Biodegradable Polymer Use in Drug Delivery Systems: A Comprehensive Review
Abstract
Biodegradable polymers have revolutionized the field of drug delivery systems, offering a promising solution to the limitations of traditional drug administration techniques. These polymers can be designed to degrade at specific rates, releasing therapeutics in a controlled and sustained manner, thereby improving bioavailability and reducing side effects. This review provides an overview of biodegradable polymers, including natural polymers like collagen, albumin, and gelatin, as well as synthetic polymers like polyesters, polyorthoesters, and polyphosphoesters. Here discuss the types of biodegradable polymers, their mechanisms, and benefits in drug delivery systems, including controlled release, targeted release, transdermal delivery, gene delivery, and tissue engineering. The review also highlights the future prospects and trends in biodegradable polymers, including the development of new polymers, blends, and nanoparticles.
Keywords: Biodegradable polymers, Drug delivery systems, Controlled release, Targeted delivery, Regenerative medicine
Keywords:
Biodegradable polymers, Drug delivery systems, Controlled release, Targeted delivery, Regenerative medicineDOI
https://doi.org/10.22270/jddt.v15i10.7421References
1. Bachhav R, Bachhav P, Deore R, Sonawane G, Surana K, Mahajan S. Biodegradable Polymers in Drug Delivery: A Detailed Review. Asian Journal of Pharmaceutical Research (AJPRes.).; 2025; 15(2); 153-158. DOI: 10.52711/2231-5691.2025.00025
2. Baidurah S. Methods of Analyses for Biodegradable Polymers: A Review. Polymers 2022; 14; 4928. https://doi.org/10.3390/polym14224928
3. Maio E D, Iannace S. Biodegradable composites. wiley encyclopedia of composites, 2011;1-18.
4. Samir A, Ashour F H, Hakim A A, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. npj Materials Degradation. 2022; 6:68; 1-28. https://doi.org/10.1038/s41529-022-00277-7
5. Rigolin T R, Takahashi M R, Kondo D L, Bettini S H. Compatibilizer Acidity in Coir-Reinforced PLA Composites: Matrix Degradation and Composite Properties. Journal of Polymers and the Environment;2019;27;1096–1104 https://doi.org/10.1007/s10924-019-01411-4
6. Peng X, Dong K, Wu Z, Wang J. A review on emerging biodegradable polymers for environmentally benign transient electronic skins. J. Mater. Sci.; 2021;56; 16765–16789. https://doi.org/10.1007/s10853-021-06323-0
7. Taha T H, Saied A M, Elnouby M, Hashem M, Alamri S, Morsy K. Profitable exploitation of biodegradable polymer including chitosan blended potato peels’ starch waste as an alternative source of petroleum plastics. Biomass Conversion and Biorefinery.; 2022; https://doi.org/10.1007/s13399-021-02244-9
8. Vroman I, Tighzert L. Biodegradable Polymers. Materials.; 2009; 2; 307-344; doi:10.3390/ma2020307
9. Doppalapudi S, Jain A, Domb A J, Khan W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opinion on Drug Delivery, 2016; 13:6; 891-909. DOI: http://dx.doi.org/10.1517/17425247.2016.1156671
10. Zhu J, Wang C. Biodegradable plastics: Green hope or greenwashing? Marine Pollution Bulletin 161 (2020) 111774. https://doi.org/10.1016/j.marpolbul.2020.111774
11. Askunkel A. Polymers, Biodegradable. Ullmann’s encycl. ind. chem. 1–29 (2016).
12. B Ghanbarzadeh, H Almasi. Biodegradable Polymers. Biodegradation-life of science, 2013; 141–185. http://dx.doi.org/10.5772/56230
13. Zhang L, Zhong J, Ren X. Natural Fiber-Based Bio composites. Green bio composites; 2017; 31–70.
14. Narayana S, Park S, Lee M. Surface modification of magnesium and its alloys for biomedical applications: opportunities and challenges. Surface Modification of Magnesium and its Alloys for Biomedical Applications. 2015; 29-87. http://dx.doi.org/10.1016/B978-1-78242-077-4.00002-4
15. Pedersen T H, Conti F. Waste Management. Elsevier; 2017; 1-8. http://dx.doi.org/10.1016/j.wasman.2017.06.002
16. Idrees H, Syed Z J, Aneela S, Khan R U, Zhang X, Hassan S U. A Review of Biodegradable Natural Polymer Based Nanoparticles for Drug Delivery Applications. Nanomaterials 2020; 10; 1970; doi: http://dx.doi.org/10.3390/nano10101970
17. Prajapati S, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. European Polymer Journal; 2019; 120; 10919. https://doi.org/10.1016/j.eurpolymj.2019.08.018
18. Kluin O S, Henny C, Henk J B, Neut D. Biodegradable vs. non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin. Drug Deliv. (2013) 10(3):341-351.
19. Dr. Rajenderkumar. Comparative Study of Bio-Degradable Polymer and Non-Biodegradable Polymer. International Journal of Engineering, Science and Mathematics. 2018; 7(3); 84-90.
20. Gupta N, Sarkar C, Saha S. Biodegradable Polymers-Carriers for Drug Delivery. Chapter Biodegradable Polymers and Their Emerging Applications. 2023; 149-168.
