Maternal Hypoxia and Its Epigenetic Imprint: Long-Term Implications on Immune System Ontogeny and Forensic Biomarker Identification in Offspring
Abstract
Maternal hypoxia is a critical disruptor of fetal development, with enduring consequences for immune system ontogeny. This review examines the multifactorial impacts of intrauterine oxygen deprivation, emphasizing its role in impairing immune competence through disruptions in T and B cell differentiation, altered cytokine signaling, and long-lasting epigenetic reprogramming. The fetal immune system, highly sensitive to oxygen levels during gestation, is particularly vulnerable to these changes, which elevate lifelong susceptibility to infections, allergies, autoimmune diseases, and chronic inflammation. Hypoxia-inducible factors (HIFs) mediate many of these effects by interacting with epigenetic regulators such as DNA methylation, histone modifications, and non-coding RNAs that modulate gene expression without altering the DNA sequence. In addition to pathophysiological outcomes, the review highlights the forensic potential of hypoxia-induced epigenetic markers. These stable, exposure-sensitive modifications offer promising tools for reconstructing prenatal environments in post-mortem investigations, especially when traditional pathological indicators are absent. Technologies including bisulfite sequencing, pyrosequencing, and droplet digital PCR are evaluated for their utility in detecting these markers in degraded biological samples. This paper also addresses geographic and socioeconomic disparities that exacerbate hypoxia risks, particularly in high-altitude and low-resource settings, and underscores the importance of prenatal care, nutritional optimization, and early intervention. Based on a structured literature review of peer-reviewed studies from 2019 to 2024, this work integrates emerging evidence linking maternal hypoxia to immune dysfunction, developmental programming, and forensic science. It advocates for interdisciplinary research and public health strategies aimed at mitigating hypoxia-related risks and improving maternal-fetal outcomes across the lifespan.
Keywords: Maternal hypoxia, Forensic Biomarkers, Forensic Epigenetics, Immune dysfunction, Epigenetics Markers
Keywords:
immune response, Epigenetics, fetomaternal outcomeDOI
https://doi.org/10.22270/jddt.v15i11.7431References
1. Cao Y, Zhang Y, Zhou M, Wang W. Maternal hypoxia induces epigenetic modifications and immune dysregulation in offspring. Am. J. Obstet. Gynecol. 2021; 224(5):488.e1-488.e11.
2. Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. In: Seminars in Cell & Developmental Biology. 2022 Nov 1; 131:66-77. Academic Press. https://doi.org/10.1016/j.semcdb.2022.03.039 PMid:35393235
3. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 2020; 21:268-283. https://doi.org/10.1038/s41580-020-0227-y PMid:32144406 PMCid:PMC7222024
4. Steinert EM, Vasan K, Chandel NS. Mitochondrial metabolism regulation of T cell-mediated immunity. Annu. Rev. Immunol. 2021;39(1):395-416. https://doi.org/10.1146/annurev-immunol-101819-082015 PMid:33902315 PMCid:PMC10403253
