Investigation of a Novel PDEδ Inhibitor Targeting K-Ras in Colorectal Cancer: An in Silico and Computer-Aided Drug Design Approach

Authors

  • Mohammed Mouhcine Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Morocco. Laboratory of Scientific and Clinical Research in Cancer Pathologies, CEDoc UH2 https://orcid.org/0000-0003-3982-5045
  • Imane Rahnoune Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Morocco. Laboratory of Scientific and Clinical Research in Cancer Pathologies, CEDoc UH2 https://orcid.org/0000-0002-1980-0214
  • Houda Filali Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Morocco. Laboratory of Scientific and Clinical Research in Cancer Pathologies, CEDoc UH2 https://orcid.org/0000-0003-1563-2505

Abstract

Introduction: Colorectal cancer is frequently associated with mutations in the KRAS gene, leading to abnormal activation of the KRas protein. Direct targeting of KRas remains a major therapeutic challenge due to the absence of suitable binding sites for small molecules. An alternative strategy involves inhibiting phosphodiesterase δ (PDEδ), a key regulator of KRas oncogenic signaling.

Objective: This study aimed to identify novel PDEδ inhibitors through an in silico computer-aided design approach to block the oncogenic signaling of KRas in colorectal cancer.

Methods: An integrated computational strategy was used, including pharmacophore modeling based on the crystal structure of PDEδ complexed with an inhibitor, virtual screening of chemical libraries, and drug-likeness filtering according to Lipinski and Veber rules. Selected compounds underwent molecular docking, ADME-Tox prediction, bioavailability assessment, and molecular dynamics simulations (GROMACS) to evaluate stability and binding behavior.

Results: The identified hit compound showed strong binding affinity and stable hydrogen interactions with PDEδ. It met all Lipinski and Veber criteria, suggesting good pharmacokinetic potential and oral bioavailability. ADMET analysis revealed a favorable safety profile, and molecular dynamics simulations confirmed its greater stability compared to the co-crystallized ligand.

Conclusion:This study identified a promising PDEδ inhibitor capable of interfering with KRas oncogenic signaling in colorectal cancer. These findings provide a solid foundation for the development of new targeted therapies, with future perspectives involving in vitro, in vivo, and clinical validation.

Keywords: PDEδ, KRas, Colorectal cancer, Pharmacophore modeling, Virtual screening, Molecular docking, In silico approach, ADMET.

Keywords:

PDEδ , KRas , Colorectal cancer , Pharmacophore modeling, Virtual screening , Molecular docking , ADMET

DOI

https://doi.org/10.22270/jddt.v15i11.7429

Author Biographies

Mohammed Mouhcine , Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Morocco. Laboratory of Scientific and Clinical Research in Cancer Pathologies, CEDoc UH2

Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Morocco. Laboratory of Scientific and Clinical Research in Cancer Pathologies, CEDoc UH2

Imane Rahnoune , Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Morocco. Laboratory of Scientific and Clinical Research in Cancer Pathologies, CEDoc UH2

Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Morocco. Laboratory of Scientific and Clinical Research in Cancer Pathologies, CEDoc UH2

Houda Filali , Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Morocco. Laboratory of Scientific and Clinical Research in Cancer Pathologies, CEDoc UH2

Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Morocco. Laboratory of Scientific and Clinical Research in Cancer Pathologies, CEDoc UH2

References

1. Kim HJ, Lee HN, Jeong MS, Jang SB, Oncogenic KRAS: signaling and drug resistance, Cancers, 2021; 13:5599 https://doi.org/10.3390/cancers13225599 PMid:34830757 PMCid:PMC8616169

2. McCormick F, Targeting KRAS directly, Annu Rev Cancer Biol, 2018; 2:81-90 https://doi.org/10.1146/annurev-cancerbio-050216-122010

