inhibitor of glucose metabolism, makes cancer cells more susceptible to cuproptosis.³⁵ Galactose further encourages Cuproptosis. Cuproptosis is markedly aided by octyl itaconate (4-OI). 4-OI inhibits GAPDH-mediated aerobic glycolysis, making cancer cells more susceptible to Cuproptosis. In the meantime, FDX1 silencing inhibited 4-OI's capacity to induce Cuproptosis. 4-In vivo studies, 4-OI increases elesclomol-Cu's anti-tumor activities.³⁵ Significantly, 4-OI promotes Cuproptosis by inhibiting aerobic glycolysis by targeting GAPDH.³⁵ Anisomycin (p38MAPK signalling pathway agonist) significantly inhibits the proliferation of ovarian cancer stem cells (OCSCs) in vitro, in a manner similar to that of elesclomol and buthionine sulfoximine (BSO). This suggests that anisomycin may encourage the Cuproptosis of OCSCs.³⁷ The transcriptional levels of the FeS cluster proteins, PDH complex, lipoid acid pathway, and metallothionein are all markedly decreased by isomycin.³⁷ Curcumin has a cell-specific effect on ferroptosis and Cuproptosis in several HCC cells. Curcumin may be a Cuproptosis inducer, according to single-cell transcriptome data analysis.³⁸ The Cuproptosis-related gene CDKN2A has been linked to HNSCC's malignant tendencies. Strong binding between CDKN2A and plicamycin is revealed by molecular docking investigations and molecular dynamics

simulations. Plicamycin suppresses the progression of HNSCC, indicating that it may be an inducer of Cuproptosis. Sorafenib is the first multi-tyrosine kinase inhibitor approved for treating patients with unrespectable HCC and other cancers.³⁹ It induces ferroptosis by blocking the activity of the cystine-glutamate transport receptor (system Xc-), which results in GSH depletion. By suppressing the action of the system Xc-, erastin acts as a ferroptosis inducer, causing GSH to be depleted. According to the most recent research, sorafenib and erastin can increase the amount of copper ionophores ES and ES-Cu-induced Cuproptosis in HCC cells by suppressing the FDX1 protein degradation mediated by mitochondrial matrix-related proteases, which promotes copper dependent lipoylated protein aggregation, and by inhibiting cystine importing, which reduces intracellular GSH synthesis.⁴⁰ This significant study indicates that ferroptosis and Cuproptosis interact, and that co-targeting ferroptosis and Cuproptosis with a combination of copper ionophores and inducers of ferroptosis could be a potential therapeutic approach for HCC. These results offer compelling evidence for the dual role of ferroptosis inducers and Cuproptosis inducers. The idea that Cuproptosis inducers or inhibitors, respectively, may function as ferroptosis inducers or inhibitors is alluring.

Nanoparticles (NPs) inducing Cuproptosis in cancer

It is challenging to maintain a high amount of copper in the cytoplasmic fluid to induce Cuproptosis because ATP7A keeps intracellular copper at abnormally low levels.¹³ The aforementioned challenges can be solved by nanodrug delivery devices.⁴¹ By causing Cuproptosis, some nanoparticles (NPs) have been investigated as potential anticancer medicines (Fig.2). CuMoO₄ nanodots have the potential to cause Cuproptosis in tumor cells, offering a viable nanoplatform for combination cancer therapy.²⁵ In local cancer therapy, HD/BER/GOx/Cu hydrogel can reduce dose frequency and prevent invasiveness-related problems. In clinical applications, the HD/BER/GOx/Cu hydrogel system can be used to limit tumor growth and shrink breast cancer before surgery. Disulfiram (DSF) that had been released chelated with Cu²⁺ in situ to