5. Zhang J, Wu X, Ma J, Long K, Sun J, Li M, Ge L. Hypoxia and hypoxia-inducible factor signals regulate the development, metabolism, and function of B cells. Front. Immunol. 2022; 13:967576. https://doi.org/10.3389/fimmu.2022.967576 PMid:36045669 PMCid:PMC9421003
6. Bian Q, Fu B. Immunological microenvironment at the maternal-fetal interface. J. Reprod. Immunol. 2022; 151:103632. https://doi.org/10.1016/j.jri.2022.103632 PMid:35504113
7. Wang J, Han T, Zhu X. Role of maternal-fetal immune tolerance in the establishment and maintenance of pregnancy. Chin. Med. J. 2024;137(12):1399-406. https://doi.org/10.1097/CM9.0000000000003114 PMid:38724467 PMCid:PMC11188918
8. Parasar P, Guru N, Nayak NR. Contribution of macrophages to fetomaternal immunological tolerance. Hum. Immunol. 2021;82(5):325-31. https://doi.org/10.1016/j.humimm.2021.02.013 PMid:33715911 PMCid:PMC8062290
9. Chen T, Liu HX, Yan HY, Wu DM, Ping J. Developmental origins of inflammatory and immune diseases. Mol. Hum. Reprod. 2016;22(8):858-65. https://doi.org/10.1093/molehr/gaw036 PMid:27226490 PMCid:PMC4986419
10. Zainal NH, Nor NH, Saat A, Clifton VL. Childhood allergy susceptibility: The role of the immune system development in the in-utero period. Hum. Immunol. 2022;83(5):437-46. https://doi.org/10.1016/j.humimm.2022.02.002 PMid:35183391
11. Obeagu EI, Obeagu GU, Igwe MC. The Silent Threat: Hypoxia and Maternal Health Implications. Int. J. Curr. Res. Med. Sci. 2023;9(11):8-15. 12. Thompson LP, Pence L, Pinkas G, Song H, Telugu BP. Placental hypoxia during early pregnancy causes maternal hypertension and placental insufficiency in the hypoxic guinea pig model. Biol. Reprod. 2016;95(6):128. https://doi.org/10.1095/biolreprod.116.142273 PMid:27806942 PMCid:PMC5315426
13. Zhao X, Liu X, Gu X, Zhang L, Wang Y. The effects of maternal hypoxia on fetal immune system development and its long-term consequences. Pediatrics. 2018;142(4):1-9.
14. Zheng SJ. T-Cell Development, Maturation, and Activation. In: Veterinary Molecular Immunology. Singapore: Springer Nature Singapore; 2024. p. 81-106. https://doi.org/10.1007/978-981-99-8929-4_4
15. Wang Y, Liu J, Burrows PD, Wang JY. B cell development and maturation. B Cells Immunity Tolerance. 2020;1-22. https://doi.org/10.1007/978-981-15-3532-1_1 PMid:32323265
16. Wang Y, Liu J, Burrows PD, Wang JY. B cell development and maturation. B Cells Immunity Tolerance. 2020;1-22. https://doi.org/10.1007/978-981-15-3532-1_1 PMid:32323265
17. Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front. Immunol. 2021; 12:683022. https://doi.org/10.3389/fimmu.2021.683022 PMid:34054875 PMCid:PMC8158941
18. Howard FH, Kwan A, Winder N, Mughal A, Collado-Rojas C, Muthana M. Understanding immune responses to viruses-do underlying Th1/Th2 cell biases predict outcome? Viruses. 2022;14(7):1493. https://doi.org/10.3390/v14071493 PMid:35891472 PMCid:PMC9324514
19. Zhang H, Wang Y, Xu M, Wang M, Liu J, Xu Z. Maternal hypoxia and immune cell development: Effects on fetal immunity and disease susceptibility. Front. Immunol. 2019; 10:1-10.
20. Prasad S, Rath G, Hooja N. Fetal immune system development and maternal hypoxia: A complex interaction. J. Immunol. 2022;145(8):1155-1161.
