Will Mesenchymal Stem Cell Therapy Be Effective In COVID-19?
Abstract
Background: The World Health Organization (WHO) reports that the outbreak of the deadly virus had been noted almost in all the countries worldwide. Newly no standard therapies are available to combat the situation and this remains the major challenge for healthcare professionals to provide effective treatment against the life-threatening condition. A potential regenerative medicine method using the infusion of stem cells for the treatment of lung disorders has been reported. This review attempted to explore the immunomodulatory characteristics of Mesenchymal Stem Cells (MSCs) and how these properties make them beneficial for the treatment of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) patients.
Objectives: To study the effect of Mesenchymal Stem Cell therapy in treating COVID-19.
Methodology: A literature search was conducted to identify recent research relating to the review's goal of analyzing the relevance of stem cells in battling SARS-CoV-2.
Results: The MSCs settle in the lungs intravenously to enhance the pulmonary microenvironment, minimize immune system over-activation, and encourage regeneration of damaged lung tissues. Its therapeutic properties like immune response inhibition play a major role in combating viruses. The avoidance of cytokine storm is the most important stage in COVID-19 therapy. Their potent immunomodulatory properties have positive effects in avoiding or attenuating the cytokine storm and assisting in the regeneration of injured lung tissues/other organs.
Conclusion: Intravenous human Umbilical Cord-Mesenchymal Stem Cell therapy (hUC-MSC) transplantation is a safe and effective technique that may be used as a restoration and prioritized therapeutic option for treating severe COVID-19.
Keywords: Covid-19, human Umbilical Cord-Mesenchymal Stem Cell therapy (huc-msc), Immune system.
Keywords:
Covid-19, human Umbilical Cord-Mesenchymal Stem Cell therapy (huc-msc), Immune systemDOI
https://doi.org/10.22270/jddt.v11i6.5143References
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382:1708–20.10.doi:1056/NEJMoa2002032
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395:565-74. https://doi.org/10.1016/ S0140-6736(20)30251-8
Banerjee A, Kulcsar K, Misra V, et al. Bats and coronaviruses. Viruses. 2019; 11(1):41.doi:10.3390/v11010041
Yang D, Leibowitz JL.The structure and functions of coronavirus genomic 3' and 5' ends. Virus Res. 2015; 206:120-33. doi:10.1016/j.virusres.2015.02.025
Kotton, DN. Next-generation regeneration. American Journal of Respiratory and Critical Care Medicine.2012; 185(12):1255– 1260. doi:https://www.atsjournals.org/doi/full/10.1164/rccm.201202-0228PP
Weiss DJ. Concise review: Current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells.2014; 32(1):16–25.doi:10.1002/stem.1506
Fernanda F, Patricia RM. Stem-Cell extracellular vesicles and lung repair. Stem Cell. 2017; 4:1–11. doi:10.21037/sci.2017.09.02
Li F, Li W, Farzan M, et al. Structural biology: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005; 309(5742):1864–1868.doi: https://doi.org/10.1126/science.1116480
World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. Retrieved March 14, 2020. Available at: https://www.who.int/dg/speeches/detail/ who-director-general-s-opening-remarks-at-the-media-briefing-oncovid-19%2D%2D-11-march-2020
Ji Y, Ma Z, Peppelenbosch MP, et al. Potential association between COVID-19 mortality and health-care resource availability. The Lancet Glob. 2020; 8(4):e480. doi: https://doi.org/ 10.1016/S2214-109X(20)30068-1
Baud D, Qi X, Nielsen-Saines K, et al. Real estimates of mortality following COVID19 infection. The Lancet Infect Dis. 2020; 20(7):773. doi: https://doi.org/ 10.1016/S1473-3099(20)30195-X
Petros RA, DeSimone, JM. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010; 9: 615–627. doi:10.1038/nrd2591
Chauhan G, Madou M. J, Kalra S, et al. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 2020; 14 (7): 7760–7782. doi:10.1021/acsnano.0c04006
Banchereau J, Steinman, R. M. Dendritic cells and the control of immunity. Nature. 1998; 392:245–252. doi:10.1038/32588
Mainardes RM, Diedrich C. The potential role of nanomedicine on COVID-19 therapeutics. Therap. Deliv.2020; 11:7–9. doi:10.4155/tde-2020-0069
Campos ER, Pereira AE, de Oliveira JL, et al. How can nanotechnology help to combat COVID-19? opportunities and urgent need. J. Nanobiotechnol. 2020; 18: 1–23. doi:10.1186/s12951-020-00685-4
