Maternal Hypoxia and Its Epigenetic Imprint: Long-Term Implications on Immune System Ontogeny and Forensic Biomarker Identification in Offspring

Authors

  • Augustine Chinedu Ihim Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Nnewi Campus, Awka, Nigeria. https://orcid.org/0000-0001-9991-0714
  • Chinaza Favour Onyeje Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Nnewi Campus, Awka, Nigeria.
  • Tochukwu Anthony Ikwelle Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Nnewi Campus, Awka, Nigeria. https://orcid.org/0009-0007-0014-8637
  • Patrick Chinedu Obi Department of Internal Medicine, Federal University Teaching Hospital, Owerri, Nigeria https://orcid.org/0009-0009-7125-5602
  • Ini Edeh Medical Laboratory Science Council of Nigeria
  • Donatus F.N. Ozuruoke Department of medical laboratory science, Faculty of medical and health sciences, Newgate University, Minna. https://orcid.org/0000-0001-8798-7984
  • Romanus Ogai Ogalagu Department of Biochemistry, Faculty of Natural and Applied Sciences, Tansian University, Umunya, Anambra state. https://orcid.org/0000-0003-3460-5502

Abstract

Maternal hypoxia is a critical disruptor of fetal development, with enduring consequences for immune system ontogeny. This review examines the multifactorial impacts of intrauterine oxygen deprivation, emphasizing its role in impairing immune competence through disruptions in T and B cell differentiation, altered cytokine signaling, and long-lasting epigenetic reprogramming. The fetal immune system, highly sensitive to oxygen levels during gestation, is particularly vulnerable to these changes, which elevate lifelong susceptibility to infections, allergies, autoimmune diseases, and chronic inflammation. Hypoxia-inducible factors (HIFs) mediate many of these effects by interacting with epigenetic regulators such as DNA methylation, histone modifications, and non-coding RNAs that modulate gene expression without altering the DNA sequence. In addition to pathophysiological outcomes, the review highlights the forensic potential of hypoxia-induced epigenetic markers. These stable, exposure-sensitive modifications offer promising tools for reconstructing prenatal environments in post-mortem investigations, especially when traditional pathological indicators are absent. Technologies including bisulfite sequencing, pyrosequencing, and droplet digital PCR are evaluated for their utility in detecting these markers in degraded biological samples. This paper also addresses geographic and socioeconomic disparities that exacerbate hypoxia risks, particularly in high-altitude and low-resource settings, and underscores the importance of prenatal care, nutritional optimization, and early intervention. Based on a structured literature review of peer-reviewed studies from 2019 to 2024, this work integrates emerging evidence linking maternal hypoxia to immune dysfunction, developmental programming, and forensic science. It advocates for interdisciplinary research and public health strategies aimed at mitigating hypoxia-related risks and improving maternal-fetal outcomes across the lifespan.

Keywords: Maternal hypoxia, Forensic Biomarkers, Forensic Epigenetics, Immune dysfunction, Epigenetics Markers

Keywords:

immune response, Epigenetics, fetomaternal outcome

DOI

https://doi.org/10.22270/jddt.v15i11.7431

Author Biographies

Augustine Chinedu Ihim , Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Nnewi Campus, Awka, Nigeria.

Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Nnewi Campus, Awka, Nigeria.

Chinaza Favour Onyeje , Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Nnewi Campus, Awka, Nigeria.

Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Nnewi Campus, Awka, Nigeria.

Tochukwu Anthony Ikwelle , Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Nnewi Campus, Awka, Nigeria.

Department of Clinical Chemistry, Faculty of Medical Laboratory Science Nnamdi Azikiwe University, Nnewi Campus, Awka, Nigeria.

