Exploring the Neuroprotective Effects of Intermittent Fasting: A Comprehensive Review on its Impact on Neurological Diseases

Authors

  • Marudhachalam jeevitha Department of Pharmacy Practice*, J.K.K.Nattraja College of Pharmacy, Kumarapalayam-638183, Tamil Nadu, India
  • R Shanmuga Sundhram Department of Pharmacology, J.K.K.Nattraja College of Pharmacy, Kumarapalayam-638183, Tamil Nadu, India
  • R Sambath Kumar Department of Pharmaceutics, J.K.K.Nattraja College of Pharmacy, Kumarapalayam-638183, Tamil Nadu, India

Abstract

Background: Intermittent fasting has various benefits for brain health, owing to the physiological alterations occurring in the human body during intervals of fasting. Fasting induces a metabolic condition that improves neuronal bioenergetics, plasticity, and resilience, potentially counteracting a variety of neurological disorders.

Objectives: In the current research, we reveal the impact of IF (Intermittent Fasting)on neurological diseases.

Methodology: A literature review was conducted to create recent studies on how IF impacts neurological illnesses, including neurodegenerative diseases and Central Nervous System (CNS) disorders.

Results: Fasting decreases the production of inflammatory mediators including homocysteine, IL6, and C-reactive protein which could reduce the creation of plaques that lead to atherosclerosis, which is the primary cause of stroke in individuals. IF and ketogenic diets involve significant mechanisms, including enhanced beta-hydroxybutyrate, that have been linked with improved seizure management in certain studies, as well as the induction of other systems that work together to sustain synaptic activity. IF may also improve health and QoL (Quality Of Life)  for those who have relapsing-remitting Multiple Sclerosis. IF could prove to be a beneficial dietary treatment for the prevention and/or deceleration of dementia progression.

Conclusion: The creation of a self-empowering, affordable, and effective treatment alternative for a range of neurological issues in a time of rising medical costs and a rise in neurological diseases. In the future, if these studies are given priority, fasting regimens will be advised in addition to medication-based strategies, leading to the development of a single metabolic strategy that can alter the course and symptoms of the most prevalent and impairing neurological disorders that currently exist.

Keywords: Intermittent Fasting, Neurological disease, Brain health.

Keywords:

Intermittent Fasting, Neurological disease, Brain health

DOI

https://doi.org/10.22270/jddt.v14i3.6486

Author Biographies

Marudhachalam jeevitha, Department of Pharmacy Practice*, J.K.K.Nattraja College of Pharmacy, Kumarapalayam-638183, Tamil Nadu, India

Department of Pharmacy Practice*, J.K.K.Nattraja College of Pharmacy, Kumarapalayam-638183, Tamil Nadu, India

R Shanmuga Sundhram, Department of Pharmacology, J.K.K.Nattraja College of Pharmacy, Kumarapalayam-638183, Tamil Nadu, India

Department of Pharmacology, J.K.K.Nattraja College of Pharmacy, Kumarapalayam-638183, Tamil Nadu, India

R Sambath Kumar, Department of Pharmaceutics, J.K.K.Nattraja College of Pharmacy, Kumarapalayam-638183, Tamil Nadu, India

Department of Pharmaceutics, J.K.K.Nattraja College of Pharmacy, Kumarapalayam-638183, Tamil Nadu, India

References

Gandhi S., Abramov A.Y. Mechanism of Oxidative Stress in Neurodegeneration. Oxidative 1ed. Cell. Longev. 2012;2012:428010. https://doi.org/10.1155/2012/428010.

Nematy M., Alinezhad-Namaghi M., Rashed M.M., Mozhdehifard M., Sajjadi S.S., Akhlaghi S., Sabery M., Mohajeri S.A., Shalaey N., Moohebati M., et al. Effects of Ramadan fasting on cardiovascular risk factors: A prospective observational study. Nutr. J. 2012;11:69. https://doi.org/10.1186/1475-2891-11-69.

Reddy P.H., Beal M.F. Amyloid beta, mitochondrial dysfunction, and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med. 2008;14:45–53. https://doi.org/10.1016/j.molmed.2007.12.002.