produce extremely cytotoxic bis (Diethyldithiocarbamate) copper (CuET), which led to cell death. The Cu⁺ species that were generated also caused Cuproptosis. DLAT, LIAS, and NPL4 are reduced by Au@MSN-Cu/PEG/DSF. When combined with PTT, Au@MSN-Cu /PEG/DSF efficiently kills tumor cells and stops them from growing. By simultaneously generating Cuproptosis and immunological responses, the intracellular ROS-mediated release of ES and Cu from NP@ESCu kills cancer cells. In vitro Cuproptosis is induced by NP@ESCu transporting Cu. In a mouse model of subcutaneous bladder cancer, NP@ESCu induces Cuproptosis and increases α PD-L1's anti-tumor activity. In SCLC brain metastatic tumor-bearing mice, TP-M-Cu-MOF/siATP7a inhibits copper trafficking, enhances copper intake, and causes Cuproptosis to improve treatment efficacy.²⁵ GSH and glucose deficiency makes cancer cells more susceptible to Cuproptosis, which is mediated by GOx@ [Cu(tz)]. Increased intracellular H₂O₂ levels brought on by glucose oxidation stimulates GOx@'s type I PDT effectiveness [Cu (tz)]. In athymic mice with 5637 bladder tumours, GOx@ [Cu(tz)] suppresses tumor growth with low systemic damage. A2780 cells were able to undergo Cuproptosis when exposed to Complexes 4 and 6. Cuprous oxide nanoparticle (Cu₂O)/TBP-2 Cuproptosis sensitization system (PTC) coated platelet vesicles (PV) can sustain long-term blood circulation and tumor-inhibiting capacity. PTC breaks down quickly in acidic environments, releasing hydrogen peroxides and copper ions in tumor cells.⁴² Subsequently, during light irradiation, TBP-2 swiftly penetrates the cell membrane and generates hydroxyl radicals to reduce GSH and prevent copper outflow. PTC raises the quantity of central memory T cells in peripheral blood, inhibits tumor rechallenge, and dramatically reduces lung metastasis by causing Cuproptosis in tumor cells both in vitro and in vivo.³⁸ Cuproptosis, which is induced in NSCLC by CuET with a reduced reduction potential and reaction inertness with GSH, reverses cisplatin resistance. The anticancer impact of CuET to overcome drug resistance in A549/DDP cells is influenced by intracellular GSH levels. In A549/DDP cells, CuET NPs cause Cuproptosis, as opposed to cisplatin-induced apoptosis. In a tumor model resistant to cisplatin, CuET NPs exhibit strong anticancer efficacy and improved biosafety.⁴³

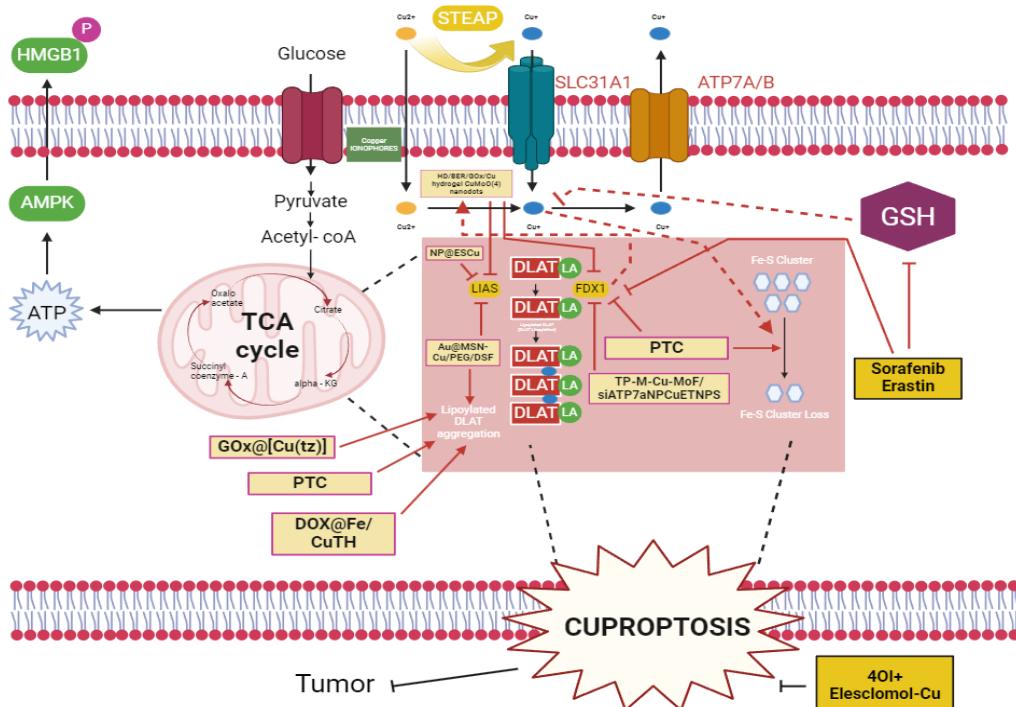


Figure 2: Cuproptosis induction by nano-particles and small compounds to kill cancerous cells