3. Menyhárd DK, et al., Structural impact of GTP binding on downstream KRAS signaling, Chem Sci, 2020; 11:9272-9289 https://doi.org/10.1039/D0SC03441J PMid:34094198 PMCid:PMC8161693

4. Cuesta C, Arévalo-Alameda C, Castellano E, The importance of being PI3K in the RAS signaling network, Genes, 2021; 12:1094 https://doi.org/10.3390/genes12071094 PMid:34356110 PMCid:PMC8303222

5. Benhattar J, Losi L, Chaubert P, Givel JC, Costa J, Prognostic significance of K-ras mutations in colorectal carcinoma, Gastroenterology, 1993; 104:1044-1048 https://doi.org/10.1016/0016-5085(93)90272-E PMid:8462792

6. Liu X, Jakubowski M, Hunt JL, KRAS gene mutation in colorectal cancer is correlated with increased proliferation and spontaneous apoptosis, Am J Clin Pathol, 2011; 135:245-252 https://doi.org/10.1309/AJCP7FO2VAXIVSTP PMid:21228365

7. Hunter JC, et al., Biochemical and structural analysis of common cancer-associated KRAS mutations, Mol Cancer Res, 2015; 13:1325-1335 https://doi.org/10.1158/1541-7786.MCR-15-0203 PMid:26037647

8. Chen H, Smaill JB, Liu T, Ding K, Lu X, Small-molecule inhibitors directly targeting KRAS as anticancer therapeutics, J Med Chem, 2020; 63:14404-14424 https://doi.org/10.1021/acs.jmedchem.0c01312 PMid:33225706

9. Bryant KL, Mancias JD, Kimmelman AC, Der CJ, KRAS: feeding pancreatic cancer proliferation, Trends Biochem Sci, 2014; 39:91-100 https://doi.org/10.1016/j.tibs.2013.12.004 PMid:24388967 PMCid:PMC3955735

10. Huang L, Guo Z, Wang F, Fu L, KRAS mutation: from undruggable to druggable in cancer, Signal Transduct Target Ther, 2021; 6:1-20 https://doi.org/10.1038/s41392-021-00780-4 PMid:34776511 PMCid:PMC8591115

11. Wang W, et al., Post-translational modification of KRAS: potential targets for cancer therapy, Acta Pharmacol Sin, 2021; 42:1201-1211 https://doi.org/10.1038/s41401-020-00542-y PMid:33087838 PMCid:PMC8285426

12. Campbell SL, Philips MR, Post-translational modification of RAS proteins, Curr Opin Struct Biol, 2021; 71:180-192 https://doi.org/10.1016/j.sbi.2021.06.015 PMid:34365229 PMCid:PMC8649064

13. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR, Regulating the regulator: post-translational modification of RAS, Nat Rev Mol Cell Biol, 2012; 13:39-51 https://doi.org/10.1038/nrm3255 PMid:22189424 PMCid:PMC3879958

14. Friday BB, Adjei AA, K-ras as a target for cancer therapy, Biochim Biophys Acta, 2005; 1756:127-144 https://doi.org/10.1016/j.bbcan.2005.08.001 PMid:16139957

15. Asati V, Mahapatra DK, Bharti SK, K-Ras and its inhibitors towards personalized cancer treatment: Pharmacological and structural perspectives, Eur J Med Chem, 2017; 125:299-314 https://doi.org/10.1016/j.ejmech.2016.09.049 PMid:27688185

16. Sinensky M, Lutz RJ, The prenylation of proteins, Bioessays, 1992; 14:25-31 https://doi.org/10.1002/bies.950140106 PMid:1546978

17. Xiang S, Bai W, Bepler G, Zou X, Activation of Ras by Post-Translational Modifications, Conquering RAS, 2017; 97-118 https://doi.org/10.1016/B978-0-12-803505-4.00006-0 PMid:28733654 PMCid:PMC5522455