Zhang Q, Honko A, Zhou J, et al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 2020; 20: 5570–5574. doi:10.1021/acs.nanolett.0c02278
Cavezzi A., Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin. Pract. 2020; 10: 1271. doi:10. 4081/cp.2020.1271
Destache CJ, Belgum T, Christensen K, et al. Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect. Dis. 2009; 9: 198. doi:10.1186/1471-2334-9-198
Joffre OP, Segura E, Savina A, et al. Cross-presentation by dendritic cells. Nat. Rev. Immunol.2012; 12: 557–569. doi:10.1038/nri3254
Witika BA, Makoni PA, Mweetwa LL, et al. Nano-biomimetic drug delivery vehicles: potential approaches for COVID-19 treatment. Molecules. 2020; 25: 5952. doi:10.3390/molecules25245952
Bajada S, Mazakova I, Richardson JB, et al. Updates on stem cells and their application in regenerative medicine. J Tissue Eng Regen Med. 2008; 2(4):169–83. doi:10.1002/term.83
Lee KD, Kuo TK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004; 40(6):1275–1284. doi: 10.1002/hep.20469
Ratajczak MZ, Marycz K, Poniewierska-Baran A, et al. Very small embryonic-like stem cells as a novel developmental concept and the hierarchy of the stem cell compartment. Adv Med Sci. 2014; 59(2):273–280. doi: 10.1016/j.advms.2014.08.001
Yang J, Jia Z. Cell-based therapy in lung regenerative medicine. Regenerative Medicine Research. 2014; 2:1–7. doi: 10.1186/2050-490X-2-7
Behnke J, Kremer S, Shahzad T,et al. MSC based therapies-New perspectives for the injured lung. J Clin Med. 2020; 3(9):682. doi: 10.3390/jcm9030682
Weiss DJ. Mesenchymal stem cells for lung repair and regeneration. Stem cells in the respiratory system (pp. 25–42). New York: Springer Science & Business Media.
Ding DC, Shyu WC, Lin SZ, et al.Current con-cepts in adult stem cell therapy for stroke. Curr. Med. Chem. 2006;13(29):3565–3574. doi: 10.2174/092986706779026237
Ding DC, Shyu WC, Lin SZ, et al. The role of endothelial progenitor cells in ischemic cerebral and heart diseases. Cell Transplant. 2007; 16(3):273–284. doi: 10.3727/00000000778346477
Potten CS, Loeffler M. Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990; 110(4):1001–1020. PMID: 2100251
Dennis JE, Carbillet JP, Caplan AI, et al. The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs. 2002; 170(2–3):73–82. doi: 10.1159/000046182
Torensma R, Jansen JA, Figdor CG. Ceramic hydroxyapatite coating on titanium implants drives selective bone marrow stromal cell adhesion. Clin. Oral Implants Res. 2003; 14(5):569–577. doi: 10.1034/j.1600-0501.2003.00949.x
Gronthos S, Graves SE, Ohta SJ, et al. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood.1994; 84(12):4164–4173. PMID: 7994030
Gronthos S, Zannettino AC, Hay SJ, et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J. Cell Sci. 2003; 116(9):1827–1835. doi: 10.1242/jcs.00369
Golchin A, Farahany, TZ, Khojasteh A, et al. The clinical trials of Mesenchymal stem cell therapy in skin diseases: An update and concise review. Curr Stem Cell Res Ther. 2019; 14(1), 22–33. https://doi.org/10. 2174/1574888x13666180913123424
Khoury M, Cuenca J, Cruz FF, et al. Current status of cell-based therapies for respiratory virus infections: Applicability to COVID-19. Eur Respir J. 2020; 55(6): 2000858. doi: https://doi.org/10. 1183/13993003.00858-2020
Frauwirth KA, Thompson CB. Activation and inhibition of lymphocytes by Costimulation. J Clin Invest. 2002; 109: 295–299. doi: 10.1172/JCI14941
Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow Mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005; 105: 2821–2827. doi: 10.1182/blood-2004-09-3696
Rawlings JS, Rosler KM, Harrison DA. The JAK/ STAT signaling pathway. J Cell Sci. 2004; 117: 1281– 1283. doi: 10.1242/jcs.00963
Meisel R, Zibert A, Laryea M, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase–mediated tryptophan degradation. Blood. 2004; 103(12):4619–4621. doi: 10.1182/blood-2003-11-3909
Mbongue J, Nicholas D, Torrez T, et al. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines. 2015; 3:703–729. doi: https://doi.org/10.3390/vaccines3030703
Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: What do we know so far? Bio Med Research International.2014:1–14. doi: https://doi.org/10.1155/2014/216806
Stagg J. Immune regulation by mesenchymal stem cells: Two sides to the coin. Tissue Antigens. 2007; 69(1):1–9. doi: 10.1111/j.1399-0039.2006.00739.x
Briones J, Novelli S, Sierra J. T-cell costimulatory molecules in acute-graft-versus host disease: Therapeutic implications. Bone Marrow Res. 2011; 2011: 976793. doi: 10.1155/2011/976793