Copper-based agents for chemo-resistance

Overcoming cancer drug resistance via copper-based agents

Chemotherapy, which uses platinum-based antitumor drugs such as carboplatin, oxaliplatin, and cisplatin as the primary agents, is still the mainstay of cancer treatment, despite the development of several innovative strategies in recent years.⁴⁴ But the biggest problem with chemotherapy is drug resistance, which also compromises its effectiveness and is still a major cause of anticancer therapy failure, particularly when tumor cells have spread.⁴⁵⁻⁴⁷ The use of ionophores and transition metal chelators to specifically alter the concentrations of copper, iron, and zinc in cancer cells is one of the new tactics being used to combat chemotherapy drug resistance.⁴⁸ A growing variety of medicines based on copper complexes have demonstrated cytotoxicity by specifically targeting cancer cells that are resistant to drugs. Over the past few decades, numerous complexes based on other metals, like copper, have gone through clinical trials in addition to a dozen more platinum compounds.

Overcoming of cancer drug resistance via copper ionophores

According to earlier research, endogenous copper plays a crucial role in dictating the effectiveness and result of chemotherapy drugs. Recent research indicates that drug resistance may be overcome by combining chemotherapeutic drugs with copper ionophores. The potential effects of copper ionophores on chemotherapy drugs include chemosensitizing effects, increased anti-tumor activity, and the ability to overcome chemo resistance in a variety of cancer models, such as acute myeloid leukemia (AML), GBM,⁴⁹ bladder cancer,⁵⁰ CRC/BC, CC, and non-small cell lung cancer.⁵¹ By causing apoptosis in HCC, DSF increases the antineoplastic activity of 5-fluorouracil (5-FU). This suggests that adjusting the Cu-level can significantly increase the antineoplastic activity of 5-FU.⁵² In colorectal carcinoma (CRC) 3D models, the combination of Disulfiram/copper and 5-FU effectively killed cancer cells by down regulating the expression of thymidylate synthase and CD133/CD44, the markers linked to 5-FU resistance. In mouse Pancreas tumours, DSF/Cu increases the anticancer efficacy of radiation with 5-FU or IR plus FOLFRINOX therapy.⁵³ DSF up regulated actin filament associated protein 1 like 2 (AFAP1L2), which in turn elevated the phosphorylation of proto-oncogene tyrosine-protein kinase SRC. By preventing the phosphorylation of activator of transcription 3 (STAT3) in PDAC cells, DSF causes apoptosis. By reversing DSF-induced enhanced SRC phosphorylation, small molecule inhibitors (PP2, dasatinib) potentiated the anticancer effect of DSF and produced apoptosis. The DS/Cu combination greatly increased the cytotoxicity of gemcitabine and totally reversed the resistance to the drug in the recalcitrant cell lines of breast cancer (BC) and colorectal cancer (CRC). Disulfiram combined with copper (DSF/Cu) particularly reduced the population of ALDH+ tumor initiating cells (TIC), while the pan-PI3K inhibitor BKM120 considerably reduced the population of CD44 + /CD24-TIC, possibly by causing apoptosis in triple negative breast cancer (TNBC) cells. DSF/BKM120 enhanced the anticancer activity of Taxol and postponed tumor recurrence in vivo. Tumor model, DSF increases the anticancer activity of radiation and carboplatin.⁵¹ By preventing cancer stemness and causing cervical cancer cells to enter an S-phase, the DSF/Cu combination increases the anticancer efficacy of cisplatin. DSF/Cu selectively causes H292 NSCLC cells to become toxic by increasing the intercellular concentration of Cu. DSF also reduces radiation and chemotherapy resistance in hypoxia and specifically increases the death of non-small cell lung cancer (NSCLC) caused by these treatments. In a xenograft tumor model, DSF increases the anticancer activity of radiation and car-