21. Miller SL, Hemmings DG, Pollock CA, Wing DA, Walker DW. Maternal hypoxia and fetal development: A review of the consequences of chronic hypoxia on the fetus and newborn. Am. J. Obstet. Gynecol. 2020;206(4):259-272. https://doi.org/10.1016/j.ajog.2020.01.029 PMid:31978438
22. Kumar H, Chaudhary A, Singh A, Sukhija N, Panwar A, Saravanan K, Bhaladhare A, Kaisa K, Panigrahi M. A review on epigenetics: Manifestations, modifications, methods & challenges. J. Entomol. Zool. Stud. 2020;8(4):01-6. https://doi.org/10.22271/j.ento.2020.v8.i4ai.7453
23. McNamee EN, Korns Johnson D, Homann D, Clambey ET. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol. Res. 2013; 55:58-70. https://doi.org/10.1007/s12026-012-8349-8 PMid:22961658 PMCid:PMC3919451
24. Gerra MC, Dallabona C, Cecchi R. Epigenetic analyses in forensic medicine: future and challenges. Int. J. Leg. Med. 2024; 138:701-719. https://doi.org/10.1007/s00414-024-03165-8 PMid:38242965 PMCid:PMC11003920
25. Gerra ML, Gerra MC, Tadonio L, Pellegrini P, Marchesi C, Mattfeld E, Gerra G, Ossola P. Early parent-child interactions and substance use disorder: an attachment perspective on a biopsychosocial entanglement. Neurosci. Biobehav. Rev. 2021; 131:560-580. https://doi.org/10.1016/j.neubiorev.2021.09.052 PMid:34606823
26. Cain JA, Montibus B, Oakey RJ. Intragenic CpG islands and their impact on gene regulation. Front. Cell Dev. Biol. 2022; 10:832348. https://doi.org/10.3389/fcell.2022.832348 PMid:35223855 PMCid:PMC8873577
27. Feng JX, Riddle NC. Epigenetics and genome stability. Mamm. Genome. 2020; 31:181-195. https://doi.org/10.1007/s00335-020-09836-2 PMid:32296924
28. Deniz Ö, Frost JM, Branco MR. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 2019; 20:417-431. https://doi.org/10.1038/s41576-019-0117-3 PMid:30894697
29. Sjöholm LK, Ransome Y, Ekström TJ, Karlsson O. Evaluation of post-mortem effects on global brain DNA methylation and hydroxymethylation. Basic Clin. Pharmacol. Toxicol. 2018; 122:208-213. https://doi.org/10.1111/bcpt.12875 PMid:28834189 PMCid:PMC5991080
30. Rhein M, Hagemeier L, Klintschar M, Muschler M, Bleich S, Frieling H. DNA methylation results depend on DNA integrity - role of post mortem interval. Front. Genet. 2015; 6:133087. https://doi.org/10.3389/fgene.2015.00182 PMid:26042147 PMCid:PMC4435253
31. Basova L, Lindsey A, McGovern AM, Ellis RJ, Marcondes MC. Detection of H3K4me3 identifies NeuroHIV signatures, genomic effects of methamphetamine and addiction pathways in postmortem HIV+ brain specimens that are not amenable to transcriptome analysis. Viruses. 2021; 13:544. https://doi.org/10.3390/v13040544 PMid:33805201 PMCid:PMC8064323
32. Koshi-Mano K, Mano T, Morishima M, Murayama S, Tamaoka A, Tsuji S, Toda T, Iwata A. Neuron-specific analysis of histone modifications with post-mortem brains. Sci. Rep. 2020; 10:3767. https://doi.org/10.1038/s41598-020-60775-z PMid:32111906 PMCid:PMC7048733
33. Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Non-Coding RNAs Colorectal Cancer. 2016; 30:3-17. https://doi.org/10.1007/978-3-319-42059-2_1 PMid:27573892
34. Rocchi A, Chiti E, Maiese A, Turillazzi E, Spinetti I. MicroRNAs: an update of applications in forensic science. Diagnostics. 2020; 11:32. https://doi.org/10.3390/diagnostics11010032 PMid:33375374 PMCid:PMC7823886
35. Sabeeha S, Hasnain SE. Forensic epigenetic analysis: the path ahead. Med. Princ. Pract. 2019; 28:301-308. https://doi.org/10.1159/000499496 PMid:30893697 PMCid:PMC6639569
36. Higashimoto K, Hara S, Soejima H. DNA methylation analysis using bisulfite pyrosequencing. In: Epigenomics: Methods Protoc. 2022; 3-20. https://doi.org/10.1007/978-1-0716-2724-2_1 PMid:36173562