Najar M, Raicevic G, Kazan HF, at al. Immune-related antigens, surface molecules and regulatory factors in human-derived mesenchymal stromal cells: The expression and impact of inflammatory priming. Stem Cell Rev Rep. 2012;8(4): 1188–1198. doi: 10.1007/s12015-012-9408-1
Saldanha-Araujo F, Ferreira FIS, Palma PV, et al. Mesenchymal Stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res. 2011; 7(1): 66–74. doi: 10.1016/j.scr.2011.04.001
Pevsner-Fischer M, Morad V, Cohen-Sfady M, et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 2007; 109(4): 1422–1432. doi: 10.1182/blood-2006-06-028704
Opitz CA, Litzenburger UM, Lutz C, et al. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-β and protein kinase R. Stem Cells. 2009; 27(4): 909–919. doi: 10.1002/stem.7
Bunnell BA, Betancourt AM, Sullivan DE. New concepts on the immune modulation mediated by mesenchymal stem cells. Stem Cell Res Ther. 2010; 1(5):34. doi: 10.1186/scrt34
Raicevic G, Rouas R, Najar M, et al. Inflammation modifies the pattern and the function of toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol. 2010; 71(3): 235–244. doi: 10.1016/j.humimm.2009.12.005
Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res. 2006; 312(12): 2169–2179. doi: 10.1016/j.yexcr.2006.03.019
Gao F, Chiu SM, Motan DAL, et al. Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death Dis. 2016; 7(1): e2062–e2062. doi: 10.1038/cddis.2015.327
Bailey CC, Zhong G, Huang IC, et al. IFITM-family proteins: The Cell’s first line of antiviral defense. Annu Rev Virol. 2014; 1(1):261–283. doi: https://doi.org/10. 1146/annurev-virology-031413-085537
Schoggins JW. Interferon-stimulated genes: What do they all do? Annu Rev Virol. 2019; 6(1): 567–584. doi: https:// doi.org/10.1146/annurev-virology-092818-015756
Wu X, Dao Thi VL, Huang Y, et al. Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell. 2018; 172(3):423–438.e25. doi: https://doi. org/10.1016/j.cell.2017.11.018
Kane M, Zang TM, Rihn SJ, et al. Identification of interferon-stimulated genes with antiretroviral activity. Cell Host Microbe. 2016; 20(3): 392–405. doi: https://doi.org/10.1016/j.chom.2016.08.005
McIntyre LA., Moher D, Fergusson DA, et al. Efficacy of mesenchymal stromal cell therapy for acute lung injury in preclinical animal models: A systematic review. PLoS One. 2016; 11(1). doi: https://doi.org/10.1371/ journal.pone.0147170
Chan MCW, Kuok DIT, Leung C, et al. Human mesenchymal stromal cells reduce influenza a H5N1-associated acute lung injury in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2016; 113(13): 3621–3626. doi: https://doi.org/10.1073/pnas.1601911113
Bing L, Junhui C, Tao L, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord. ChinaXiv. 2020; 99(31): e21429. doi: https://doi.org/10.12074/ 202002.00084
Darwish I, Mubareka S, Liles WC. Immunomodulatory therapy for severe influenza. Expert Rev Anti-infect Ther. 2011; 9: 807–822. doi: 10.1586/eri.11.56
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet. 2020; 395:497–506. doi: 10.1016/S0140-6736(20)30183-5
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus– infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11):1061-1069. doi: 10.1001/jama.2020.1585
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020; 11(2):216-228. doi: 10.14336/AD.2020.0228
Shetty AK. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19) induced pneumonia. Aging Dis. 2020; 11(2): 462-464. doi: 10.14336/AD.2020.0301
Chen J, Hu C, Chen L, et al. Clinical Study of Mesenchymal Stem Cell Treatment for Acute Respiratory Distress Syndrome Induced by Epidemic Influenza A (H7N9) Infection: A Hint for COVID-19 Treatment. Engineering. 2020; 6(10): 1153–1161 doi: https://doi. org/10.1016/j.eng.2020.02.006
Ma N, Gai H, Mei J, et al. Bone marrow mesenchymal stem cells can differentiate into type II alveolar epithelial cells in vitro. Cell Biol Int. 2011; 35(12):1261–1266. doi: 10.1042/CBI20110026
Leeman KT, Pessina P, Lee J, et al. Mesenchymal stem cells increase alveolar differentiation in lung progenitor organoid cultures. Sci Rep. 2019; 9: 1–10. doi: 10.1038/s41598-019-42819-1
Hu D, Zhu C, Ai L, et al. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerg Microbes Infect. 2018; 7: 1–10. doi: 10.1038/s41426-018-0155-5
Lei Shu, Changming Niu , Ruyou Li., et al, Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Research & Therapy. 2020; 11:361. doi: https://doi.org/10.1186/s13287-020-01875-5
Published
Abstract Display: 408
PDF Downloads: 500
PDF Downloads: 23 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.