Beyond Current Therapies: In Silico Drug Repurposing as a Strategy to Overcome Tyrosine Kinase Inhibitor Resistance in NSCLC
Abstract
Tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer (NSCLC) poses a major challenge to the long-term success of current targeted treatments. This paper explores this clinical obstacle and advocates for In Silico drug repurposing as an essential, rapid strategy to discover new therapies for various resistance mechanisms, including mutations in EGFR, ALK, ROS1, and MET. By applying advanced computational techniques, combining extensive genomic and phenotypic data, and utilizing sophisticated machine learning, this method provides a transformative way to find new uses for existing drugs. This approach significantly reduces the long development times, high costs, and failure rates associated with traditional new drug discovery. Although preclinical results are promising and clinical efforts are underway, there are no approved repurposed drugs specifically targeting TKI resistance in NSCLC, which remains a significant therapeutic challenge. We highlight the need for focused research to turn In Silico findings into practical clinical solutions, broadening treatment options and improving patient care in NSCLC.
Keywords: In Silico Drug Repurposing, Tyrosine Kinase Inhibitor Resistance, Non-Small Cell Lung Cancer, Drug Resistance.
Keywords:
In Silico Drug Repurposing, Tyrosine Kinase Inhibitor Resistance, Non-Small Cell Lung Cancer, Drug ResistanceDOI
https://doi.org/10.22270/jddt.v15i8.7276References
1. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019 Jan;18(1):41-58. https://doi.org/10.1038/nrd.2018.168
2. Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform. 2016 Jan;17(1):2-12. https://doi.org/10.1093/bib/bbv020
3. Harris M, Bhatti Y, Buckley J, Sharma D. Fast and frugal innovations in response to the COVID-19 pandemic. Nat Med. 2020 Jun;26(6):814-7. https://doi.org/10.1038/s41591-020-0889-1
4. Dalwadi SM, Hunt A, Bonnen MD, Ghebre YT. Computational approaches for drug repurposing in oncology: untapped opportunity for high value innovation. Front Oncol. 2023 May 18;13:1198284. https://doi.org/10.3389/fonc.2023.1198284
5. Marmor HN, Zorn JT, Deppen SA, Massion PP, Grogan EL. Biomarkers in lung cancer screening: a narrative review. Curr Chall Thorac Surg. 2023 Feb;5:5-5. https://doi.org/10.21037/ccts-20-171
6. Subramanian J, Regenbogen T, Nagaraj G, Lane A, Devarakonda S, Zhou G, et al. Review of Ongoing Clinical Trials in Non-Small-Cell Lung Cancer: A Status Report for 2012 from the ClinicalTrials.gov Web Site. Journal of Thoracic Oncology. 2013 Jul;8(7):860-5. https://doi.org/10.1097/JTO.0b013e318287c562
7. Chevallier M, Borgeaud M, Addeo A, Friedlaender A. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future. WJCO. 2021 Apr 24;12(4):217-37. https://doi.org/10.5306/wjco.v12.i4.217
8. Broekman F. Tyrosine kinase inhibitors: Multi-targeted or single-targeted? WJCO. 2011;2(2):80. https://doi.org/10.5306/wjco.v2.i2.80