Patrick Chinedu Obi , Department of Internal Medicine, Federal University Teaching Hospital, Owerri, Nigeria

Department of Internal Medicine, Federal University Teaching Hospital, Owerri, Nigeria

Ini Edeh , Medical Laboratory Science Council of Nigeria

Medical Laboratory Science Council of Nigeria

Donatus F.N. Ozuruoke , Department of medical laboratory science, Faculty of medical and health sciences, Newgate University, Minna.

Department of medical laboratory science, Faculty of medical and health sciences, Newgate University, Minna.

Romanus Ogai Ogalagu , Department of Biochemistry, Faculty of Natural and Applied Sciences, Tansian University, Umunya, Anambra state.

Department of Biochemistry,  Faculty of Natural and Applied Sciences,  Tansian University, Umunya, Anambra state.

References

1. Cao Y, Zhang Y, Zhou M, Wang W. Maternal hypoxia induces epigenetic modifications and immune dysregulation in offspring. Am. J. Obstet. Gynecol. 2021; 224(5):488.e1-488.e11.

2. Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. In: Seminars in Cell & Developmental Biology. 2022 Nov 1; 131:66-77. Academic Press. https://doi.org/10.1016/j.semcdb.2022.03.039 PMid:35393235

3. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 2020; 21:268-283. https://doi.org/10.1038/s41580-020-0227-y PMid:32144406 PMCid:PMC7222024

4. Steinert EM, Vasan K, Chandel NS. Mitochondrial metabolism regulation of T cell-mediated immunity. Annu. Rev. Immunol. 2021;39(1):395-416. https://doi.org/10.1146/annurev-immunol-101819-082015 PMid:33902315 PMCid:PMC10403253

5. Zhang J, Wu X, Ma J, Long K, Sun J, Li M, Ge L. Hypoxia and hypoxia-inducible factor signals regulate the development, metabolism, and function of B cells. Front. Immunol. 2022; 13:967576. https://doi.org/10.3389/fimmu.2022.967576 PMid:36045669 PMCid:PMC9421003

6. Bian Q, Fu B. Immunological microenvironment at the maternal-fetal interface. J. Reprod. Immunol. 2022; 151:103632. https://doi.org/10.1016/j.jri.2022.103632 PMid:35504113

7. Wang J, Han T, Zhu X. Role of maternal-fetal immune tolerance in the establishment and maintenance of pregnancy. Chin. Med. J. 2024;137(12):1399-406. https://doi.org/10.1097/CM9.0000000000003114 PMid:38724467 PMCid:PMC11188918

8. Parasar P, Guru N, Nayak NR. Contribution of macrophages to fetomaternal immunological tolerance. Hum. Immunol. 2021;82(5):325-31. https://doi.org/10.1016/j.humimm.2021.02.013 PMid:33715911 PMCid:PMC8062290

9. Chen T, Liu HX, Yan HY, Wu DM, Ping J. Developmental origins of inflammatory and immune diseases. Mol. Hum. Reprod. 2016;22(8):858-65. https://doi.org/10.1093/molehr/gaw036 PMid:27226490 PMCid:PMC4986419

10. Zainal NH, Nor NH, Saat A, Clifton VL. Childhood allergy susceptibility: The role of the immune system development in the in-utero period. Hum. Immunol. 2022;83(5):437-46. https://doi.org/10.1016/j.humimm.2022.02.002 PMid:35183391

11. Obeagu EI, Obeagu GU, Igwe MC. The Silent Threat: Hypoxia and Maternal Health Implications. Int. J. Curr. Res. Med. Sci. 2023;9(11):8-15. 12. Thompson LP, Pence L, Pinkas G, Song H, Telugu BP. Placental hypoxia during early pregnancy causes maternal hypertension and placental insufficiency in the hypoxic guinea pig model. Biol. Reprod. 2016;95(6):128. https://doi.org/10.1095/biolreprod.116.142273 PMid:27806942 PMCid:PMC5315426

13. Zhao X, Liu X, Gu X, Zhang L, Wang Y. The effects of maternal hypoxia on fetal immune system development and its long-term consequences. Pediatrics. 2018;142(4):1-9.