18. Korzeniecki C, Priefer R, Targeting KRAS mutant cancers by preventing signaling transduction in the MAPK pathway, Eur J Med Chem, 2021; 211:113006 https://doi.org/10.1016/j.ejmech.2020.113006 PMid:33228976

19. Eng SK, Loh THT, Goh BH, Lee WL, KRAS as potential target in colorectal cancer therapy, Natural Bio-active Compounds, 2019; 1:389-424 https://doi.org/10.1007/978-981-13-7154-7_12

20. Jang H, et al., Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region, J Biol Chem, 2015; 290:9465-9477 https://doi.org/10.1074/jbc.M114.620724 PMid:25713064 PMCid:PMC4392252

21. Parker JA, Mattos C, The Ras-membrane interface: isoform-specific differences in the catalytic domain, Mol Cancer Res, 2015; 13:595-603 https://doi.org/10.1158/1541-7786.MCR-14-0535 PMid:25566993

22. Schmick M, Kraemer A, Bastiaens PIH, Ras moves to stay in place, Trends Cell Biol, 2015; 25:190-197 https://doi.org/10.1016/j.tcb.2015.02.004 PMid:25759176

23. Siddiqui FA, Development of Novel Drugs Targeting Chaperones of Oncogenic K-Ras, 2021

24. Schmick M, et al., KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport, Cell, 2014; 157:459-471 https://doi.org/10.1016/j.cell.2014.02.051 PMid:24725411

25. Dharmaiah S, et al., Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ, Proc Natl Acad Sci, 2016; 113:E6766-E6775 https://doi.org/10.1073/pnas.1615316113 PMid:27791178 PMCid:PMC5098621

26. Jejurikar BL, Rohane SH, Drug designing in discovery studio, 2021

27. Zimmermann G, et al., Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling, Nature, 2013; 497:638-642 https://doi.org/10.1038/nature12205 PMid:23698361

28. Papke B, et al., Identification of pyrazolopyridazinones as PDEδ inhibitors, Nat Commun, 2016; 7:11360 https://doi.org/10.1038/ncomms11360 PMid:27094677 PMCid:PMC4843002

29. Martín-Gago P, et al., A PDE6δ-KRas inhibitor chemotype with up to seven H-bonds and picomolar affinity that prevents efficient inhibitor release by Arl2, Angew Chem, 2017; 129:2463-2468 https://doi.org/10.1002/ange.201610957

30. Martín-Gago P, et al., Covalent protein labeling at glutamic acids, Cell Chem Biol, 2017; 24:589-597 https://doi.org/10.1016/j.chembiol.2017.03.015 PMid:28434875

31. Jiang Y, et al., Structural biology-inspired discovery of novel KRAS-PDEδ inhibitors, J Med Chem, 2017; 60:9400-9406 https://doi.org/10.1021/acs.jmedchem.7b01243 PMid:28929751

32. Bing X, et al., Fragment-based Drug Discovery of inhibitors to block PDEdelta-RAS protein-protein interaction

33. Chen L, et al., Discovery of novel KRAS-PDEδ inhibitors with potent activity in patient-derived human pancreatic tumor xenograft models, Acta Pharm Sin B, 2022; 12:274-290 https://doi.org/10.1016/j.apsb.2021.07.009 PMid:35127385 PMCid:PMC8799878

34. Yelland T, et al., Stabilization of the ras: Pde6d complex is a novel strategy to inhibit ras signaling, J Med Chem, 2022; 65:1898-1914 https://doi.org/10.1021/acs.jmedchem.1c01265 PMid:35104933 PMCid:PMC8842248

35. Lee J, et al., Development of PD3 and PD3-B for PDEδ inhibition to modulate KRAS activity, J Enzyme Inhib Med Chem, 2022; 37:1656-1666 https://doi.org/10.1080/14756366.2022.2086865 PMid:35695156 PMCid:PMC9225715

36. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD, Improved protein-ligand docking using GOLD, Proteins, 2003; 52:609-623 https://doi.org/10.1002/prot.10465 PMid:12910460