9. Gainor JF, Shaw AT. Emerging Paradigms in the Development of Resistance to Tyrosine Kinase Inhibitors in Lung Cancer. JCO. 2013 Nov 1;31(31):3987-96. https://doi.org/10.1200/JCO.2012.45.2029
10. Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorganic Chemistry. 2023 Sep;138:106680. https://doi.org/10.1016/j.bioorg.2023.106680
11. Ansari J, Palmer DH, Rea DW, Hussain SA. Role of Tyrosine Kinase Inhibitors in Lung Cancer. ACAMC. 2009 Jun 1;9(5):569-75. https://doi.org/10.2174/187152009788451879
12. Pisick E, Jagadeesh S, Salgia R. Receptor Tyrosine Kinases and Inhibitors in Lung Cancer. The Scientific World JOURNAL. 2004;4:589-604. https://doi.org/10.1100/tsw.2004.117
13. Pawson T. Regulation and targets of receptor tyrosine kinases. European Journal of Cancer. 2002 Sep;38:S3-10. https://doi.org/10.1016/S0959-8049(02)80597-4
14. Tan AC, Vyse S, Huang PH. Exploiting receptor tyrosine kinase co-activation for cancer therapy. Drug Discovery Today. 2017 Jan;22(1):72-84. https://doi.org/10.1016/j.drudis.2016.07.010
15. Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018 Dec;17(1):58. https://doi.org/10.1186/s12943-018-0782-4
16. Sawyers C. Rational therapeutic intervention in cancer: kinases as drug targets. Current Opinion in Genetics & Development. 2002 Feb 1;12(1):111-5. https://doi.org/10.1016/S0959-437X(01)00273-8
17. Paul MK, Mukhopadhyay AK. Tyrosine kinase - Role and significance in Cancer. Int J Med Sci. 2004;101-15. https://doi.org/10.7150/ijms.1.101
18. Cancer Genome Landscapes | Science [Internet]. [cited 2024 Dec 16]. Available from: https://www.science.org/doi/abs/10.1126/science.1235122
19. Carraway KL, Sweeney C. EGF receptor activation by heterologous mechanisms. Cancer Cell. 2002 Jun 1;1(5):405-6. https://doi.org/10.1016/S1535-6108(02)00076-4
20. Selvaggi G, Novello S, Torri V, Leonardo E, De Giuli P, Borasio P, et al. Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Annals of Oncology. 2004 Jan;15(1):28-32. https://doi.org/10.1093/annonc/mdh011
21. Rothenstein JM, Chooback N. ALK Inhibitors, Resistance Development, Clinical Trials. Current Oncology. 2018 Jun 1;25(11):59-67. https://doi.org/10.3747/co.25.3760
22. Zhao S, Li J, Xia Q, Liu K, Dong Z. New perspectives for targeting therapy in ALK-positive human cancers. Oncogene. 2023 Jun 9;42(24):1959-69. https://doi.org/10.1038/s41388-023-02712-8
23. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. The Lancet. 2021 Aug;398(10299):535-54. https://doi.org/10.1016/S0140-6736(21)00312-3
24. Drugs Approved for Lung Cancer - NCI [Internet]. [cited 2024 Dec 23]. Available from: https://www.cancer.gov/about-cancer/treatment/drugs/lung
25. Singh S, Sadhukhan S, Sonawane A. 20 years since the approval of first EGFR-TKI, gefitinib: Insight and foresight. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2023 Nov;1878(6):188967. https://doi.org/10.1016/j.bbcan.2023.188967
26. Cohen MH, Williams GA, Sridhara R, Chen G, McGuinn WD, Morse D, et al. United States Food and Drug Administration Drug Approval Summary: Gefitinib (ZD1839; Iressa) Tablets.
