Biodegradable Polymer Use in  Drug Delivery Systems: A Comprehensive Review

Authors

  • Aditya M. Mathane Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India
  • Pooja R. Hatwar Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India https://orcid.org/0000-0002-5424-3425
  • Ravindra L. Bakal Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India https://orcid.org/0000-0002-4964-4654

Abstract

Biodegradable polymers have revolutionized the field of drug delivery systems, offering a promising solution to the limitations of traditional drug administration techniques. These polymers can be designed to degrade at specific rates, releasing therapeutics in a controlled and sustained manner, thereby improving bioavailability and reducing side effects. This review provides an overview of biodegradable polymers, including natural polymers like collagen, albumin, and gelatin, as well as synthetic polymers like polyesters, polyorthoesters, and polyphosphoesters. Here discuss the types of biodegradable polymers, their mechanisms, and benefits in drug delivery systems, including controlled release, targeted release, transdermal delivery, gene delivery, and tissue engineering. The review also highlights the future prospects and trends in biodegradable polymers, including the development of new polymers, blends, and nanoparticles.

Keywords: Biodegradable polymers, Drug delivery systems, Controlled release, Targeted delivery, Regenerative medicine

Keywords:

Biodegradable polymers, Drug delivery systems, Controlled release, Targeted delivery, Regenerative medicine

DOI

https://doi.org/10.22270/jddt.v15i10.7421

Author Biographies

Aditya M. Mathane, Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Pooja R. Hatwar , Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Ravindra L. Bakal , Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

Shri Swami Samarth Institute of Pharmacy, At Parsodi, Dhamangaon Rly (444709), Dist. Amravati, Maharashtra, India

References

1. Bachhav R, Bachhav P, Deore R, Sonawane G, Surana K, Mahajan S. Biodegradable Polymers in Drug Delivery: A Detailed Review. Asian Journal of Pharmaceutical Research (AJPRes.).; 2025; 15(2); 153-158. DOI: 10.52711/2231-5691.2025.00025

2. Baidurah S. Methods of Analyses for Biodegradable Polymers: A Review. Polymers 2022; 14; 4928. https://doi.org/10.3390/polym14224928

3. Maio E D, Iannace S. Biodegradable composites. wiley encyclopedia of composites, 2011;1-18.

4. Samir A, Ashour F H, Hakim A A, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. npj Materials Degradation. 2022; 6:68; 1-28. https://doi.org/10.1038/s41529-022-00277-7

5. Rigolin T R, Takahashi M R, Kondo D L, Bettini S H. Compatibilizer Acidity in Coir-Reinforced PLA Composites: Matrix Degradation and Composite Properties. Journal of Polymers and the Environment;2019;27;1096–1104 https://doi.org/10.1007/s10924-019-01411-4

6. Peng X, Dong K, Wu Z, Wang J. A review on emerging biodegradable polymers for environmentally benign transient electronic skins. J. Mater. Sci.; 2021;56; 16765–16789. https://doi.org/10.1007/s10853-021-06323-0

7. Taha T H, Saied A M, Elnouby M, Hashem M, Alamri S, Morsy K. Profitable exploitation of biodegradable polymer including chitosan blended potato peels’ starch waste as an alternative source of petroleum plastics. Biomass Conversion and Biorefinery.; 2022; https://doi.org/10.1007/s13399-021-02244-9

8. Vroman I, Tighzert L. Biodegradable Polymers. Materials.; 2009; 2; 307-344; doi:10.3390/ma2020307

9. Doppalapudi S, Jain A, Domb A J, Khan W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opinion on Drug Delivery, 2016; 13:6; 891-909. DOI: http://dx.doi.org/10.1517/17425247.2016.1156671

10. Zhu J, Wang C. Biodegradable plastics: Green hope or greenwashing? Marine Pollution Bulletin 161 (2020) 111774. https://doi.org/10.1016/j.marpolbul.2020.111774

11. Askunkel A. Polymers, Biodegradable. Ullmann’s encycl. ind. chem. 1–29 (2016).

12. B Ghanbarzadeh, H Almasi. Biodegradable Polymers. Biodegradation-life of science, 2013; 141–185. http://dx.doi.org/10.5772/56230

