The Chemical and Pharmacological Advancements of Quinoline: A Mini Review

Authors

  • Anurag Bharti BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India
  • ROHIT KUMAR BIJAULIYA BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India
  • Anita Yadav BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India
  • , Suman BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India

Abstract

Quinoline is a preferred scaffold that emerges as a prominent assembly motif for the creation of novel pharmacological molecules among heterocyclic compounds. An important family of chemicals includes quinoline and its derivatives that have been studied for various biological activities. Due to its wide range of bioactivity, quinoline, which is made up of benzene fused with N-heterocyclic pyridine, has drawn a lot of interest as a key template in drug creation. In order to demonstrate the quinoline motifs' significant efficacies for upcoming drug development, this review intends to provide the most current developments in chemistry, their medicinal potential, and their pharmacological applications. As a result, these compounds have been produced by several scientific groups as intentional structures, and their biological functions have been examined. The current study offers succinct information on quinoline's natural sources, as well as details on newly marketed medications that include quinoline. The pharmacological effects of quinoline derivatives, such as their anticonvulsant, antibacterial, antiviral, anti-protozoal, antimalarial, anticancer, anti-inflammatory, and anthelmintic properties, are also discussed in this study.

Keywords: Nitrogen-Based Heterocycles, Quinoline, Synthesis, Biological Activities

Keywords:

Nitrogen-Based Heterocycles, Quinoline, Synthesis, Biological Activities

DOI

https://doi.org/10.22270/jddt.v12i4.5561

Author Biographies

Anurag Bharti, BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India

BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India

ROHIT KUMAR BIJAULIYA, BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India

BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India

Anita Yadav, BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India

BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India

, Suman, BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India

BIU College of Pharmacy, Bareilly International University, Bareilly, UP, India

References

1. Shiro T, Fukaya T, Tobe M, "The chemistry and biological activity of heterocycle-fused quinoline derivatives: a review", Eur. J. Med. Chem., 2015; 97:397-408. https://doi.org/10.1016/j.ejmech.2014.12.004
2. Dutta C, Choudhury J, "C-H activation-annulation on the N-heterocyclic carbene platform". RSC advances. 2018; 8(49):27881-91. https://doi.org/10.1039/C8RA03799J
3. Bejan V, Mangalagiu II, "Benzo [f] quinoline: Synthesis and Structural Analysis". Rev Chim. 2011; 62:199-200.
4. Döbereiner JW. Döbereiner to Schönbein. In A History of Chemistry, Palgrave, London. 1964, pp. 178-198. https://doi.org/10.1007/978-1-349-00554-3_6
5. Ray RL, "Alkaloids-The world's pain killers". Journal of Chemical Education. 1960; 37(9):451. https://doi.org/10.1021/ed037p451
6. Basavarajaiah SM, Raviraj P, Nagesh GY, "A comprehensive review on the biological interest of quinoline and its derivatives". Bioorg. Med. Chem, 2021; 32:115973.
7. Ginsburg S, Wilson IB, "Oximes of the Pyridine Series1". Journal of the American Chemical Society. 1957; 79(2):481-5. https://doi.org/10.1021/ja01559a067
8. Zhang X, Campo MA, Yao T, Larock RC, "Synthesis of substituted quinolines by electrophilic cyclization of N-(2-alkynyl) anilines". Organic Letters. 2005; 7(5):763-6 https://doi.org/10.1021/ol0476218
9. Olateju OA, Babalola CP, Olubiyi OO, Kotila OA, Kwasi DA, Oaikhena AO and Okeke IN, "Quinoline antimalarials increase the antibacterial activity of ampicillin", Front. Microbiol., 2021; 12:556550. https://doi.org/10.3389/fmicb.2021.556550
10. Martins P, Jesus J, Santos S, Raposo LR, Roma- Rodrigues C, Baptista PV, Fernandes AR, "Heterocyclic anticancer compounds: recent advances and the paradigm shif towards the use of nanomedicine's tool box", Molecules, 2015; 20:16852-16891. https://doi.org/10.3390/molecules200916852
11. Qin SQ, Li LC, Song JR, Li HY, Li DP, "Structurally simple phenanthridine analogues based on nitidine and their antitumor activities", Molecules, 2019; 24:437. DOI: 10.3390/molecules24030437. https://doi.org/10.3390/molecules24030437
12. Patil V, Barragan E, Patil SA, Patil SA, Bugarin A, "Direct synthesis and antimicrobial evaluation of structurally complex chalcones", Chemistry Select, 2016; 1(13):3647-3650. https://doi.org/10.1002/slct.201600703
13. Vijayta G, Vinay K, "A review of biological activity of imidazole and thiazole moieties and their derivatives", Sci. Int., 2013; 1(7):253-260. https://doi.org/10.17311/sciintl.2013.253.260
14. Anna PN, Kirtee B, "Computer based drug design of various heterocyclic compounds having anticancer activity: a brief review", J. Bioinformat. Genom. Proteom., 2017; 2(1):1014.
15. Mohammed A, "A mini review: Biological significances of nitrogen heteroatom containing heterocyclic compounds", Int. J. Bioorg. Chem., 2017; 2(3):146-152.
16. Youness B, Younes Z, Jamal T, Ansar M, "Pyridazin- 3(2H)-ones: synthesis, reactivity, applications in pharmacology and agriculture", J. Chem. Pharm. Res., 2014; 6(12):297-310.
17. Emily AB, Timothy LE, "Imidazole- and imidazolium containing polymers for biology and material science applications", Polymer, 2010; 51(12):2447-2454. https://doi.org/10.1016/j.polymer.2010.02.006
18. Otutu JO, "Synthesis and application of azo dyes derived from 2-amino-1,3,4-thiadiazole-2-thiol on polyester", Int. J. Res. Rev. Appl. Sci., 2013; 15(2):292-296.
19. Chi-Shiang K, Chia-Chia F, Jia-Ying Y, Po-Jung T, Joseph PR, Chuan-Pin C and Yang-Hsiang C, Molecular engineering and design of semiconducting polymer dots with narrow-band, near-infrared emission for in vivo biological imaging, ACS Nano., 2017; 11(3):3166-3177.
20. Vaidya A, "Comprehensive review on current developments of quinoline-based anticancer agents", Arab. J. Chem., 2019; 12(8):4920-4946. https://doi.org/10.1016/j.arabjc.2016.10.009
21. Kannappan N, Reddy BS, Sen S, Nagarajan R and Dashpute S, "Synthesis and chemical characterization of quinoline imine derivatives", J. Appl. Chem. Res., 2009; 9:59-68.
22. Mistry B and Jauhari S, "Synthesis and characterization of some quinoline based azetidinones and thiazolidinones as antimicrobial agents", Sch. Res. Lib., 2010; 2(6):332-343.