boplatin.⁵¹ By inhibiting the expression of aldehyde dehydrogenase 2 (ALDH2), DSF/Cu overcomes microtubule inhibitor resistance, and Cu increases DSF's action in non-small cell lung cancer (NSCLC). In brain TICs resistant to temozolomide and the highly infiltrative quiescent stem-like population, DSF/Cu suppressed tumor at low nanomolar efficacy. In vitro temozolomide activity is enhanced by DSF/Cu, and in patient-derived BTIC models, in vivo survival is prolonged. DSF/Cu functions as a strong proteasome inhibitor in this state, which enhances the effects of radiation and DNA alkylating chemicals by disrupting DNA repair pathways.⁴⁹ In vitro temozolomide activity is enhanced by DSF/Cu, and in patient-derived BTIC models, in vivo survival is prolonged. DSF/Cu functions as a strong proteasome inhibitor in this state, which enhances the effects of radiation and DNA alkylating chemicals by disrupting DNA repair pathways.⁴⁹ GBM cell lines are killed by DSF in a Cu-dependent manner, and in the presence of Cu, DSF enhanced gemcitabine's antitumor efficacy. In GBM cell lines, DSF/Cu increases reactive oxygen species (ROS), triggers the JNK and p38 pathways, and reduces nuclear factor-kappa B activity. By altering the Bcl2 family, DSF/Cu may start an intrinsic apoptotic pathway. By altering the Bcl2 family, DSF/Cu may start an intrinsic apoptotic pathway. In GBM cell lines, DSF/Cu eliminates the stem-like cell population. These findings suggested that DS/Cu increases ROS generation and inhibits the NF- κ B and ALDH pathways, hence promoting the anti-cancer activity of gemcitabine in GBM stem-like cells. DSF and cisplatin have synergistic effects in bladder cancer because they change the cisplatin efflux transporter ATP7A's cellular location, increase DNA-platinum adducts, and encourage apoptosis. In patient-derived and cell-based xenograft models, micellar DSF-NP (DSF nanoparticles) enhances the anticancer efficacy of cisplatin.⁵⁰ By causing apoptosis in cell lines from AML patients with Down syndrome; DSF/Cu overcomes resistance to cytarabine (Ara-C) and bortezomib (BTZ).

Conclusion

This article concludes by reviewing the most recent findings about Cuproptosis involvement in the etiology of malignancies. Cuproptosis has garnered significant attention in cancer research over the last two years because of its anticancer activity, which has the potential to increase the effectiveness of chemotherapy. We talk about using natural substances and nanoparticles to induce Cuproptosis, which kills cancer cells. According to this review paper, Cuproptosis targeting may be a novel anticancer therapy and a way to treat patients who are resistant to medications. One novel kind of RCD that has been shown to be capable of killing cancer cells is Cuproptosis. Consequently, Cuproptosis induction has enormous potential for treating cancer, particularly when combined with traditional chemotherapy. Cuproptosis induction may be a viable treatment plan to eradicate cancer cells and get around drug resistance in the disease.

Acknowledgement: The authors are also thankful to Principal and management of Columbia Institute of Pharmacy, Raipur, C.G., Dean, College of Veterinary Science and Animal Husbandry, Anjora-491001, Durg, C.G., India, for providing necessary facilities to complete this research work.

Authors Contribution:

- Dr. Trilochan Satapathy and Mohammad Altaf Khan - Preparation of manuscript
- Kalpana Sen and Shailesh Sahu- Diagrammatic representation
- Bharti Pradhan, Abinash Satapathy, and Ayushi Gupta - Review of manuscript
- Ashu Vishwakarma - Grammar correction

Funding Source: The authors declare that, they have not received any funding from any source to complete this manuscript.

Conflicts of Interest: The authors declare no Conflict of Interest.