13. Zhang L, Zhong J, Ren X. Natural Fiber-Based Bio composites. Green bio composites; 2017; 31–70.

14. Narayana S, Park S, Lee M. Surface modification of magnesium and its alloys for biomedical applications: opportunities and challenges. Surface Modification of Magnesium and its Alloys for Biomedical Applications. 2015; 29-87. http://dx.doi.org/10.1016/B978-1-78242-077-4.00002-4

15. Pedersen T H, Conti F. Waste Management. Elsevier; 2017; 1-8. http://dx.doi.org/10.1016/j.wasman.2017.06.002

16. Idrees H, Syed Z J, Aneela S, Khan R U, Zhang X, Hassan S U. A Review of Biodegradable Natural Polymer Based Nanoparticles for Drug Delivery Applications. Nanomaterials 2020; 10; 1970; doi: http://dx.doi.org/10.3390/nano10101970

17. Prajapati S, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. European Polymer Journal; 2019; 120; 10919. https://doi.org/10.1016/j.eurpolymj.2019.08.018

18. Kluin O S, Henny C, Henk J B, Neut D. Biodegradable vs. non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin. Drug Deliv. (2013) 10(3):341-351.

19. Dr. Rajenderkumar. Comparative Study of Bio-Degradable Polymer and Non-Biodegradable Polymer. International Journal of Engineering, Science and Mathematics. 2018; 7(3); 84-90.

20. Gupta N, Sarkar C, Saha S. Biodegradable Polymers-Carriers for Drug Delivery. Chapter Biodegradable Polymers and Their Emerging Applications. 2023; 149-168.

21. DeFrates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, Hu X. Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. Int. J. Mol. Sci. 2018, 19, 1717. 1-20.

22. Dufresne A. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals. Molecules. 2010; 15; 4111-4128; doi:10.3390/molecules15064111

23. Rolf J M, Kleeberg I, Deckwer W D. Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology.; 2001; 86; 87-95.

24. Jain J, Chitkara D, Kumar N. Polyanhydrides as localized drug delivery carrier: an update. Expert Opin. Drug Deliv.; 2008; 5(8); 889-907.

25. Barrett S E, Guidry E N. Liver-Targeted SiRNA Delivery Using Biodegradable Poly(amide) Polymer Conjugates.; Chapter 2.; 2016; 1364; 11-25. DOI http://dx.doi.org/10.1007/978-1-4939-3112-5-2 .

26. Chen L, Mignani S, Caminade A, Majoral J. Metal-based phosphorus dendrimers as novel nanotherapeutic strategies to tackle cancers: A concise overview. WIREs Nanomed Nanobiotechnol. 2019; e1577.; 1-12. DOI: 10.1002/wnan.1577

27. Madbouly S A. Waterborne Polyurethane Dispersions and Thin Films: Biodegradation and Antimicrobial Behaviours. Molecules.; 2021; 26, 961 2-23. https://doi.org/10.3390/molecules26040961

28. Rose M, Palkovits R. Cellulose-Based Sustainable Polymers: State of the Art and Future Trends. Macromol. Rapid Commun.; 2011; 32; 1299–1311. DOI: 10.1002/marc.201100230

29. Shi X, Fukazawa D, Sharma V, Yuliang J, Pruitt J, Ishihara K. Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state. Colloids and Surfaces B: Biointerfaces; 2021; 199; 111539. 1-7. https://doi.org/10.1016/j.colsurfb.2020.111539

30. Vargas M G, Chomón C G, nos M G, Lorenzob A, Bucio E, Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. International Journal of Pharmaceutics.; 2014; 461; 286– 295.

31. Fontea P, Araújo F, Silva C, Pereira C, Reis S, Santos H, Sarmento B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnology Advances.; 2015; 33; 1342–1354. http://dx.doi.org/10.1016/j.biotechadv.2015.02.010

32. Blum S R. The Collagen Family. Cold Spring Harb Perspect Biol.; 2011; 1-19. doi: 10.1101/cshperspect.a004978

33. Sorushanova A, Delgado L. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv. Mater.; 2018; 1801651; 1-39. DOI: http://dx.doi.org/10.1002/adma.201801651

34. Ferreira A, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomaterialia.; 2012; 8; 3191–3200. http://dx.doi.org/10.1016/j.actbio.2012.06.014

35. Gelse K, Poschl E, Aigner T. Collagens - structure, function and biosynthesis Advanced Drug Delivery Reviews.; 2003; 55; 1531–1546 doi: http://dx.doi.org/10.1016/j.addr.2003.08.002

36. Brodsky B, Persikov A. Molecular Structure of the Collagen Triple helix. Advances In Protein Chemistry.; 2005; 70; DOI: http://dx.doi.org/10.1016/S0065-3233(04)70009-1 .