14. Zheng SJ. T-Cell Development, Maturation, and Activation. In: Veterinary Molecular Immunology. Singapore: Springer Nature Singapore; 2024. p. 81-106. https://doi.org/10.1007/978-981-99-8929-4_4

15. Wang Y, Liu J, Burrows PD, Wang JY. B cell development and maturation. B Cells Immunity Tolerance. 2020;1-22. https://doi.org/10.1007/978-981-15-3532-1_1 PMid:32323265

16. Wang Y, Liu J, Burrows PD, Wang JY. B cell development and maturation. B Cells Immunity Tolerance. 2020;1-22. https://doi.org/10.1007/978-981-15-3532-1_1 PMid:32323265

17. Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front. Immunol. 2021; 12:683022. https://doi.org/10.3389/fimmu.2021.683022 PMid:34054875 PMCid:PMC8158941

18. Howard FH, Kwan A, Winder N, Mughal A, Collado-Rojas C, Muthana M. Understanding immune responses to viruses-do underlying Th1/Th2 cell biases predict outcome? Viruses. 2022;14(7):1493. https://doi.org/10.3390/v14071493 PMid:35891472 PMCid:PMC9324514

19. Zhang H, Wang Y, Xu M, Wang M, Liu J, Xu Z. Maternal hypoxia and immune cell development: Effects on fetal immunity and disease susceptibility. Front. Immunol. 2019; 10:1-10.

20. Prasad S, Rath G, Hooja N. Fetal immune system development and maternal hypoxia: A complex interaction. J. Immunol. 2022;145(8):1155-1161.

21. Miller SL, Hemmings DG, Pollock CA, Wing DA, Walker DW. Maternal hypoxia and fetal development: A review of the consequences of chronic hypoxia on the fetus and newborn. Am. J. Obstet. Gynecol. 2020;206(4):259-272. https://doi.org/10.1016/j.ajog.2020.01.029 PMid:31978438

22. Kumar H, Chaudhary A, Singh A, Sukhija N, Panwar A, Saravanan K, Bhaladhare A, Kaisa K, Panigrahi M. A review on epigenetics: Manifestations, modifications, methods & challenges. J. Entomol. Zool. Stud. 2020;8(4):01-6. https://doi.org/10.22271/j.ento.2020.v8.i4ai.7453

23. McNamee EN, Korns Johnson D, Homann D, Clambey ET. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol. Res. 2013; 55:58-70. https://doi.org/10.1007/s12026-012-8349-8 PMid:22961658 PMCid:PMC3919451

24. Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int. J. Leg. Med. 2024; 138:701-719. https://doi.org/10.1007/s00414-024-03165-8 PMid:38242965 PMCid:PMC11003920

25. Gerra ML, Gerra MC, Tadonio L, Pellegrini P, Marchesi C, Mattfeld E, Gerra G, Ossola P. Early parent-child interactions and substance use disorder: an attachment perspective on a biopsychosocial entanglement. Neurosci. Biobehav. Rev. 2021; 131:560-580. https://doi.org/10.1016/j.neubiorev.2021.09.052 PMid:34606823

26. Cain JA, Montibus B, Oakey RJ. Intragenic CpG islands and their impact on gene regulation. Front. Cell Dev. Biol. 2022; 10:832348. https://doi.org/10.3389/fcell.2022.832348 PMid:35223855 PMCid:PMC8873577

27. Feng JX, Riddle NC. Epigenetics and genome stability. Mamm. Genome. 2020; 31:181-195. https://doi.org/10.1007/s00335-020-09836-2 PMid:32296924

28. Deniz Ö, Frost JM, Branco MR. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 2019; 20:417-431. https://doi.org/10.1038/s41576-019-0117-3 PMid:30894697