References

- Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y, Wang H. Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. *Drug Resistance Updates*. 2023 Nov 11;101018. <https://doi.org/10.1016/j.drup.2023.101018> PMid:37979442
- P.A. Cobine, D.C. Brady Cuproptosis: cellular and molecular mechanisms underlying copper-induced cell death *Mol. Cell*, 82 (2022), 1786-1787 <https://doi.org/10.1016/j.molcel.2022.05.001> PMid:35594843
- Chen M, Huang Z, Xia M, Ding Y, Shan T, Guan Z, Dai X, Xu X, Huang Y, Huang M, Zhao C. Glutathione-responsive copper-disulfiram nanoparticles for enhanced tumor chemotherapy. *Journal of Controlled Release*. 2022 Jan 1;341:351-63. <https://doi.org/10.1016/j.jconrel.2021.11.041> PMid:34856225
- Kahlson MA, Dixon SJ. Copper-induced cell death. *Science*. 2022 Mar 18;375(6586):1231-2. <https://doi.org/10.1126/science.abe3959> PMid:35298241
- Li Y. Copper homeostasis: Emerging target for cancer treatment. *IUBMB life*. 2020 Sep;72(9):1900-8. <https://doi.org/10.1002/iub.2341> PMid:32599675
- da Silva DA, De Luca A, Squitti R, Rongioletti M, Rossi L, Machado CM, Cerchiaro G. Copper in tumors and the use of copper-based compounds in cancer treatment. *Journal of inorganic biochemistry*. 2022 Jan 1;226:111634. <https://doi.org/10.1016/j.jinorgbio.2021.111634> PMid:34740035
- Sahu M, Satapathy T, Bahadur S, Saha S, Purabiya P, Kaushik S, Netam AK, Prasad J. Preparation methods for nanoparticle: A smart carrier system for treatment of cancer. *March*. 2018 Mar 19;7(19):216-6.
- Lin Q, Hou S, Dai Y, Jiang N, Lin Y. Monascin exhibits neuroprotective effects in rotenone model of Parkinson's disease via antioxidation and anti-neuroinflammation. *Neuroreport*. 2020 Jun 10;31(9):637-43. <https://doi.org/10.1097/WNR.00000000000001467> PMid:32427711
- Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, Kocak M. Mitochondrial metabolism promotes adaptation to proteotoxic stress. *Nature chemical biology*. 2019 Jul;15(7):681-9. <https://doi.org/10.1038/s41589-019-0291-9> PMid:31133756 PMCid:PMC8183600
- Li X, Wang Q, Xu C, Zhang L, Zhou J, Lv J, Xu M, Jiang D. Ferroptosis Inducers Kill Mesenchymal Stem Cells Affected by Neuroblastoma. *Cancers*. 2023 Feb 18;15(4):1301. <https://doi.org/10.3390/cancers15041301> PMid:36831642 PMCid:PMC9954189
- Satapathy A, Khan MdA, Satapathy T, Sen K, Sahu S, Pradhan B et al. Pharmacological targeting of ferroptosis in cancer treatment. *Journal of Drug Delivery and Therapeutics*. 2024;14(2):205-221 <https://doi.org/10.22270/jddt.v14i2.6371>
- Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death?. *Cell Death & Differentiation*. 2023 Apr;30(4):876-84. <https://doi.org/10.1038/s41418-023-01125-0> PMid:36755067 PMCid:PMC10070433
- Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG. Connecting copper and cancer: from transition metal signalling to metalloplasia. *Nature Reviews Cancer*. 2022 Feb;22(2):102-13. <https://doi.org/10.1038/s41568-021-00417-2> PMid:34764459 PMCid:PMC8810673
- Gao W, Huang Z, Duan J, Nice EC, Lin J, Huang C. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. *Molecular Oncology*. 2021 Dec;15(12):3527-44. <https://doi.org/10.1002/1878-0261.13079> PMid:34390123 PMCid:PMC8637554
- Pan Q, Kleer CG, van Golen KL, Irani J, Bottema KM, Bias C, De Carvalho M, Mesri EA, Robins DM, Dick RD, Brewer GJ. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. *Cancer research*. 2002 Sep 1;62(17):4854-9.