37. Jiang Y, Stenzel M. Drug Delivery Vehicles Based on Albumin–Polymer Conjugates. Macromol. Biosci.; 2016; 16; 791−802. DOI: http://dx.doi.org/10.1002/mabi.201500453

38. Xu Y, Tang L, Qu Y. Dual-modified albumin-polymer nanocomplexes with enhanced in vivo stability for hepatocellular carcinoma therapy. Colloids and Surfaces. Bio interfaces.; 2021; 201; 111642 https://doi.org/10.1016/j.colsurfb.2021.111642

39. Tian L, Stenzel M. Development of an Albumin−Polymer Bioconjugate via Covalent Conjugation and Supramolecular Interactions. Bioconjugate Chem.; 2022; 33; 321−332. https://doi.org/10.1021/acs.bioconjchem.1c00536

40. Masoumeh S, Mahdavi M, Enderami S. A novel hybrid polymer of PCL/fish gelatin nanofibrous scaffold improves proliferation and differentiation of Wharton's jelly- derived mesenchymal cells into islet- like cells. Artificial Organs. 2022; 46; 1491–1503. DOI: http://dx.doi.org/10.1111/aor.14257

41. Ghalei S, Dounglass M, Handa H. Nitric Oxide Releasing Gelatin Methacryloyl/Silk Fibroin Interpenetrating Polymer Network Hydrogels for Tissue Engineering Applications. ACS Biomater. Sci. Eng.; 2022; 8; 273−283. https://doi.org/10.1021/acsbiomaterials.1c01121

42. Brown D A, Chou Y F, Beygui R E, Dunn C Y. Gelatin-Embedded Cell–Polymer Constructs for Histological Cryosectioning. Wiley InterScience.; 2005; 79-85. DOI: http://dx.doi.org/10.1002/jbm.b.30116

43. Singh Y, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF Biomaterials Science, Polymer Edition.; 2022; 33(13),1704–1758. https://doi.org/10.1080/09205063.2022.2068943

44. Gonz L, Ibeas S, Fern A, Antonio J, Ruiz R, Vallejos S. Polymer film as starch azure container for the easy diastase activity determination in honey. Food Chemistry.; 2021; 355; 129629; 1-5. https://doi.org/10.1016/j.foodchem.2021.129629

45. Hemamalini T, Giri V R. Comprehensive review on electrospinning of starch polymer for biomedical applications. International Journal of Biological Macromolecules.; 2017; http://dx.doi.org/doi:10.1016/j.ijbiomac.2017.08.079

46. Brumer H. Sticking to starch. J. Biol. Chem.; 2022; 298(6); 102049; 1-2. https://doi.org/10.1016/j.jbc.2022.102049

47. McDermott M, Heritage P. Polymer-grafted starch micro particles for oral and nasal immunisation. Immunology and cell biology.; 1998; 76; 256-262.

48. Lapointe M, Barbeau B. Dual starch polyacrylamide polymer system for improved flocculation. Water Research.; 2017; 124; 202e209. http://dx.doi.org/10.1016/j.watres.2017.07.044

49. Yazdia M, Taghizadehb A, Taghizadehb M, Stadlera F. Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release.; 2020; 326; 523-543 https://doi.org/10.1016/j.jconrel.2020.07.028

50. Zucca P, Sanjust E. Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules.; 2016; 21; 1577; 1-25. doi: http://dx.doi.org/10.3390/molecules21111577

51. Venkataramana M, Sanyal S. Immobilized -cyclodextrin polymer coupled to agarose gel properly refolding recombinant Staphylococcus aureus elongation factor-G in combination with detergent micelle. Protein Expression and Purification.; 2006; 45; 72–79. doi: http://dx.doi.org/10.1016/j.pep.2005.05.006

52. Miguel S, Brancal H. Thermo-responsive chitosan–agarose hydrogel for skin regeneration. Carbohydrate Polymers.; 2014; 111; 366–373