27. Markham A. Mobocertinib: First Approval. Drugs. 2021 Nov 1;81(17):2069-74. https://doi.org/10.1007/s40265-021-01632-9
28. Gomatou G, Syrigos N, Kotteas E. Osimertinib Resistance: Molecular Mechanisms and Emerging Treatment Options. Cancers. 2023 Jan 30;15(3):841. https://doi.org/10.3390/cancers15030841
29. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007 Aug;448(7153):561-6. https://doi.org/10.1038/nature05945
30. Lin JJ, Riely GJ, Shaw AT. Targeting ALK: Precision Medicine Takes on Drug Resistance. Cancer Discovery. 2017 Feb 1;7(2):137-55. https://doi.org/10.1158/2159-8290.CD-16-1123
31. Testa U, Castelli G, Pelosi E. Alk-rearranged lung adenocarcinoma: From molecular genetics to therapeutic targeting. Tumori. 2024 Apr;110(2):88-95. https://doi.org/10.1177/03008916231202149
32. Costa DB, Kobayashi S, Pandya SS, Yeo WL, Shen Z, Tan W, et al. CSF Concentration of the Anaplastic Lymphoma Kinase Inhibitor Crizotinib. JCO. 2011 May 20;29(15):e443-5. https://doi.org/10.1200/JCO.2010.34.1313
33. Syed YY. Lorlatinib: First Global Approval. Drugs. 2019 Jan;79(1):93-8. https://doi.org/10.1007/s40265-018-1041-0
34. Kazandjian D, Blumenthal GM, Yuan W, He K, Keegan P, Pazdur R. FDA Approval of Gefitinib for the Treatment of Patients with Metastatic EGFR Mutation-Positive Non-Small Cell Lung Cancer. Clinical Cancer Research. 2016 Mar 15;22(6):1307-12. https://doi.org/10.1158/1078-0432.CCR-15-2266
35. Dungo RT, Keating GM. Afatinib: First Global Approval. Drugs. 2013 Sep 1;73(13):1503-15. https://doi.org/10.1007/s40265-013-0111-6
36. Greig SL. Osimertinib: First Global Approval. Drugs. 2016 Feb 1;76(2):263-73. https://doi.org/10.1007/s40265-015-0533-4
37. Larkins E, Blumenthal GM, Chen H, He K, Agarwal R, Gieser G, et al. FDA Approval: Alectinib for the Treatment of Metastatic, ALK-Positive Non-Small Cell Lung Cancer Following Crizotinib. Clinical Cancer Research. 2016 Nov 1;22(21):5171-6. https://doi.org/10.1158/1078-0432.CCR-16-1293
38. Ceritinib: First Global Approval | Drugs [Internet]. [cited 2024 Dec 24]. Available from: https://link.springer.com/article/10.1007/s40265-014-0251-3
39. Odogwu L, Mathieu L, Blumenthal G, Larkins E, Goldberg KB, Griffin N, et al. FDA Approval Summary: Dabrafenib and Trametinib for the Treatment of Metastatic Non-Small Cell Lung Cancers Harboring BRAF V600E Mutations. The Oncologist. 2018 Jun 1;23(6):740-5. https://doi.org/10.1634/theoncologist.2017-0642
40. Shirley M. Dacomitinib: First Global Approval. Drugs. 2018 Dec 1;78(18):1947-53. https://doi.org/10.1007/s40265-018-1028-x
41. Marcus L, Donoghue M, Aungst S, Myers CE, Helms WS, Shen G, et al. FDA Approval Summary: Entrectinib for the Treatment of NTRK gene Fusion Solid Tumors. Clinical Cancer Research. 2021 Feb 15;27(4):928-32. https://doi.org/10.1158/1078-0432.CCR-20-2771
42. Mathieu LN, Larkins E, Akinboro O, Roy P, Amatya AK, Fiero MH, et al. FDA Approval Summary: Capmatinib and Tepotinib for the Treatment of Metastatic NSCLC Harboring MET Exon 14 Skipping Mutations or Alterations. Clinical Cancer Research. 2022 Jan 15;28(2):249-54. https://doi.org/10.1158/1078-0432.CCR-21-1566
43. Bradford D, Larkins E, Mushti SL, Rodriguez L, Skinner AM, Helms WS, et al. FDA Approval Summary: Selpercatinib for the Treatment of Lung and Thyroid Cancers with RET Gene Mutations or Fusions. Clinical Cancer Research. 2021 Apr 15;27(8):2130-5. https://doi.org/10.1158/1078-0432.CCR-20-3558
44. Griesinger F, Curigliano G, Thomas M, Subbiah V, Baik CS, Tan DSW, et al. Safety and efficacy of pralsetinib in RET fusion-positive non-small-cell lung cancer including as first-line therapy: update from the ARROW trial. Annals of Oncology. 2022 Nov;33(11):1168-78. https://doi.org/10.1016/j.annonc.2022.08.002