- Helsel ME, Franz KJ. Pharmacological activity of metal binding agents that alter copper bioavailability. *Dalton Transactions*. 2015;44(19):8760-70. <https://doi.org/10.1039/C5DT00634A> PMid:25797044 PMCid:PMC4425619
- Wadhwa S, Mumper RJ. D-penicillamine and other low molecular weight thiols: Review of anticancer effects and related mechanisms. *Cancer letters*. 2013 Aug 28;337(1):8-21. <https://doi.org/10.1016/j.canlet.2013.05.027> PMid:23727371
- Baldari S, Di Rocco G, Toieta G. Current biomedical use of copper chelation therapy. *International journal of molecular sciences*. 2020 Feb 6;21(3):1069. <https://doi.org/10.3390/ijms21031069> PMid:32041110 PMCid:PMC7037088
- Alvarez HM, Xue Y, Robinson CD, Canalizo-Hernández MA, Marvin RG, Kelly RA, Mondragón A, Penner-Hahn JE, O'Halloran TV. Tetrathi-omolybdate inhibits copper trafficking proteins through metal cluster formation. *Science*. 2010 Jan 15;327(5963):331-4. <https://doi.org/10.1126/science.1179907> PMid:19965379 PMCid:PMC3658115
- Kim YJ, Tsang T, Anderson GR, Posimo JM, Brady DC. Inhibition of BCL2 family members increases the efficacy of copper chelation in BRAFV600E-driven melanoma. *Cancer Research*. 2020 Apr 2;80(7):1387-400. <https://doi.org/10.1158/0008-5472.CAN-17-1784> PMid:32005716 PMCid:PMC7127963
- Fu S, Naing A, Fu C, Kuo MT, Kurzrock R. Overcoming platinum resistance through the use of a copper-lowering agent. *Molecular cancer therapeutics*. 2012 Jun 1;11(6):1221-5. <https://doi.org/10.1158/1535-7163.MCT-11-0864> PMid:22491798 PMCid:PMC3667596
- Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang CY, Zhang M, Du Z, Barsoum J, Bertin J. Elesclomol induces cancer cell apoptosis through oxidative stress. *Molecular cancer therapeutics*. 2008 Aug 1;7(8):2319-27. <https://doi.org/10.1158/1535-7163.MCT-08-0298> PMid:18723479
- Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D, Liu J. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. *Autophagy*. 2023 Jan 14:1-5. <https://doi.org/10.1080/15548627.2023.2165323> PMid:36622894 PMCid:PMC10283421
- Wu L, Zhou L, Liu DQ, Vogt FG, Kord AS. LC-MS/MS and density functional theory study of copper (II) and nickel (II) chelating complexes of elesclomol (a novel anticancer agent). *Journal of pharmaceutical and biomedical analysis*. 2011 Jan 25;54(2):331-6. <https://doi.org/10.1016/j.jpba.2010.09.007> PMid:20933353
- Zhang X, Jiang Q, Su Y, Bu L, Sun Z, Wu X, Gao B, Wang L, Lin Y, Xie W, Guo J. AMPK phosphorylates and stabilises copper transporter 1 to synergise metformin and copper chelator for breast cancer therapy. *British Journal of Cancer*. 2023 Apr 12;128(8):1452-65. <https://doi.org/10.1038/s41416-022-02127-4> PMid:36807336 PMCid:PMC10070418
- Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J, Ozdiyan T, Bartkova J, Turi Z, Moudry P, Kraus M. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. *Nature*. 2017 Dec 14;552(7684):194-9. <https://doi.org/10.1038/nature25016> PMid:29211715 PMCid:PMC5730499
- Jiang W, Liang M, Lei Q, Li G, Wu S. The Current Status of Photodynamic Therapy in Cancer Treatment. *Cancers*. 2023 Jan 18;15(3):585. <https://doi.org/10.3390/cancers15030585> PMid:36765543 PMCid:PMC9913255
- Cao C, Wang X, Yang N, Song X, Dong X. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry.