53. Trudicova M, Adamkova K, Hrubanova K. Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tuneable Rheological and Transport Performance Polymers.; 2020; 12; 2561; 1-25. doi: http://dx.doi.org/10.3390/polym12112561

54. Costantino M, Belluzo M, Cortizo A. Terpolymer-chitosan membranes as biomaterial J Biomed Mater Res.; 2021; 1–11. DOI: http://dx.doi.org/10.1002/jbm.a.37295

55. Cohen E, Poverenov E. Hydrophilic Chitosan Derivatives: Synthesis and Applications. Chem. Eur. J.; 2022; e202202156; 1-13.

56. Pestov A. Bratskaya S. Chitosan and Its Derivatives as Highly Efficient Polymer Ligands. Molecules.; 2016; 21; 330; 1-35. doi: http://dx.doi.org/10.3390/molecules21030330

57. Bonin M, Sreekumar S, Moerschbacher B. Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. Int. J. Mol. Sci.; 2020; 21; 7835; 1-22 doi: http://dx.doi.org/10.3390/ijms21217835

58. Li J, Tian X, Fu J, Poon T. Chitosan Natural Polymer Material for Improving Antibacterial Properties of Textiles. ACS Appl. Bio Mater.; 2021; https://doi.org/10.1021/acsabm.1c00078

59. Rena Y, Shenb M, Dinga Y, Yuan M. Study on preparation and controlled release in vitro of bergenin-amino polylactic acid polymer. International Journal of Biological Macromolecules.; 2020; 153; 650–660. https://doi.org/10.1016/j.ijbiomac.2020.02.205

60. Esmail M, Farag M, Mohamed A. Resorbable polylactic acid polymer plates in repair of blow-out orbital floor fractures. European Journal of Ophthalmology.; 2020; 00(0) 1-7.

61. Boix V. Polylactic acid implants. A new smile for lipoatrophic faces? AIDS.; 2003; 17(17); 2533-2535. DOI: http://dx.doi.org/10.1097/01.aids.0000088228.55968.eb

62. Sun J, Walker J. Characterization of commercial PLGAs by NMR spectroscopy. Drug Delivery and Translational Research.; 2021; 1-10. https://doi.org/10.1007/s13346-021-01023-3

63. Srujana S, Anjamma M, Alimuddin, Singh B, Dhakar RC, Natarajan S, Hechhu R. A Comprehensive Study on the Synthesis and Characterization of TiO2 Nanoparticles Using Aloe vera Plant Extract and Their Photocatalytic Activity against MB Dye. Adsorption Science & Technology. 2022;2022 https://doi.org/10.1155/2022/7244006

64. Generali M, Kehl D, Parker K. Comparative Analysis of Poly-glycolic Acid-based Hybrid Polymer Starter Matrices for In vitro Tissue Engineering. Colloids and Surfaces B: Biointerfaces.; 2017; 1-26. http://dx.doi.org/doi:10.1016/j.colsurfb.2017.06.046

65. Kapoor D, Bhatia A, Kaur R, Sharma R. PLGA: a unique polymer for drug delivery. Ther. Deliv.; 2015; 6(1); 41–58.

66. Astete C, Sabliov C. Journal of Biomaterials Science, Polymer Edition. J. Biomater. Sci. Polymer Edn.; 2006; 17(3); 247–289. https://doi.org/10.1163/156856206775997322

67. Zada M, Basu A, Hagigit T, Schlinger R. Alternating Poly (Ester-Anhydride) by Insertion Polycondensation. Biomac.; 2016; 1-19. DOI: http://dx.doi.org/10.1021/acs.biomac.6b00523

68. Layre A, Gref R, Richard J, Requier D. Nanoencapsulation of a crystalline drug. International Journal of Pharmaceutics.; 2005; 298; 323–327. doi: http://dx.doi.org/10.1016/j.ijpharm.2005.02.039

69. Parajapati S, Maurya S, Das M, Tilak VK, Verma KK, Dhakar RC. Potential Application of Dendrimers in Drug Delivery: A Concise Review and Update. Journal of Drug Delivery and Therapeutics. 2016;6(2):71-88 https://doi.org/10.22270/jddt.v6i2.1195

70. Ponnurangam S, Somasundaran P. Biocompatibility of polysebacic anhydride microparticles with chondrocytes in engineered cartilage. Colloids and Surfaces B: Biointerfaces.; 2015; 136; 207–213. http://dx.doi.org/10.1016/j.colsurfb.2015.08.040

71. Shikanov A, Domb J. Poly(sebacic acid-co-ricinoleic acid) Biodegradable Injectable in Situ Gelling Polymer. Biomacromolecules.; 2006; 7; 288-296.