45. Cho BC, Camidge DR, Lin JJ, Kim SW, Solomon B, Dziadziuszko R, et al. OA03.06 Repotrectinib in Patients with ROS1 Fusion-positive (ROS1+) NSCLC: Update from the Pivotal Phase 1/2 TRIDENT-1 Trial. Journal of Thoracic Oncology. 2023 Nov;18(11):S50-1. https://doi.org/10.1016/j.jtho.2023.09.035
46. De Mello RA, Neves NM, Tadokoro H, Amaral GA, Castelo-Branco P, Zia VADA. New Target Therapies in Advanced Non-Small Cell Lung Cancer: A Review of the Literature and Future Perspectives. JCM. 2020 Nov 3;9(11):3543. https://doi.org/10.3390/jcm9113543
47. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005 Feb 24;352(8):786-92. https://doi.org/10.1056/NEJMoa044238
48. McCoach CE, Le AT, Gowan K, Jones K, Schubert L, Doak A, et al. Resistance Mechanisms to Targeted Therapies in ROS1+ and ALK+ Non-small Cell Lung Cancer. Clin Cancer Res. 2018 Jul 15;24(14):3334-47. https://doi.org/10.1158/1078-0432.CCR-17-2452
49. Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, et al. Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in ALK -Rearranged Lung Cancer. Cancer Discovery. 2016 Oct 1;6(10):1118-33. https://doi.org/10.1158/2159-8290.CD-16-0596
50. Lin JJ, Choudhury NJ, Yoda S, Zhu VW, Johnson TW, Sakhtemani R, et al. Spectrum of Mechanisms of Resistance to Crizotinib and Lorlatinib in ROS1 Fusion-Positive Lung Cancer. Clin Cancer Res. 2021 May 15;27(10):2899-909. https://doi.org/10.1158/1078-0432.CCR-21-0032
51. Ou SHI, Cui J, Schrock AB, Goldberg ME, Zhu VW, Albacker L, et al. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/R and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib. Lung Cancer. 2017 Jun;108:228-31. https://doi.org/10.1016/j.lungcan.2017.04.003
52. Klempner SJ, Mehta P, Schrock AB, Ali SM, Ou SHI. Cis-oriented solvent-front EGFR G796S mutation in tissue and ctDNA in a patient progressing on osimertinib: a case report and review of the literature. Lung Cancer (Auckl). 2017;8:241-7. https://doi.org/10.2147/LCTT.S147129
53. Yang Z, Yang N, Ou Q, Xiang Y, Jiang T, Wu X, et al. Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non-Small Cell Lung Cancer Patients. Clinical Cancer Research. 2018 Jul 1;24(13):3097-107. https://doi.org/10.1158/1078-0432.CCR-17-2310
54. D'Angelo A, Sobhani N, Chapman R, Bagby S, Bortoletti C, Traversini M, et al. Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies. Cancers. 2020 Nov 6;12(11):3293. https://doi.org/10.3390/cancers12113293
55. Tripathi V, Khare A, Shukla D, Bharadwaj S, Kirtipal N, Ranjan V. Genomic and computational-aided integrative drug repositioning strategy for EGFR and ROS1 mutated NSCLC. International Immunopharmacology. 2024 Sep;139:112682. https://doi.org/10.1016/j.intimp.2024.112682
56. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004 Aug;3(8):673-83. https://doi.org/10.1038/nrd1468
57. Zarei P, Ghasemi F. The Application of Artificial Intelligence and Drug Repositioning for the Identification of Fibroblast Growth Factor Receptor Inhibitors: A Review. Advanced Biomedical Research [Internet]. 2024 Jan [cited 2025 Mar 8];13. Available from: https://journals.lww.com/10.4103/abr.abr_170_23 https://doi.org/10.4103/abr.abr_170_23
58. Würth R, Thellung S, Bajetto A, Mazzanti M, Florio T, Barbieri F. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discovery Today. 2016 Jan;21(1):190-9. https://doi.org/10.1016/j.drudis.2015.09.017
59. Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease relationships for computational drug repositioning. Briefings in Bioinformatics. 2011 Jul 1;12(4):303-11. https://doi.org/10.1093/bib/bbr013