37. Daina A, Michielin O, Zoete V, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci Rep, 2017; 7:42717 https://doi.org/10.1038/srep42717 PMid:28256516 PMCid:PMC5335600

38. Banerjee P, Eckert AO, Schrey AK, Preissner R, ProTox-II: a webserver for the prediction of toxicity of chemicals, Nucleic Acids Res, 2018; 46:W257-W263 https://doi.org/10.1093/nar/gky318 PMid:29718510 PMCid:PMC6031011

39. Lomize AL, et al., PerMM: A web tool and database for analysis of passive membrane permeability and translocation pathways of bioactive molecules, J Chem Inf Model, 2019; 59:3094-3099 https://doi.org/10.1021/acs.jcim.9b00225 PMid:31259547 PMCid:PMC6781619

40. Ottaiano A, et al., KRAS p. G12C Mutation in Metastatic Colorectal Cancer: Prognostic Implications and Advancements in Targeted Therapies, Cancers, 2023; 15:3579 https://doi.org/10.3390/cancers15143579 PMid:37509241 PMCid:PMC10377118

41. Cao Y, et al., Construction of prediction model for KRAS mutation status of colorectal cancer based on CT radiomics, Jpn J Radiol, 2023; 41:1236-1246 https://doi.org/10.1007/s11604-023-01458-3 PMid:37311935 PMCid:PMC10613595

42. Wu C, et al., Advances in KRAS mutation inhibition in metastatic colorectal cancer, Holistic Integr Integr Oncol, 2023; 2:14 https://doi.org/10.1007/s44178-023-00032-1

43. Ren Z, Che J, Wu XW, Xia J, Analysis of KRAS mutation status prediction model for colorectal cancer based on medical imaging, Comput Math Methods Med, 2021 https://doi.org/10.1155/2021/3953442 PMid:34976107 PMCid:PMC8716224

44. Negri F, Bottarelli L, de'Angelis GL, Gnetti L, KRAS: a druggable target in colon cancer patients, Int J Mol Sci, 2022; 23:4120 https://doi.org/10.3390/ijms23084120 PMid:35456940 PMCid:PMC9027058

45. Lim S, et al., Discovery of cell active macrocyclic peptides with on-target inhibition of KRAS signaling, Chem Sci, 2021; 12:15975-15987 https://doi.org/10.1039/D1SC05187C PMid:35024121 PMCid:PMC8672774

46. Bender G, Fahrioglu Yamaci R, Taneri B, CRISPR and KRAS: a match yet to be made, J Biomed Sci, 2021; 28:1-25 https://doi.org/10.1186/s12929-021-00772-0 PMid:34781949 PMCid:PMC8591907

47. Zhu C, et al., Targeting KRAS mutant cancers: from druggable therapy to drug resistance, Mol Cancer, 2022; 21:159 https://doi.org/10.1186/s12943-022-01629-2 PMid:35922812 PMCid:PMC9351107

48. Bear AS, et al., Mutant KRAS-specific T cell receptors directed against prevalent G12D and G12V variants exhibit potent cytotoxic activity and CD8 co-receptor independence, Cancer Res, 2022; 82:PR019-PR019 https://doi.org/10.1158/1538-7445.PANCA22-PR019

49. Yau EH, et al., Genome-wide CRISPR screen for essential cell growth mediators in mutant KRAS colorectal cancers, Cancer Res, 2017; 77:6330-6339 https://doi.org/10.1158/0008-5472.CAN-17-2043 PMid:28954733 PMCid:PMC5690866

50. Punekar SR, Velcheti V, Neel BG, Wong KK, The current state of the art and future trends in RAS-targeted cancer therapies, Nat Rev Clin Oncol, 2022; 19:637-655 https://doi.org/10.1038/s41571-022-00671-9 PMid:36028717 PMCid:PMC9412785