Reddy P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol. 2009;218:286–292. https://doi.org10.1016/j.expneurol.2009.03.042.

Mattson, M.P.; Allison, D.B.; Fontana, L.; Harvie, M.; Longo, V.D.; Malaisse, W.J.; Mosley, M.; Notterpek, L.; Ravussin, E.; Scheer, F.A.J.L.; et al. Meal frequency and timing in health and disease. Proc.Natl.Acad.Sci.USA 2014,111,16647-16653 https://doi.org/10.1073/pnas.1413965111

Mattson, M.P.; Moehl, K.; Ghena, N.; Schmaedick, M.; Cheng, A. Intermittent Metabolic Switching, Neuroplasticity and Brain Health. Nat. Rev. Neurosci. 2018, 19, 63–80. https://doi.org/10.1038/nrn.2017.156

Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.J.; Culebras, A.; Elkind, M.S.V.; George, M.G.;Hamdan, A.D.; Higashida, R.T.; et al. An Updated Definition of Stroke for the 21st Century. Stroke 2013, 44,2064–2089. https://doi.org/10.1161/STR.0b013e318296aeca.

Aksungar, F.B.; Topkaya, A.E.; Akyildiz, M. Interleukin-6, C-Reactive Protein and Biochemical Parameters during Prolonged Intermittent Fasting. Ann. Nutr. Metab. 2007, 51, 88–95. https://doi.org/10.1159/000100954.

Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–2734 https://doi.org/10.1016/S0140-6736(17)31363-6.

Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer's disease. Nat Rev Dis Primers. 2015;1:15056. https://doi.org/10.1038/nrdp.2015.56.

Cummings JL. Alzheimer's disease. N Engl J Med. 2004;351:56–67 https://doi.org/10.1056/NEJMra040223.

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–269. https://doi.org/10.1016/j.jalz.2011.03.005.

Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab 2014;19:181-192. https://doi.org/10.1016/j.cmet.2013.12.008

Jeong JH, Yu KS, Bak DH, Lee JH, Lee NS, Jeong YG, et al. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis. Exp Ther Med 2016;12:3021-3028. https://doi.org/10.3892/etm.2016.3852

Reactivity in Alzheimer's disease and vascular dementia assessed by arterial spinlabeling magnetic resonance imaging. Curr Neurovasc Res 2013;10:49-53. https://doi.org/10.2174/156720213804806016

Iadecola C. The pathobiology of vascular dementia. Neuron 2013;80:844-866. https://doi.org/10.1016/j.neuron.2013.10.008

Hughes TM, Wagenknecht LE, Craft S, Mintz A, Heiss G, Palta P, et al. Arterial stiffness and dementia pathology: Atherosclerosis Risk in Communities (ARIC)-PET Study. Neurology 2018;90:e1248-e1256. https://doi.org/10.1212/WNL.0000000000005259

Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 2004;101:6659-6663. https://doi.org/10.1073/pnas.0308291101

Headland ML, Clifton PM, Keogh JB. Effect of intermittent energy restriction on flow mediated dilatation, a measure of endothelial function: a short report. Int J Environ Res Public Health 2018;15:E1166. https://doi.org/10.3390/ijerph15061166

Erdem Y, Özkan G, Ulusoy Ş, Arıcı M, Derici Ü, Şengül Ş, et al. The effect of intermittent fasting on blood pressure variability in patients with newly diagnosed hypertension or prehypertension. J Am Soc Hypertens 2018;12:42-49. https://doi.org/10.1016/j.jash.2017.11.008

Partial energy restriction on postprandial metabolism among overweight/obese participants. Br J Nutr 2016;115:951-959. https://doi.org/10.1017/S0007114515005346

Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A 2003;100:6216-6220. https://doi.org/10.1073/pnas.1035720100

Thompson PM, Hayashi KM, Dutton RA, Chiang MC, Leow AD, Sowell ER, et al. Tracking Alzheimer's disease. Ann N Y Acad Sci 2007;1097:183-214. https://doi.org/10.1196/annals.1379.017

Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M, et al. Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer's disease. Biol Psychiatry 2006;60:1314-1323. https://doi.org/10.1016/j.biopsych.2006.04.004

Wang Z, Andrade N, Torp M, Wattananit S, Arvidsson A, Kokaia Z, et al. Meteorin is a chemokinetic factor in neuroblast migration and promotes stroke-induced striatal neurogenesis. J Cereb Blood Flow Metab 2012;32:387-398. https://doi.org/10.1038/jcbfm.2011.156

Garza JC, Guo M, Zhang W, Lu XY. Leptin increases adult hippocampal neurogenesis in vivo and in vitro. J Biol Chem 2008;283:18238-18247. https://doi.org/10.1074/jbc.M800053200

Hu Y, Yang Y, Zhang M, Deng M, Zhang JJ. Intermittent fasting pretreatment prevents cognitive impairment in a rat model of chronic cerebral hypoperfusion. J Nutr 2017;147:1437-1445. https://doi.org/10.3945/jn.116.245613

Hu Y, Zhang M, Chen Y, Yang Y, Zhang JJ. Postoperative intermittent fasting prevents hippocampal oxidative stress and memory deficits in a rat model of chronic cerebral hypoperfusion. Eur J Nutr 2019;58:423-432.https://doi.org/10.1007/s00394-018-1606-4

Guelpa G., Marie A. La lutte contre l’épilepsie par la désintoxication et par la rééducation alimentaire. Rev. Ther. Medico-Chirurgicale. 1911;78:8–13 https://doi.org/10.1016/j.yebeh.2019.03.018

Wilder R.M. High fat diets in epilepsy. Mayo Clin. Bull. 1921;2:308.

Hartman, A.L.; Rubenstein, J.E.; Kosso_, E.H. Intermittent Fasting: A‘New’ Historical Strategy for Controlling Seizures? Epilepsy Res. 2013, 104, 275–279. https://doi.org/10.1016/j.eplepsyres.2012.10.011

Huttenlocher, P.R. Ketonemia and Seizures: Metabolic and Anticonvulsant Effects of Two Ketogenic Diets in Childhood Epilepsy. Pediatr. Res. 1976, 10, 536–540. https://doi.org/10.1203/00006450-197605000-00006

Van Delft, R.; Lambrechts, D.; Verschuure, P.; Hulsman, J.; Majoie, M. Blood Beta-Hydroxybutyrate Correlates Better with Seizure Reduction Due to Ketogenic Diet than Do Ketones in the Urine. Seizure 2010, 19, 36–39. https://doi.org/10.1016/j.seizure.2009.10.009

Noyes K, Weinstock-Guttman B. Impact of diagnosis and early treatment on the course of multiple sclerosis. Am J Manag Care. 2013 Nov;19(17 Suppl):s321-31.

Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.;Weinstock, G.M.; Fontana, L.;Cross, A.H.; et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018, 27, 1222–1235. https://doi.org/10.1016/j.cmet.2018.05.006

Choi, I.Y.; Piccio, L.; Childress, P.; Bollman, B.; Ghosh, A.; Brandhorst, S.; Suarez, J.; Michalsen, A.; Cross, A.H.;Morgan, T.E.; et al. Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep. 2016, 15, 2136–2146. https://doi.org/10.1016/j.celrep.2016.05.009.

Butler M.G., Dazouki M.J., Zhou X.P., Talebizadeh Z., Brown M., Takahashi T.N., Miles J.H., Wang C.H., Stratton R., Pilarski R., et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 2005;42:318–321. https://doi.org/10.1136/jmg.2004.024646.

Han J.C., Thurm A., Golden Williams C., Joseph L.A., Zein W.M., Brooks B.P., Butman J.A., Brady S.M., Fuhr S.R., Hicks M.D., et al. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome. Cortex. 2013:49;2700-2710. https://doi.org/10.1016/j.cortex.2013.02.009.