72. Deng Z, Riga J, Lienkamp K. Degradable Polymer Films Made from Poly(salicylic-acid co-sebacic acid) and Poly(sebacic anhydride)/Poly(adipic anhydride) Blends: Degradation Kinetics and Use as Sacrificial Layers for Polymer Multilayer Systems. Macromol. Chem. Phys.; 2020; 221; 2000106; 1-9. DOI: http://dx.doi.org/10.1002/macp.202000106

73. Psarrou M, Kothri M, Vamvakaki M. Photo and Acid-Degradable Polyacylhydrazone Doxorubicin Conjugates. Polymers.; 2021; 13; 2461; 1-20. https://doi.org/10.3390/polym13152461

74. Lindström A, Hakkarainen M. Development of a solid-phase extraction method for simultaneous extraction of adipic acid, succinic acid and 1,4-butanediol formed during hydrolysis of poly(butylene adipate) and poly(butylene succinate). Journal of Chromatography A.; 2004; 1022; 171–177. doi: http://dx.doi.org/10.1016/j.chroma.2003.09.036

75. Q Dasgupta, Chatterjee K, Madras G. Physical insights into salicylic acid release from poly(anhydrides). Phys. Chem. Chem. Phys.; 2016; 18; 2112-2119. DOI: http://dx.doi.org/10.1039/c5cp06858d

76. Dhakar RC, Maurya SD, Pooniya BK, Bairwa N, Gupta M, Moringa: The Herbal Gold to Combat Malnutrition, Chronicles of Young Scientists, 2011;2(3):119-125. https://doi.org/10.4103/2229-5186.90887

77. Lempart J, Jakob U. Role of Polyphosphate in Amyloidogenic Processes. Cold Spring Harb Perspect Biol.; 2019; 1-13. doi: http://dx.doi.org/10.1101/cshperspect.a034041

78. Kulakovskaya N R, Zemskova M Y, Kulakovskaya T V. Inorganic Polyphosphate and Cancer. Biochemistry (Moscow); 2018; 83(8); 961-968. DOI: http://dx.doi.org/10.1134/S0006297918080072

79. Lev S, Desmarini D. Inositol polyphosphate–protein interactions: Implications for microbial pathogenicity. Cellular Microbiology.; 2021; 23:e13325; 1-12. https://doi.org/10.1111/cmi.13325

80. Bowlin M Q, Gray M J. Inorganic polyphosphate in host and microbe biology. Trends in Microbiology.; 2021; 1-11. https://doi.org/10.1016/j.tim.2021.02.002

81. A Zennifer, P Senthilvelan, S Sethuraman. Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Carbohydrate Polymers.; 2021; 256; 11756; 1-18. https://doi.org/10.1016/j.carbpol.2020.117561

82. Wang Y, Kanie K, Sugimoto A, Takezawa T. Bi-layered carboxymethyl cellulose-collagen vitrigel dual-surface adhesion-prevention membrane. Carbohydrate Polymers.; 2022; 285; 119223; 1-10. https://doi.org/10.1016/j.carbpol.2022.119223

83. Kanikireddya V, Varaprasad K, Jayaramudu T, Karthikeyan C. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. International Journal of Biological Macromolecules.; 2020; 164; 963–975. https://doi.org/10.1016/j.ijbiomac.2020.07.160

84. Pornpitchanarong C, Ngawhirunpat J, Rojanarata T. Maleimide-functionalized carboxymethyl cellulose: A novel mucoadhesive polymer for transmucosal drug delivery. Carbohydrate Polymers.; 2022; 288; 119368. https://doi.org/10.1016/j.carbpol.2022.119368

85. Mahnaj T, Ahmed S. Characterization of ethyl cellulose polymer. Pharmaceutical Development and Technology.; 2013; 18(5); 982–989. DOI: http://dx.doi.org/10.3109/10837450.2011.604781