60. Parisi D, Adasme MF, Sveshnikova A, Bolz SN, Moreau Y, Schroeder M. Drug repositioning or target repositioning: A structural perspective of drug-target-indication relationship for available repurposed drugs. Computational and Structural Biotechnology Journal. 2020;18:1043-55. https://doi.org/10.1016/j.csbj.2020.04.004
61. Gao X, Cai Y, Wang Z, He W, Cao S, Xu R, et al. Estrogen receptors promote NSCLC progression by modulating the membrane receptor signaling network: a systems biology perspective. J Transl Med. 2019 Dec;17(1):308. https://doi.org/10.1186/s12967-019-2056-3
62. MotieGhader H, Tabrizi-Nezhadi P, Deldar Abad Paskeh M, Baradaran B, Mokhtarzadeh A, Hashemi M, et al. Drug repositioning in non-small cell lung cancer (NSCLC) using gene co-expression and drug-gene interaction networks analysis. Sci Rep. 2022 Jun 8;12(1):9417. https://doi.org/10.1038/s41598-022-13719-8
63. Doumat G, Daher D, Zerdan MB, Nasra N, Bahmad HF, Recine M, et al. Drug Repurposing in Non-Small Cell Lung Carcinoma: Old Solutions for New Problems. Current Oncology. 2023 Jan 5;30(1):704-19. https://doi.org/10.3390/curroncol30010055
64. LINKING PHARMGKB TO PHENOTYPE STUDIES AND ANIMAL MODELS OF DISEASE FOR DRUG REPURPOSING [Internet]. [cited 2025 Mar 11]. Available from: https://www.worldscientific.com/doi/epdf/10.1142/9789814366496_0038
65. Gottlieb A, Stein GY, Oron Y, Ruppin E, Sharan R. INDI: a computational framework for inferring drug interactions and their associated recommendations. Molecular Systems Biology. 2012 Jan;8(1):592. https://doi.org/10.1038/msb.2012.26
66. Sridhar D, Fakhraei S, Getoor L. A probabilistic approach for collective similarity-based drug-drug interaction prediction. Bioinformatics. 2016 Oct 15;32(20):3175-82. https://doi.org/10.1093/bioinformatics/btw342
67. Cai L, Chu J, Xu J, Meng Y, Lu C, Tang X, et al. Machine learning for drug repositioning: Recent advances and challenges. Current Research in Chemical Biology. 2023;3:100042. https://doi.org/10.1016/j.crchbi.2023.100042
68. Menden MP, Iorio F, Garnett M, McDermott U, Benes CH, Ballester PJ, et al. Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties. Raghava GPS, editor. PLoS ONE. 2013 Apr 30;8(4):e61318. https://doi.org/10.1371/journal.pone.0061318
69. Cousins HC, Nayar G, Altman RB. Computational Approaches to Drug Repurposing: Methods, Challenges, and Opportunities. Annual Review of Biomedical Data Science. 2024 Aug 23;7(1):15-29. https://doi.org/10.1146/annurev-biodatasci-110123-025333
70. Urbina F, Puhl AC, Ekins S. Recent Advances in Drug Repurposing Using Machine Learning. Curr Opin Chem Biol. 2021 Dec;65:74-84. https://doi.org/10.1016/j.cbpa.2021.06.001
71. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019 Apr 1;20(2):273-86. https://doi.org/10.1093/biostatistics/kxx069
72. Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges and prospects. Sig Transduct Target Ther. 2023 Dec 13;8(1):450. https://doi.org/10.1038/s41392-023-01674-3
73. Amin F, Fathi F, Reiner Ž, Banach M, Sahebkar A. The role of statins in lung cancer. Arch Med Sci [Internet]. 2021 Mar 18 [cited 2025 Apr 23]; Available from: https://www.archivesofmedicalscience.com/The-role-of-statins-in-lung-cancer,123225,0,2.html https://doi.org/10.5114/aoms/123225
74. Effect of Statins on Lung Cancer Molecular Pathways: A Possible Therapeutic Role [Internet]. [cited 2025 Apr 23]. https://doi.org/10.3390/ph15050589
75. Hosseinimehr SJ, Ghasemi F, Flahatgar F, Rahmanian N, Ghasemi A, Asgarian-Omran H. Atorvastatin Sensitizes Breast and Lung Cancer Cells to Ionizing Radiation. Iran J Pharm Res. 2020;19(2):80-8.