23. Diaz G, Miranda IL and Diaz MA, "Quinolines, isoquinolines, angustereine, and congeneric alkaloids: Occurrence, chemistry, and biological activity in Phytochemicals Isolation, Characterization and Role in Human Health", Brazil, Intech, 2015; pp. 142-162. https://doi.org/10.5772/59819
24. Lv M, Xu P, Tian Y, Liang J, Gao Y, Xu F, Zhang Z and Sun J, "Medicinal uses, phytochemistry and pharmacology of the genus Dictamnus (Rutaceae)", J. Ethnopharmacol, 2015; 171:247-263. https://doi.org/10.1016/j.jep.2015.05.053
25. Chaturvedi D, "Ionic liquids: A class of versatile green reaction media for the syntheses of nitrogen heterocycles". Current Organic Synthesis. 2011; 8(3):438-71. https://doi.org/10.2174/157017911795529092
26. Cheng C, Yan SJ, The Friedlander synthesis of quinoline, in Organic Reactions, vol. 28, John Wiley and Sons, London, 1982, pp. 37-39. https://doi.org/10.1002/0471264180.or028.02
27. Bergstrom FW, "Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds: Pyridine, Quinoline, and Isoquinoline:. Chemical Reviews. 1944; 35(2):77-277. https://doi.org/10.1021/cr60111a001
28. Madapa S, Tusi Z, Batra S, "Advances in the syntheses of quinoline and quinoline-annulated ring systems", Curr. Org. Chem., 2008; 12:1116-1183.
https://doi.org/10.2174/138527208785740300
29. Becker A, Kohfeld S, Pies T, Wieking K, Preu L and Kunick C, "Synthesis of 11H-indolo[3,2-c]quinoline-6-carboxylic acids by cascade autoxidation-ring contractions", Synthesis, 2009; 7:1185-1189. https://doi.org/10.1055/s-0028-1088014
30. Ivachtchenko AV, Khvat AV, Kobak VV, Kysil VM, Williams CT, "A new insight into the Pfitzinger reaction. A facile synthesis of 6-sulfamoylquinoline-4-carboxylic acids". Tetrahedron letters. 2004; 45(28):5473-6. https://doi.org/10.1016/j.tetlet.2004.05.028
31. Desai U, Mitragotri S, Thopate T, Pore D and Wadgaonkarb P, ARKIVOC, 2006; 198-204. https://doi.org/10.3998/ark.5550190.0007.f24
32. Ebenso EE, Kabanda MM, Arslan T, Saracoglu M, Kandemirli F, Murulana LC, A. K. Singh, S. K. Shukla, Turk. J. Chem., 2001; 06, 54-67.
33. Hammouti B and Khaled K, Int. J. Electrochem. Sci., 2012; 7:5643-5676.
34. Bawa S, Kumar S, Drabu S, Kumar R, J. Pharm. BioAllied Sci., 2010; 2:64-71. https://doi.org/10.4103/0975-7406.67002
35. Ozyanik M, Demirci S, Bektas H, Demirbas N, Demirbas A, Karaoglu SA, Turk. J. Chem., 2012; 36:233-246.
36. Graves PR, Kwiek JJ, Fadden P, Ray R, Hardeman K, Coley AM, Foley M, Haystead TA, Mol. Pharmacol., 2002; 62:1364-1372. https://doi.org/10.1124/mol.62.6.1364
37. Vu AT, Cohn ST, Manas ES, Harris HA, Mewshaw RE, Bioorg. Med. Chem. Lett., 2005; 15:4520-4525. https://doi.org/10.1016/j.bmcl.2005.07.008
38. Kaschula CH, Egan TJ, Hunter R, Basilico N, Parapini S, Taramelli D, Pasini E, Monti D, J. Med. Chem., 2002; 45:3531-3539. https://doi.org/10.1021/jm020858u
39. Tokoro Y, Nagai A, Kokado K, Chujo Y, Macromolecules, 2009; 42:2988-2993. https://doi.org/10.1021/ma900008m
40. J'egou G, Jenekhe SA, Macromolecules, 2001; 34:7926-7928. https://doi.org/10.1021/ma0111562
41. Bhat HR, Singh UP, Gahtori P, Ghosh SK, Gogoi K, Prakash A, Singh RK, RSC Adv., 2013; 3:2942. https://doi.org/10.1039/c2ra21915h
42. Bhat HR, Gupta SK, Singh UP, RSC Adv., 2012; 2:12690. https://doi.org/10.1039/c2ra22353h
43. McNulty J, Vemula R, Bordon C, Yolken R, Jones- Brando L, Org. Biomol. Chem., 2014; 12:255-260. https://doi.org/10.1039/C3OB41539B
44. Gogoi S, Shekarrao K, Duarah A, Bora TC, Boruah RC, Steroids, 2012; 77:1438-1445. https://doi.org/10.1016/j.steroids.2012.08.008
45. Kwong R, J. Am. Chem. Soc., 2005; 127:1614-1615. https://doi.org/10.1021/ja043721x
46. Tong H, Wang L, Jing X and Wang F, Macromolecules, 2003; 36:2584-2586. https://doi.org/10.1021/ma0258612
47. Tumambac GE, Rosencrance CM, Wolf C, Tetrahedron, 2004; 60:11293-11297. https://doi.org/10.1016/j.tet.2004.07.053
48. Li Y, Shi X, Xie N, Zhao Y, Li S, Med Chem Comm, 2013; 4: 367.
49. Vandekerckhove S, De Moor S, Segers D, de Kock C, Smith PJ, Chibale K, De Kimpe N, D'Hooghe M, Med Chem Comm, 2013; 4:724. https://doi.org/10.1039/c3md20377h

Published

2022-07-15
Statistics
Abstract Display: 1453
PDF Downloads: 3439
PDF Downloads: 496

How to Cite

1.
Bharti A, BIJAULIYA RK, Yadav A, Suman ,. The Chemical and Pharmacological Advancements of Quinoline: A Mini Review. J. Drug Delivery Ther. [Internet]. 2022 Jul. 15 [cited 2026 Jan. 19];12(4):211-5. Available from: https://jddtonline.info/index.php/jddt/article/view/5561

How to Cite

1.
Bharti A, BIJAULIYA RK, Yadav A, Suman ,. The Chemical and Pharmacological Advancements of Quinoline: A Mini Review. J. Drug Delivery Ther. [Internet]. 2022 Jul. 15 [cited 2026 Jan. 19];12(4):211-5. Available from: https://jddtonline.info/index.php/jddt/article/view/5561