29. Sjöholm LK, Ransome Y, Ekström TJ, Karlsson O. Evaluation of post-mortem effects on global brain DNA methylation and hydroxymethylation. Basic Clin. Pharmacol. Toxicol. 2018; 122:208-213. https://doi.org/10.1111/bcpt.12875 PMid:28834189 PMCid:PMC5991080

30. Rhein M, Hagemeier L, Klintschar M, Muschler M, Bleich S, Frieling H. DNA methylation results depend on DNA integrity - role of post mortem interval. Front. Genet. 2015; 6:133087. https://doi.org/10.3389/fgene.2015.00182 PMid:26042147 PMCid:PMC4435253

31. Basova L, Lindsey A, McGovern AM, Ellis RJ, Marcondes MC. Detection of H3K4me3 identifies NeuroHIV signatures, genomic effects of methamphetamine and addiction pathways in postmortem HIV+ brain specimens that are not amenable to transcriptome analysis. Viruses. 2021; 13:544. https://doi.org/10.3390/v13040544 PMid:33805201 PMCid:PMC8064323

32. Koshi-Mano K, Mano T, Morishima M, Murayama S, Tamaoka A, Tsuji S, Toda T, Iwata A. Neuron-specific analysis of histone modifications with post-mortem brains. Sci. Rep. 2020; 10:3767. https://doi.org/10.1038/s41598-020-60775-z PMid:32111906 PMCid:PMC7048733

33. Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Non-Coding RNAs Colorectal Cancer. 2016; 30:3-17. https://doi.org/10.1007/978-3-319-42059-2_1 PMid:27573892

34. Rocchi A, Chiti E, Maiese A, Turillazzi E, Spinetti I. MicroRNAs: an update of applications in forensic science. Diagnostics. 2020; 11:32. https://doi.org/10.3390/diagnostics11010032 PMid:33375374 PMCid:PMC7823886

35. Sabeeha S, Hasnain SE. Forensic epigenetic analysis: the path ahead. Med. Princ. Pract. 2019; 28:301-308. https://doi.org/10.1159/000499496 PMid:30893697 PMCid:PMC6639569

36. Higashimoto K, Hara S, Soejima H. DNA methylation analysis using bisulfite pyrosequencing. In: Epigenomics: Methods Protoc. 2022; 3-20. https://doi.org/10.1007/978-1-0716-2724-2_1 PMid:36173562

37. Bendixen KK, Mindegaard M, Epistolio S, Dazio G, Marchi F, Spina P, Arnspang EC, Soerensen M, Christensen UB, Frattini M, Petersen RK. A qPCR technology for direct quantification of methylation in untreated DNA. Nat. Commun. 2023; 14:5153. https://doi.org/10.1038/s41467-023-40873-y PMid:37620381 PMCid:PMC10449789

38. Mawlood SK, Dennany L, Watson N, Pickard BS. The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. Forensic Sci. Int. 2016; 264:132-138. https://doi.org/10.1016/j.forsciint.2016.03.047 PMid:27108355

39. Obeagu EI, Obeagu GU. Molar pregnancy: Update of prevalence and risk factors. Int. J. Curr. Res. Med. Sci. 2023;9(7):25-28. https://doi.org/10.19080/JGWH.2023.25.556169

40. Dunwoodie SL. The role of hypoxia in development of the mammalian embryo. Dev. Cell. 2009; 17:755-773. https://doi.org/10.1016/j.devcel.2009.11.008 PMid:20059947

41. Koklanaris N, Nwachukwu JC, Huang SJ, Guller S, Karpisheva K, Garabedian M, et al. First-trimester trophoblast cell model gene response to hypoxia. Am. J. Obstet. Gynecol. 2006; 194:687-693. https://doi.org/10.1016/j.ajog.2006.01.067 PMid:16522398

42. Tsuji K, Kitamura S, Makino H. Hypoxia-inducible factor 1alpha regulates branching morphogenesis during kidney development. Biochem. Biophys. Res. Commun. 2014; 447:108-114. https://doi.org/10.1016/j.bbrc.2014.03.111 PMid:24690177