37. Bendixen KK, Mindegaard M, Epistolio S, Dazio G, Marchi F, Spina P, Arnspang EC, Soerensen M, Christensen UB, Frattini M, Petersen RK. A qPCR technology for direct quantification of methylation in untreated DNA. Nat. Commun. 2023; 14:5153. https://doi.org/10.1038/s41467-023-40873-y PMid:37620381 PMCid:PMC10449789
38. Mawlood SK, Dennany L, Watson N, Pickard BS. The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. Forensic Sci. Int. 2016; 264:132-138. https://doi.org/10.1016/j.forsciint.2016.03.047 PMid:27108355
39. Obeagu EI, Obeagu GU. Molar pregnancy: Update of prevalence and risk factors. Int. J. Curr. Res. Med. Sci. 2023;9(7):25-28. https://doi.org/10.19080/JGWH.2023.25.556169
40. Dunwoodie SL. The role of hypoxia in development of the mammalian embryo. Dev. Cell. 2009; 17:755-773. https://doi.org/10.1016/j.devcel.2009.11.008 PMid:20059947
41. Koklanaris N, Nwachukwu JC, Huang SJ, Guller S, Karpisheva K, Garabedian M, et al. First-trimester trophoblast cell model gene response to hypoxia. Am. J. Obstet. Gynecol. 2006; 194:687-693. https://doi.org/10.1016/j.ajog.2006.01.067 PMid:16522398
42. Tsuji K, Kitamura S, Makino H. Hypoxia-inducible factor 1alpha regulates branching morphogenesis during kidney development. Biochem. Biophys. Res. Commun. 2014; 447:108-114. https://doi.org/10.1016/j.bbrc.2014.03.111 PMid:24690177
43. Hu YY, Fu LA, Li SZ, Chen Y, Li JC, Han J, et al. Hif-1alpha and Hif-2alpha differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. Cancer Lett. 2014; 349:67-76. https://doi.org/10.1016/j.canlet.2014.03.035 PMid:24705306
44. Moss EG, Tang L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev. Biol. 2003; 258:432-442. https://doi.org/10.1016/S0012-1606(03)00126-X PMid:12798299
45. Scully D, Keane E, Batt E, Karunakaran P, Higgins DF, Itasaki N. Hypoxia promotes production of neural crest cells in the embryonic head. Development. 2016; 143:1742-1752. https://doi.org/10.1242/dev.131912 PMid:27190038
46. Obeagu EI, The Relationship between Exercise and Hemoglobin Levels in Pregnant Women: A Review, International Journal of Medical Sciences and Pharma Research, 2025;11(1):34-39 https://doi.org/10.22270/ijmspr.v11i1.138
47. Chen Y, Gaber T. Hypoxia/HIF modulates immune responses. Biomedicines. 2021;9(3):260. https://doi.org/10.3390/biomedicines9030260 PMid:33808042 PMCid:PMC8000289
48. Chen S, Zhang W, Wang L. Maternal hypoxia induces immune dysfunction in offspring through epigenetic modifications. Nat. Commun. 2021;12(1):1-15. https://doi.org/10.1038/s41467-021-25151-6
49. Wu J, Wang Y, Chen J. Maternal hypoxia-induced inflammation in offspring: Mechanisms and consequences. Front. Immunol. 2022; 13:1-15. https://doi.org/10.3389/fimmu.2022.818173 PMid:35663991 PMCid:PMC9160234
50. Hohlfeld J, Kuepper M, Weichenhan D. Maternal hypoxia and the risk of asthma in children. Allergy. 2019;74(7):1380-1391. https://doi.org/10.1111/all.13723 PMid:30656708 PMCid:PMC6640081
51. Liao X, Jiang Y, Zhao H. Maternal hypoxia alters DNA methylation in the offspring and impacts immune function. Front. Immunol. 2021; 12:1-13. https://doi.org/10.3389/fimmu.2021.713013
52. Obeagu EI, Gamade SM, Obeagu GU. The roles of neutrophils in pregnancy. Int. J. Curr. Res. Med. Sci. 2023;9(5):31-35. https://doi.org/10.22270/ijmspr.v10i2.98
53. Ibebuike JE, Ojie CA, Nwokike GI, Obeagu EI, Nwosu DC, Nwanjo HU, Agu GC, Ezenwuba CO, Nwagu SA, Akujuobi AU. Barriers to utilization of maternal health services in southern senatorial district of Cross Rivers state, Nigeria. Int. J. Adv. Multidiscip. Res. 2017;4(8):1-9. https://doi.org/10.22192/ijamr.2017.04.08.001
54. Zhao H, Wong RJ, Stevenson DK. The impact of hypoxia in early pregnancy on placental cells. Int. J. Mol. Sci. 2021;22(18):9675. https://doi.org/10.3390/ijms22189675 PMid:34575844 PMCid:PMC8466283
55. Obeagu EI, Obeagu GU. Maternal hypoxia: Impact on immune system development in offspring. Elite J. Health Sci. 2024;2(8):45-57.