51. Bortoletto A, et al., Oncogenic KRAS promotes pancreatic ductal adenocarcinoma through post-transcriptionally regulated KRAS-induced granules (KGs), 2023 https://doi.org/10.21203/rs.3.rs-3064215/v1

52. Ahearn I, Zhou M, Philips MR, Posttranslational modifications of RAS proteins, Cold Spring Harb Perspect Med, 2018; 8 https://doi.org/10.1101/cshperspect.a031484 PMid:29311131 PMCid:PMC6035883

53. Ma Y, Xu J, Huang P, Bai X, Gao H, Ubiquitin-independent, Proteasome-mediated targeted degradation of KRAS in pancreatic adenocarcinoma cells using an engineered ornithine decarboxylase/antizyme system, IUBMB Life, 2019; 71:57-65 https://doi.org/10.1002/iub.1945 PMid:30347501 PMCid:PMC7379993

54. Yang Y, Jiao Y, Mohammadi MR, Post-translational modifications of proteins in tumor immunotherapy and their potential as immunotherapeutic targets, Cell Mol Biomed Rep, 2023; 3:172-184 https://doi.org/10.55705/cmbr.2023.378480.1091

55. Wadood A, Ajmal A, Rehman AU, Strategies for Targeting KRAS: A Challenging Drug Target, Curr Pharm Des, 2022; 28:1897-1901 https://doi.org/10.2174/1381612828666220506144046 PMid:35524675

56. Lam KK, et al., KRAS-specific antibody binds to KRAS protein inside colorectal adenocarcinoma cells and inhibits its localization to the plasma membrane, Front Oncol, 2023; 13:1000 https://doi.org/10.3389/fonc.2023.1036871 PMid:37051535 PMCid:PMC10084885

57. Kaya P, et al., Drug targeting of KRAS accumulation on the cilium inhibits its stemness driving activity, Cancer Res, 2023; 83:3493 https://doi.org/10.1158/1538-7445.AM2023-3493

58. Singh N, et al., Targeting RAS beyond KRAS, a review, Mol Cancer Res, 2023; 21:A032-A032 https://doi.org/10.1158/1557-3125.RAS23-A032

59. Liu J, et al., Glycolysis regulates KRAS plasma membrane localization and function through defined glycosphingolipids, Nat Commun, 2023; 14:465 https://doi.org/10.1038/s41467-023-36128-5 PMid:36709325 PMCid:PMC9884228

60. Messing S, et al., Production and membrane binding of N-terminally acetylated, C-terminally farnesylated and carboxymethylated KRAS4b, Ras Activity and Signaling: Methods and Protocols, 2021; 105-116 https://doi.org/10.1007/978-1-0716-1190-6_6 PMid:33977473

61. Zhou Y, Prakash PS, Liang H, Gorfe AA, Hancock JF, The KRAS and other prenylated polybasic domain membrane anchors recognize phosphatidylserine acyl chain structure, Proc Natl Acad Sci, 2021; 118:e2014605118 https://doi.org/10.1073/pnas.2014605118 PMid:33526670 PMCid:PMC8017956

62. Lee K, Ikura M, Marshall CB, The Self-Association of the KRAS4b Protein is Altered by Lipid-Bilayer Composition and Electrostatics, Angew Chem, 2023; 135:e202218698 https://doi.org/10.1002/ange.202218698

63. Henkels KM, Rehl KM, Cho K, Blocking K-ras interaction with the plasma membrane is a tractable therapeutic approach to inhibit oncogenic K-ras activity, Front Mol Biosci, 2021; 8:673096 https://doi.org/10.3389/fmolb.2021.673096 PMid:34222333 PMCid:PMC8244928

64. Cabot D, Analysis of KRAS phosphorylation and KRAS effector domain as targets for cancer therapy, 2020

65. Liu P, Wang Y, Li X, Targeting the untargetable KRAS in cancer therapy, Acta Pharm Sin B, 2019; 9:871-879 https://doi.org/10.1016/j.apsb.2019.03.002 PMid:31649840 PMCid:PMC6804475