86. Cui Y, Zhang H, Wang J. Preparation of ethyl cellulose particles with different morphologies through microfluidics. Soft Matter.; 2022; 18; 1455; DOI: http://dx.doi.org/10.1039/d1sm01706c

87. Davidovich-Pinhas M, Barbu S, Marangoni A G, the gelation of oil using ethyl cellulose. Carbohydrate Polymers.; 2014; http://dx.doi.org/10.1016/j.carbpol.2014.10.035

88. Everaerts M, Cool L, Adriaensen P, Reekmans G, Baatsen P. Investigating the Potential of Ethyl Cellulose and Porosity Increasing Agent as a Carrier System for the Formulation of Amorphous Solid Dispersions. Mol. Pharmaceutics.; 2022; 19; 2712−2724. https://doi.org/10.1021/acs.molpharmaceut.1c00972.

89. Halldorssana S, Lucumi E. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics 2015; 63; 218–231. http://dx.doi.org/10.1016/j.bios.2014.07.029

90. Demetrio K, Justina M, Moresch A. Polydimethylsiloxane/nano calcium phosphate composite tracheal stents: Mechanical and physiological properties. Wiley Online Library.; 2018; 1-9. DOI: http://dx.doi.org/10.1002/jbm.b.34145

91. Regehr K, Domenech M. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip.; 2009; 9; 2132–2139. DOI: http://dx.doi.org/10.1039/b903043c

92. Kartalov E, Scherer A. The Analytical Approach to Polydimethylsiloxane Microfluidic Technology and Its Biological Applications. Journal of Nanoscience and Nanotechnology.; 2006; 6(8); 2265–2277. doi: http://dx.doi.org/10.1166/jnn.2006.504

93. Lee S, Kim S. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials.; 2011;32; 9434-9443. http://dx.doi.org/10.1016/j.biomaterials.2011.08.042

94. Hu J, Jan J. Polyelectrolyte complex-silica hybrid colloidal particles decorated with different polyelectrolytes. Journal of Colloid and Interface Science.; 2015; 438; 94–101. http://dx.doi.org/10.1016/j.jcis.2014.09.063

95. Suzuki N, Yamauchi Y. Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers. Phys. Chem. Chem. Phys.; 2012; 14; 7427–7432. DOI: http://dx.doi.org/10.1039/c2cp40356k

96. Chen W, She K, Min X, Qiu L. Self-assembly of the polymer brush-grafted silica colloidal array for recognition of proteins. Chen W. et al.; 2017; DOI http://dx.doi.org/10.1007/s00216-017-0477-5

97. Jungbauer A, Hahn R. Polymethacrylate monoliths for preparative and industrial separation of biomolecular assemblies. Journal of Chromatography A, 2008; 1184; 62–79. doi: http://dx.doi.org/10.1016/j.chroma.2007.12.087

98. Wang W, Shao A, Zhang N, Fang J. Cationic Polymethacrylate Modified Liposomes Significantly Enhanced Doxorubicin Delivery and Antitumor Activity. Scientific Reports.; 2017; 7; 1-10. DOI: http://dx.doi.org/10.1038/srep43036

99. Roberts M, Ongkudon C, Forde G, Danquah M. Versatility of polymethacrylate monoliths for chromatographic purification of biomolecules. J. Sep. Sci.; 2009; 32; 2485–2494. DOI http://dx.doi.org/10.1002/jssc.200900309

100. Cilurzo F, Minghetti P, Selmin F, Casiraghi A, Montanari L. Polymethacrylate salts as new low-swellable mucoadhesive materials. Journal of Controlled Release 2003; 88; 43–53. doi: http://dx.doi.org/10.1016/S0168-3659(02)00459-5

101. Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules.; 2021; 26; 5905; 1-45. https://doi.org/10.3390/molecules26195905

102. Vinothini K, Rajan M. Mechanism for the Nano Based Drug Delivery System. Characterization and Biology of Nanomaterials for Drug Delivery. 2019; 219-263. https://doi.org/10.1016/B978-0-12-814031-4.00009-X

103. Bhowmik D, Gopinath H, Kumar P B. Controlled Release Drug Delivery Systems. “THE PHARMA INNOVATION” JOURNAL.; 2012; 1(10); 24-32.