Huber K.M., Klann E., Costa-Mattioli M., Zukin R.S. Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J. Neurosci. 2015;35:13836. https://doi.org/10.1523/JNEUROSCI.2656-15.2015.

Wu J., de Theije C.G.M., da Silva S.L., Abbring S., van der Horst H., Broersen L.M., Willemsen L., Kas M., Garssen J., Kraneveld A.D. Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice. Brain. Behav. Immun. 2017;59:273–287. https://doi.org/10.1016/j.bbi.2016.09.016.

Zhou Z.L., Jia X.B., Sun M.F., Zhu Y.L., Qiao C.M., Zhang B.P., Zhao L.P., Yang Q., Cui C., Chen X., et al. Neuroprotection of Fasting Mimicking Diet on MPTP-Induced Parkinson’s Disease Mice via Gut Microbiota and Metabolites. Neurotherapeutics. 2019;16:741–760. https://doi.org/10.1007/s13311-019-00719-2.

Maswood N., Young J., Tilmont E., Zhang Z., Gash D.M., Gerhardt G.A., Grondin R., Roth G.S., Mattison J., Lane M.A., et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2004;101:18171–18176. https://doi.org/10.1073/pnas.0405831102.

Videbeck S.L. Psychiatric-Mental Health Nursing. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2010.

Taliaz D., Loya A., Gersner R., Haramati S., Chen A., Zangen A. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor. J. Neurosci. 2011;31:4475–4483. https://doi.org/10.1523/JNEUROSCI.5725-10.2011.

Bus B.A.A., Molendijk M.L., Tendolkar I., Penninx B.W.J.H., Prickaerts J., Elzinga B.M., Voshaar R.C.O. Chronic depression is associated with a pronounced decrease in serum brain-derived neurotrophic factor over time. Mol. Psychiatry. 2015;20:602–608. https://doi.org/10.1038/mp.2014.83.

Kessler C.S., Stange R., Schlenkermann M., Jeitler M., Michalsen A., Selle A., Raucci F., Steckhan N. A nonrandomized controlled clinical pilot trial on 8 wk of intermittent fasting (24 h/wk) Nutrition. 2018;46:143–152.e2. https://doi.org/10.1016/j.nut.2017.08.004

Hussin N.M., Shahar S., Teng N.I.M.F., Ngah W.Z.W., Das S.K. Efficacy of Fasting and Calorie Restriction (FCR) on mood and depression among ageing men. J. Nutr. Health Aging. 2013;17:674–680. https://doi.org/10.1007/s12603-013-0344-9.

Moro T., Tinsley G., Bianco A., Marcolin G., Pacelli Q.F., Battaglia G., Palma A., Gentil P., Neri M., Paoli A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016;14:290. https://doi.org/10.1186/s12967-016-1044-0.

Farooq S., Nazar Z., Akhter J., Irafn M., Subhan F., Ahmed Z., Khatak I.H., Naeem F. Effect of fasting during Ramadan on serum lithium level and mental state in bipolar affective disorder. Int.Clin.Psychopharmacol. 2010;25:323–327. https://doi.org/10.1097/YIC.0b013e32833d18b2.

Published

15-03-2024
Statistics
Abstract Display: 531
PDF Downloads: 276
PDF Downloads: 19

How to Cite

1.
jeevitha M, Shanmuga Sundhram R, Sambath Kumar R. Exploring the Neuroprotective Effects of Intermittent Fasting: A Comprehensive Review on its Impact on Neurological Diseases. J. Drug Delivery Ther. [Internet]. 2024 Mar. 15 [cited 2025 Jan. 21];14(3):174-8. Available from: https://jddtonline.info/index.php/jddt/article/view/6486

How to Cite

1.
jeevitha M, Shanmuga Sundhram R, Sambath Kumar R. Exploring the Neuroprotective Effects of Intermittent Fasting: A Comprehensive Review on its Impact on Neurological Diseases. J. Drug Delivery Ther. [Internet]. 2024 Mar. 15 [cited 2025 Jan. 21];14(3):174-8. Available from: https://jddtonline.info/index.php/jddt/article/view/6486

Most read articles by the same author(s)