Chemical Science. 2022;13(4):863-89. <https://doi.org/10.1039/D1SC05482A> PMid:35211255 PMCid:PMC8790788

29. Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. Self-assembled copper-amino acid nanoparticles for in situ glutathione "AND" H2O2 sequentially triggered chemodynamic therapy. *Journal of the American Chemical Society*. 2018 Dec 13;141(2):849-57. <https://doi.org/10.1021/jacs.8b08714> PMid:30541274

30. Shi L, Liu P, Wu J, Ma L, Zheng H, Antosh MP, Zhang H, Wang B, Chen W, Wang X. The effectiveness and safety of X-PDT for cutaneous squamous cell carcinoma and melanoma. *Nanomedicine*. 2019 Aug;14(15):2027-43. <https://doi.org/10.2217/nnm-2019-0094> PMid:31165659 PMCid:PMC7006790

31. Zhou M, Zhao J, Tian M, Song S, Zhang R, Gupta S, Tan D, Shen H, Ferrari M, Li C. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in orthotopic 4T1 breast Tumor model. *Nano-scale*. 2015 Dec 12;7(46):19438. <https://doi.org/10.1039/C5NR04587H> PMid:26376843 PMCid:PMC4993020

32. Dong K, Liu Z, Li Z, Ren J, Qu X. Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. *Advanced Materials*. 2013 Aug 27;25(32):4452-8. <https://doi.org/10.1002/adma.201301232> PMid:23798450

33. Girma WM, Dehvari K, Ling YC, Chang JY. Albumin-functionalized CuFeS2/photosensitizer nanohybrid for single-laser-induced folate receptor-targeted photothermal and photodynamic therapy. *Materials Science and Engineering: C*. 2019 Aug 1;101:179-89. <https://doi.org/10.1016/j.msec.2019.03.074> PMid:31029311

34. Yang L, Yang P, Lip GY, Ren J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. *Trends in pharmacological sciences*. 2023 Jul 25;44(9):573-85. <https://doi.org/10.1016/j.tips.2023.07.004> PMid:37500296

35. Yang Z, Zhao Z, Cheng H, Shen Y, Xie A, Zhu M. In-situ fabrication of novel Au nanoclusters-Cu2+@ sodium alginate/hyaluronic acid nanohybrid gels for cuproptosis enhanced photothermal/photodynamic/chemodynamic therapy via tumor microenvironment regulation. *Journal of Colloid and Interface Science*. 2023 Jul 1;641:215-28. <https://doi.org/10.1016/j.jcis.2023.03.065> PMid:36933468

36. Netam AK, Prasad J, Satapathy T. Potential role of antisense oligonucleotides in regulation of gene expression to target cancer: a step forward. 2018;7(9):26-34.

37. Nie D, Chen C, Li Y, Zeng C. Disulfiram, an aldehyde dehydrogenase inhibitor, works as a potent drug against sepsis and cancer via necrosis, pyroptosis, apoptosis, ferroptosis, and cuproptosis. *Blood Science*. 2022 Jul 30;4(03):152-4. <https://doi.org/10.1097/BS9.0000000000000117> PMid:36518588 PMCid:PMC9742096

38. Liu Z, Ma H, Lai Z. The role of ferroptosis and cuproptosis in curcumin against Hepatocellular Carcinoma. *Molecules*. 2023 Feb 8;28(4):1623. <https://doi.org/10.3390/molecules28041623> PMid:36838613 PMCid:PMC9964324

39. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. *Nature reviews Clinical oncology*. 2021 May;18(5):280-96. <https://doi.org/10.1038/s41571-020-00462-0> PMid:33514910

40. Wang W, Mo W, Hang Z, Huang Y, Yi H, Sun Z, Lei A. Cuproptosis: Harnessing transition metal for cancer therapy. *ACS nano*. 2023 Oct 11;17(20):19581-99. <https://doi.org/10.1021/acsnano.3c07775> PMid:37820312

41. Satapathy T, Kaushik S, Netam AK, Prasad J, Rao SP, Sahu MK, Baghel P. Nano delivery: a smart carrier for treatment of ovarian cancer. *Journal of Drug Delivery & Therapeutics*. 2024; 14(8):238-244. <https://doi.org/10.1021/acsnano.3c00326> PMid:37183977

42. Ning S, Lyu M, Zhu D, Lam JW, Huang Q, Zhang T, Tang BZ. Type-I AIE Photosensitizer Loaded Biomimetic System Boosting Cuproptosis to Inhibit Breast Cancer Metastasis and Rechallenge. *ACS nano*. 2023 May 15. <https://doi.org/10.1021/acsnano.3c00326> PMid:37183977

43. Lu Y, Pan Q, Gao W, Pu Y, He B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. *Journal of Materials Chemistry B*. 2022;10(33):6296-306. <https://doi.org/10.1039/D2TB01150F> PMid:35904024

44. Prasad J, Netam AK, Rao SP, Satapathy T, Pandit B. MONOCLONAL ANTIBODY: A MOLECULAR TARGETED THERAPIES FOR CANCER TREATMENT. 2018; Volume 7, Issue 9, 158-173.