43. Hu YY, Fu LA, Li SZ, Chen Y, Li JC, Han J, et al. Hif-1alpha and Hif-2alpha differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. Cancer Lett. 2014; 349:67-76. https://doi.org/10.1016/j.canlet.2014.03.035 PMid:24705306

44. Moss EG, Tang L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev. Biol. 2003; 258:432-442. https://doi.org/10.1016/S0012-1606(03)00126-X PMid:12798299

45. Scully D, Keane E, Batt E, Karunakaran P, Higgins DF, Itasaki N. Hypoxia promotes production of neural crest cells in the embryonic head. Development. 2016; 143:1742-1752. https://doi.org/10.1242/dev.131912 PMid:27190038

46. Obeagu EI, The Relationship between Exercise and Hemoglobin Levels in Pregnant Women: A Review, International Journal of Medical Sciences and Pharma Research, 2025;11(1):34-39 https://doi.org/10.22270/ijmspr.v11i1.138

47. Chen Y, Gaber T. Hypoxia/HIF modulates immune responses. Biomedicines. 2021;9(3):260. https://doi.org/10.3390/biomedicines9030260 PMid:33808042 PMCid:PMC8000289

48. Chen S, Zhang W, Wang L. Maternal hypoxia induces immune dysfunction in offspring through epigenetic modifications. Nat. Commun. 2021;12(1):1-15. https://doi.org/10.1038/s41467-021-25151-6

49. Wu J, Wang Y, Chen J. Maternal hypoxia-induced inflammation in offspring: Mechanisms and consequences. Front. Immunol. 2022; 13:1-15. https://doi.org/10.3389/fimmu.2022.818173 PMid:35663991 PMCid:PMC9160234

50. Hohlfeld J, Kuepper M, Weichenhan D. Maternal hypoxia and the risk of asthma in children. Allergy. 2019;74(7):1380-1391. https://doi.org/10.1111/all.13723 PMid:30656708 PMCid:PMC6640081

51. Liao X, Jiang Y, Zhao H. Maternal hypoxia alters DNA methylation in the offspring and impacts immune function. Front. Immunol. 2021; 12:1-13. https://doi.org/10.3389/fimmu.2021.713013

52. Obeagu EI, Gamade SM, Obeagu GU. The roles of neutrophils in pregnancy. Int. J. Curr. Res. Med. Sci. 2023;9(5):31-35. https://doi.org/10.22270/ijmspr.v10i2.98

53. Ibebuike JE, Ojie CA, Nwokike GI, Obeagu EI, Nwosu DC, Nwanjo HU, Agu GC, Ezenwuba CO, Nwagu SA, Akujuobi AU. Barriers to utilization of maternal health services in southern senatorial district of Cross Rivers state, Nigeria. Int. J. Adv. Multidiscip. Res. 2017;4(8):1-9. https://doi.org/10.22192/ijamr.2017.04.08.001

54. Zhao H, Wong RJ, Stevenson DK. The impact of hypoxia in early pregnancy on placental cells. Int. J. Mol. Sci. 2021;22(18):9675. https://doi.org/10.3390/ijms22189675 PMid:34575844 PMCid:PMC8466283

55. Obeagu EI, Obeagu GU. Maternal hypoxia: Impact on immune system development in offspring. Elite J. Health Sci. 2024;2(8):45-57.