76. Chen L, He Y, Huang H, Liao H, Wei W. Selective COX-2 inhibitor celecoxib combined with EGFR-TKI ZD1839 on non-small cell lung cancer cell lines: in vitro toxicity and mechanism study. Med Oncol. 2008 Jun 1;25(2):161-71. https://doi.org/10.1007/s12032-007-9015-1
77. Liu X, Yue P, Zhou Z, Khuri FR, Sun SY. Death Receptor Regulation and Celecoxib-Induced Apoptosis in Human Lung Cancer Cells. JNCI: Journal of the National Cancer Institute. 2004 Dec 1;96(23):1769-80. https://doi.org/10.1093/jnci/djh322
78. Haynes A, Shaik MS, Chatterjee A, Singh M. Formulation and Evaluation of Aerosolized Celecoxib for the Treatment of Lung Cancer. Pharm Res. 2005 Mar 1;22(3):427-39. https://doi.org/10.1007/s11095-004-1881-z
79. Aftab BT, Dobromilskaya I, Liu JO, Rudin CM. Itraconazole Inhibits Angiogenesis and Tumor Growth in Non-Small Cell Lung Cancer. Cancer Research. 2011 Oct 30;71(21):6764-72. https://doi.org/10.1158/0008-5472.CAN-11-0691
80. The effect of itraconazole on the clinical outcomes of patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy: a randomized controlled study | Medical Oncology [Internet]. [cited 2025 Apr 25]. https://link.springer.com/article/10.1007/s12032-021-01475-0
81. Sanli T, Liu C, Rashid A, Hopmans SN, Tsiani E, Schultz C, et al. Lovastatin Sensitizes Lung Cancer Cells to Ionizing Radiation: Modulation of Molecular Pathways of Radioresistance and Tumor Suppression. Journal of Thoracic Oncology. 2011 Mar 1;6(3):439-50. https://doi.org/10.1097/JTO.0b013e3182049d8b
82. Liang Z, Chen Q, Pan L, She X, Chen T. Mebendazole induces apoptosis and inhibits migration via the reactive oxygen species-mediated STAT3 signaling downregulation in non-small cell lung cancer. J Thorac Dis. 2024 Feb 29;16(2):1412-23. https://doi.org/10.21037/jtd-23-1978
83. Ciaramella V, Sasso FC, Di Liello R, Corte CMD, Barra G, Viscardi G, et al. Activity and molecular targets of pioglitazone via blockade of proliferation, invasiveness and bioenergetics in human NSCLC. J Exp Clin Cancer Res. 2019 Apr 26;38(1):178. https://doi.org/10.1186/s13046-019-1176-1
84. Duarte D, Vale N. Antidepressant Drug Sertraline against Human Cancer Cells. Biomolecules. 2022 Oct;12(10):1513. https://doi.org/10.3390/biom12101513
85. Jarada TN, Rokne JG, Alhajj R. A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J Cheminform. 2020 Dec;12(1):46. https://doi.org/10.1186/s13321-020-00450-7
Published
Abstract Display: 374
PDF Downloads: 261
PDF Downloads: 57 How to Cite
Issue
Section
Copyright (c) 2025 Sanae Baghrous , Ikram Ghicha , Fatiha Bousselham , Roussaint Doussou-Yovo , Hasnaa Bazhar , Youness Kadil , Imane Rahmoune , Houda Filali

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.