45. Dou L, Lu E, Tian D, Li F, Deng L, Zhang Y. Adrenomedullin induces cisplatin chemoresistance in ovarian cancer through reprogramming of glucose metabolism. *Journal of Translational Internal Medicine*. 2023 Jul 5;11(2):169-77. <https://doi.org/10.2478/jtim-2023-0091> PMid:37408575 PMCid:PMC10318923

46. Fatma H, Siddique HR. Research and Patents Status of Selected Phytochemicals Against Cancer: How Close and How Far?. *Recent Patents on Anti-Cancer Drug Discovery*. 2023 Nov 1;18(4):428-47. <https://doi.org/10.2174/157489281866221107113648> PMid:36345243

47. PapeVeronika FS, EnyedyÉva A, KepplerBernhard K, KowolChristian R. Anticancer thiosemicarbazones: chemical properties, interaction with iron metabolism, and resistance development. *Antioxidants & redox signaling*. 2019 Feb 1;30(8):1062-82. <https://doi.org/10.1089/ars.2017.7487> PMid:29334758

48. Steinbrueck A, Sedgwick AC, Brewster JT, Yan KC, Shang Y, Knoll DM, Vargas-Zúñiga GI, He XP, Tian H, Sessler JL. Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents. *Chemical Society Reviews*. 2020;49(12):3726-47. <https://doi.org/10.1039/C9CS00373H> PMid:32525153

49. Lun X, Wells JC, Grinshtein N, King JC, Hao X, Dang NH, Wang X, Aman A, Uehling D, Datti A, Wrana JL. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma. *Clinical Cancer Research*. 2016 Aug 1;22(15):3860-75. <https://doi.org/10.1158/1078-0432.CCR-15-1798> PMid:27006494

50. Kita Y, Hamada A, Saito R, Teramoto Y, Tanaka R, Takano K, Nakayama K, Murakami K, Matsumoto K, Akamatsu S, Yamasaki T. Systematic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: a summary of pre-clinical studies. *British Journal of Cancer*. 2019 Dec 10;121(12):1027-38. <https://doi.org/10.1038/s41416-019-0609-0> PMid:31673101 PMCid:PMC6964684

51. Falls-Hubert KC, Butler AL, Gui K, Anderson M, Li M, Stolwijk JM, Rodman III SN, Solst SR, Tomanek-Chalkley A, Searby CC, Sheffield VC. Disulfiram causes selective hypoxic cancer cell toxicity and radio-chemo-sensitization via redox cycling of copper. *Free Radical Biology and Medicine*. 2020 Apr 1;150:1-1. <https://doi.org/10.1016/j.freeradbiomed.2020.01.186> PMid:32032663 PMCid:PMC7299833

52. Hassan I, Ebaid H, Alhazza IM, Al-Tamimi J, Rady AM. Disulfiram Enhances the Antineoplastic Activity and Sensitivity of Murine Hepato-cellular Carcinoma to 5-FU via Redox Management. *Pharmaceuticals*. 2023 Jan 23;16(2):169. <https://doi.org/10.3390/ph16020169> PMid:37259318 PMCid:PMC9967644

53. Cong J, Wang Y, Zhang X, Zhang N, Liu L, Soukup K, Michelakos T, Hong T, DeLeo A, Cai L, Sabbatino F. A novel chemoradiation targeting stem and nonstem pancreatic cancer cells by repurposing disulfiram. *Cancer letters*. 2017 Nov 28;409:9-19. <https://doi.org/10.1016/j.canlet.2017.08.028> PMid:28864067