56. Obeagu EI, Obeagu GU, The vital role of blood transfusions during pregnancy: A comprehensive review, Asian J Dent Health Sci, 2024;4(1):26-31 https://doi.org/10.22270/ajdhs.v4i1.58
57. Patel J, Landers K, Mortimer RH, Richard K. Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. Placenta. 2010;31(11):951-957. https://doi.org/10.1016/j.placenta.2010.08.008 PMid:20869770
58. Obeagu EI, Obeagu GU, Anemia in pregnancy: Mentzer index as a predictor for iron supplementation needs, International Journal of Medical Sciences and Pharma Research, 2024;10(4):39-43 https://doi.org/10.22270/ijmspr.v10i4.121
59. Obeagu EI. Hypoxia-induced signaling in the pathogenesis of vaso-occlusive crisis. Elite J. Haematol. 2024;2(7):36-43.
60. Suhag A, Berghella V. Intrauterine growth restriction (IUGR): etiology and diagnosis. Curr. Obstet. Gynecol. Rep. 2013;2(2):102-11. https://doi.org/10.1007/s13669-013-0041-z
61. Sun BZ, Moster D, Harmon QE, Wilcox AJ. Association of preeclampsia in term births with neurodevelopmental disorders in offspring. JAMA Psychiatry. 2020;77(8):823-829. https://doi.org/10.1001/jamapsychiatry.2020.0306 PMid:32236510 PMCid:PMC7113825
62. Zhao Y, Mu H, Zhao A, Feng S, Wang R. Research progress of epigenetic modification on the regulation of transporters under hypoxia. Curr. Drug Metab. 2023; 24:106-113. https://doi.org/10.2174/1389200224666230405115442 PMid:37038690
63. Huang Y, Qu S, Xiao Y, Jian H, Liang W. Progress in age estimation based on DNA methylation. J. Forensic Sci. Med. 2023; 9:360-366. https://doi.org/10.4103/jfsm.jfsm_129_23
64. Dieckmann L, Czamara D. Epigenetics of prenatal stress in humans: the current research landscape. Clin. Epigenet. 2024; 16:20. https://doi.org/10.1186/s13148-024-01635-9 PMid:38308342 PMCid:PMC10837967
65. Li Y. Modern epigenetics methods in biological research. Methods. 2021; 187:104-113. https://doi.org/10.1016/j.ymeth.2020.06.022 PMid:32645449 PMCid:PMC7785612
66. Duong VA, Park JM, Lim HJ, Lee H. Proteomics in forensic analysis: applications for human samples. Appl. Sci. 2021; 11:3393. https://doi.org/10.3390/app11083393
67. Gettings KB, Tillmar A, Sturk-Andreaggi K, Marshall C. Review of SNP assays for disaster victim identification: cost, time, and performance information for decision-makers. J. Forensic Sci. 2024; 69:1546-1557. https://doi.org/10.1111/1556-4029.15585 PMid:39021258
68. Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine hypoxia and epigenetic programming in lung development and disease. Biomedicines. 2021; 9:944. https://doi.org/10.3390/biomedicines9080944 PMid:34440150 PMCid:PMC8394854
Published
Abstract Display: 159
PDF Downloads: 169
PDF Downloads: 35 How to Cite
Issue
Section
Copyright (c) 2025 Augustine Chinedu Ihim , Chinaza Favour Onyeje , Tochukwu Anthony Ikwelle , Patrick Chinedu Obi , Ini Edeh , Donatus F.N. Ozuruoke , Romanus Ogai Ogalagu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.