66. Holderfield M, Efforts to develop KRAS inhibitors, Cold Spring Harb Perspect Med, 2018; 8:a031864 https://doi.org/10.1101/cshperspect.a031864 PMid:29101115 PMCid:PMC6027934

67. Canovas Nunes S, et al., Validation of a small molecule inhibitor of PDE6D-RAS interaction with favorable anti-leukemic effects, Blood Cancer J, 2022; 12:64 https://doi.org/10.1038/s41408-022-00663-z PMid:35422065 PMCid:PMC9010429

68. Siddiqui FA, et al., PDE6D inhibitors with a new design principle selectively block K-Ras activity, ACS Omega, 2019; 5:832-842 https://doi.org/10.1021/acsomega.9b03639 PMid:31956834 PMCid:PMC6964506

69. Li Y, et al., Identification of PDE6D as a potential target of sorafenib via PROTAC technology, bioRxiv, 2020-2025 https://doi.org/10.1101/2020.05.06.079947

70. Majrashi TA, et al., DFT and molecular simulation validation of the binding activity of PDEδ inhibitors for repression of oncogenic K-Ras, PLoS One, 2024; 19:e0300035 https://doi.org/10.1371/journal.pone.0300035 PMid:38457483 PMCid:PMC10923412

71. Lin WC, et al., H-Ras forms dimers on membrane surfaces via a protein-protein interface, Proc Natl Acad Sci, 2014; 111:2996-3001 https://doi.org/10.1073/pnas.1321155111 PMid:24516166 PMCid:PMC3939930

72. Bello M, Correa-Basurto J, Vargas-Mejía MA, Molecular mechanism of the association and dissociation of Deltarasin from the heterodimeric KRas4B-PDEδ complex, Biopolymers, 2019; 110:e23333 https://doi.org/10.1002/bip.23333 PMid:31568570

73. Leung EL, et al., Identification of a new inhibitor of KRAS-PDEδ interaction targeting KRAS mutant nonsmall cell lung cancer, Int J Cancer, 2019; 145:1334-1345 https://doi.org/10.1002/ijc.32222 PMid:30786019

74. Klein CH, et al., PDEδ inhibition impedes the proliferation and survival of human colorectal cancer cell lines harboring oncogenic KRas, Int J Cancer, 2019; 144:767-776 https://doi.org/10.1002/ijc.31859 PMid:30194764 PMCid:PMC6519276

75. Bondarev AD, et al., Recent developments of phosphodiesterase inhibitors: Clinical trials, emerging indications and novel molecules, Front Pharmacol, 2022; 13:1057083 https://doi.org/10.3389/fphar.2022.1057083 PMid:36506513 PMCid:PMC9731127

Published

2025-11-15
Statistics
Abstract Display: 213
PDF Downloads: 207
PDF Downloads: 33

How to Cite

1.
Mouhcine M, Rahnoune I, Filali H. Investigation of a Novel PDEδ Inhibitor Targeting K-Ras in Colorectal Cancer: An in Silico and Computer-Aided Drug Design Approach. J. Drug Delivery Ther. [Internet]. 2025 Nov. 15 [cited 2026 Jan. 28];15(11):17-30. Available from: https://jddtonline.info/index.php/jddt/article/view/7429

How to Cite

1.
Mouhcine M, Rahnoune I, Filali H. Investigation of a Novel PDEδ Inhibitor Targeting K-Ras in Colorectal Cancer: An in Silico and Computer-Aided Drug Design Approach. J. Drug Delivery Ther. [Internet]. 2025 Nov. 15 [cited 2026 Jan. 28];15(11):17-30. Available from: https://jddtonline.info/index.php/jddt/article/view/7429

Most read articles by the same author(s)