104. Wua J, Zhang Z, Gud J, Zhoua W, Liangd X, Zhou G. Mechanism of a long-term controlled drug release system based on simple blended electro spun fibers. Journal of Controlled Release.; 2020; 320; 337–346. https://doi.org/10.1016/j.jconrel.2020.01.020

105. Bareford L M, Swaan P W. Endocytic mechanisms for targeted drug delivery. Advanced Drug Delivery Reviews.; 2007; 59; 748–758.

106. Prabahar K, Alanazi Z, Qushawy M. Targeted Drug Delivery System: Advantages, Carriers and Strategies. Indian Journal of Pharmaceutical Education and Research.; 2021 55(2); 346-353. DOI: http://dx.doi.org/10.5530/ijper.55.2.72

107. Li J, Wang Q, Xia G, Adilijiang N, Li Y, Hou Z, Fan Z. Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy. Pharmaceutics; 2023; 15; 2233. 1-28 https://doi.org/10.3390/pharmaceutics15092233

108. Maurya SD, Prajapati S, Gupta A, Saxena G, Dhakar RC, Formulation Development and Evaluation of Ethosome of Stavudine, Indian J.Pharm. Educ. Res. 2010;44(1)

109. Maurya SD, Aggarwal S, Tilak VK, Dhakar RC, Singh A, Maurya G, Enhanced Transdermal Delivery of Indinavir Sulfate via Transfersomes, Pharmacie Globale (IJCP) 2010;1(06):1-7

110. Pan X, Veroniaina H, Su N, Sha K, Jiang F. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian Journal of Pharmaceutical Sciences.; 2021; 16; 687–703. https://doi.org/10.1016/j.ajps.2021.05.003

111. Mali S. Delivery systems for gene therapy. Indian Journal of Human Genetics.; 2013; 19(1); 1-6.

112. Sung Y K, Kim S W. Recent advances in the development of gene delivery systems; Sung and Kim Biomaterials Research.; 2019; 23(8); 1-7. https://doi.org/10.1186/s40824-019-0156-z

113. Wardhana A, Valeria M. Tissue Engineering and Regenerative Medicine: A Review. Jurnal Plastik Rekonstruksi, 2020; 7(1); 10-17. OI: 10.14228/jpr.v7i1.278

114. Meretsky C R, Polychronis A, Liovas D, Schiuma A T. Advances in Tissue Engineering and Its Future in Regenerative Medicine Compared to Traditional Reconstructive Techniques: A Comparative Analysis. Meretsky et al. Cureus.; 2024; 16(9): e68872; 1-16. DOI http://dx.doi.org/10.7759/cureus.68872

115. Almouemen N, Kelly H M. Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Computational and Structural Biotechnology Journal; 2019; 17; 591–598. https://doi.org/10.1016/j.csbj.2019.04.008

116. Alaswad S O, Mahmoud A S, Arunachalam P. Recent Advances in Biodegradable Polymers and Their Biological Applications: A Brief Review. Polymers.; 2022; 14; 4924; 1-15. https://doi.org/10.3390/polym14224924

117. Gandhi K J, Deshmane S V, Biyani K R. Polymers in Pharmaceutical Drug Delivery System: A Review. Int. J. Pharm. Sci. Rev. Res.,2012; 14(2); 57‐66.

Published

2025-10-15
Statistics
Abstract Display: 256
PDF Downloads: 114
PDF Downloads: 29

How to Cite

1.
Mathane AM, Hatwar PR, Bakal RL. Biodegradable Polymer Use in  Drug Delivery Systems: A Comprehensive Review. J. Drug Delivery Ther. [Internet]. 2025 Oct. 15 [cited 2025 Nov. 15];15(10):201-1. Available from: https://jddtonline.info/index.php/jddt/article/view/7421

How to Cite

1.
Mathane AM, Hatwar PR, Bakal RL. Biodegradable Polymer Use in  Drug Delivery Systems: A Comprehensive Review. J. Drug Delivery Ther. [Internet]. 2025 Oct. 15 [cited 2025 Nov. 15];15(10):201-1. Available from: https://jddtonline.info/index.php/jddt/article/view/7421

Most read articles by the same author(s)

> >>