56. Obeagu EI, Obeagu GU, The vital role of blood transfusions during pregnancy: A comprehensive review, Asian J Dent Health Sci, 2024;4(1):26-31 https://doi.org/10.22270/ajdhs.v4i1.58

57. Patel J, Landers K, Mortimer RH, Richard K. Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. Placenta. 2010;31(11):951-957. https://doi.org/10.1016/j.placenta.2010.08.008 PMid:20869770

58. Obeagu EI, Obeagu GU, Anemia in pregnancy: Mentzer index as a predictor for iron supplementation needs, International Journal of Medical Sciences and Pharma Research, 2024;10(4):39-43 https://doi.org/10.22270/ijmspr.v10i4.121

59. Obeagu EI. Hypoxia-induced signaling in the pathogenesis of vaso-occlusive crisis. Elite J. Haematol. 2024;2(7):36-43.

60. Suhag A, Berghella V. Intrauterine growth restriction (IUGR): etiology and diagnosis. Curr. Obstet. Gynecol. Rep. 2013;2(2):102-11. https://doi.org/10.1007/s13669-013-0041-z

61. Sun BZ, Moster D, Harmon QE, Wilcox AJ. Association of preeclampsia in term births with neurodevelopmental disorders in offspring. JAMA Psychiatry. 2020;77(8):823-829. https://doi.org/10.1001/jamapsychiatry.2020.0306 PMid:32236510 PMCid:PMC7113825

62. Zhao Y, Mu H, Zhao A, Feng S, Wang R. Research progress of epigenetic modification on the regulation of transporters under hypoxia. Curr. Drug Metab. 2023; 24:106-113. https://doi.org/10.2174/1389200224666230405115442 PMid:37038690

63. Huang Y, Qu S, Xiao Y, Jian H, Liang W. Progress in age estimation based on DNA methylation. J. Forensic Sci. Med. 2023; 9:360-366. https://doi.org/10.4103/jfsm.jfsm_129_23

64. Dieckmann L, Czamara D. Epigenetics of prenatal stress in humans: the current research landscape. Clin. Epigenet. 2024; 16:20. https://doi.org/10.1186/s13148-024-01635-9 PMid:38308342 PMCid:PMC10837967

65. Li Y. Modern epigenetics methods in biological research. Methods. 2021; 187:104-113. https://doi.org/10.1016/j.ymeth.2020.06.022 PMid:32645449 PMCid:PMC7785612

66. Duong VA, Park JM, Lim HJ, Lee H. Proteomics in forensic analysis: applications for human samples. Appl. Sci. 2021; 11:3393. https://doi.org/10.3390/app11083393

67. Gettings KB, Tillmar A, Sturk-Andreaggi K, Marshall C. Review of SNP assays for disaster victim identification: cost, time, and performance information for decision-makers. J. Forensic Sci. 2024; 69:1546-1557. https://doi.org/10.1111/1556-4029.15585 PMid:39021258

68. Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine hypoxia and epigenetic programming in lung development and disease. Biomedicines. 2021; 9:944. https://doi.org/10.3390/biomedicines9080944 PMid:34440150 PMCid:PMC8394854

Published

2025-11-15
Statistics
Abstract Display: 159
PDF Downloads: 169
PDF Downloads: 35

How to Cite

1.
Ihim AC, Onyeje CF, Ikwelle T, Obi PC, Edeh I, Ozuruoke DF, et al. Maternal Hypoxia and Its Epigenetic Imprint: Long-Term Implications on Immune System Ontogeny and Forensic Biomarker Identification in Offspring. J. Drug Delivery Ther. [Internet]. 2025 Nov. 15 [cited 2026 Jan. 21];15(11):115-23. Available from: https://jddtonline.info/index.php/jddt/article/view/7431

How to Cite

1.
Ihim AC, Onyeje CF, Ikwelle T, Obi PC, Edeh I, Ozuruoke DF, et al. Maternal Hypoxia and Its Epigenetic Imprint: Long-Term Implications on Immune System Ontogeny and Forensic Biomarker Identification in Offspring. J. Drug Delivery Ther. [Internet]. 2025 Nov. 15 [cited 2026 Jan. 21];15(11):115-23. Available from: https://jddtonline.info/index.php/jddt/article/view/7431

Most read articles by the same author(s)