21. DeFrates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, Hu X. Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. Int. J. Mol. Sci. 2018, 19, 1717. 1-20.
22. Dufresne A. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals. Molecules. 2010; 15; 4111-4128; doi:10.3390/molecules15064111
23. Rolf J M, Kleeberg I, Deckwer W D. Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology.; 2001; 86; 87-95.
24. Jain J, Chitkara D, Kumar N. Polyanhydrides as localized drug delivery carrier: an update. Expert Opin. Drug Deliv.; 2008; 5(8); 889-907.
25. Barrett S E, Guidry E N. Liver-Targeted SiRNA Delivery Using Biodegradable Poly(amide) Polymer Conjugates.; Chapter 2.; 2016; 1364; 11-25. DOI http://dx.doi.org/10.1007/978-1-4939-3112-5-2 .
26. Chen L, Mignani S, Caminade A, Majoral J. Metal-based phosphorus dendrimers as novel nanotherapeutic strategies to tackle cancers: A concise overview. WIREs Nanomed Nanobiotechnol. 2019; e1577.; 1-12. DOI: 10.1002/wnan.1577
27. Madbouly S A. Waterborne Polyurethane Dispersions and Thin Films: Biodegradation and Antimicrobial Behaviours. Molecules.; 2021; 26, 961 2-23. https://doi.org/10.3390/molecules26040961
28. Rose M, Palkovits R. Cellulose-Based Sustainable Polymers: State of the Art and Future Trends. Macromol. Rapid Commun.; 2011; 32; 1299–1311. DOI: 10.1002/marc.201100230
29. Shi X, Fukazawa D, Sharma V, Yuliang J, Pruitt J, Ishihara K. Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state. Colloids and Surfaces B: Biointerfaces; 2021; 199; 111539. 1-7. https://doi.org/10.1016/j.colsurfb.2020.111539
30. Vargas M G, Chomón C G, nos M G, Lorenzob A, Bucio E, Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. International Journal of Pharmaceutics.; 2014; 461; 286– 295.
31. Fontea P, Araújo F, Silva C, Pereira C, Reis S, Santos H, Sarmento B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnology Advances.; 2015; 33; 1342–1354. http://dx.doi.org/10.1016/j.biotechadv.2015.02.010
32. Blum S R. The Collagen Family. Cold Spring Harb Perspect Biol.; 2011; 1-19. doi: 10.1101/cshperspect.a004978
33. Sorushanova A, Delgado L. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv. Mater.; 2018; 1801651; 1-39. DOI: http://dx.doi.org/10.1002/adma.201801651
34. Ferreira A, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomaterialia.; 2012; 8; 3191–3200. http://dx.doi.org/10.1016/j.actbio.2012.06.014
35. Gelse K, Poschl E, Aigner T. Collagens - structure, function and biosynthesis Advanced Drug Delivery Reviews.; 2003; 55; 1531–1546 doi: http://dx.doi.org/10.1016/j.addr.2003.08.002
36. Brodsky B, Persikov A. Molecular Structure of the Collagen Triple helix. Advances In Protein Chemistry.; 2005; 70; DOI: http://dx.doi.org/10.1016/S0065-3233(04)70009-1 .
37. Jiang Y, Stenzel M. Drug Delivery Vehicles Based on Albumin–Polymer Conjugates. Macromol. Biosci.; 2016; 16; 791−802. DOI: http://dx.doi.org/10.1002/mabi.201500453
38. Xu Y, Tang L, Qu Y. Dual-modified albumin-polymer nanocomplexes with enhanced in vivo stability for hepatocellular carcinoma therapy. Colloids and Surfaces. Bio interfaces.; 2021; 201; 111642 https://doi.org/10.1016/j.colsurfb.2021.111642
39. Tian L, Stenzel M. Development of an Albumin−Polymer Bioconjugate via Covalent Conjugation and Supramolecular Interactions. Bioconjugate Chem.; 2022; 33; 321−332. https://doi.org/10.1021/acs.bioconjchem.1c00536
40. Masoumeh S, Mahdavi M, Enderami S. A novel hybrid polymer of PCL/fish gelatin nanofibrous scaffold improves proliferation and differentiation of Wharton's jelly- derived mesenchymal cells into islet- like cells. Artificial Organs. 2022; 46; 1491–1503. DOI: http://dx.doi.org/10.1111/aor.14257
41. Ghalei S, Dounglass M, Handa H. Nitric Oxide Releasing Gelatin Methacryloyl/Silk Fibroin Interpenetrating Polymer Network Hydrogels for Tissue Engineering Applications. ACS Biomater. Sci. Eng.; 2022; 8; 273−283. https://doi.org/10.1021/acsbiomaterials.1c01121
42. Brown D A, Chou Y F, Beygui R E, Dunn C Y. Gelatin-Embedded Cell–Polymer Constructs for Histological Cryosectioning. Wiley InterScience.; 2005; 79-85. DOI: http://dx.doi.org/10.1002/jbm.b.30116
43. Singh Y, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF Biomaterials Science, Polymer Edition.; 2022; 33(13),1704–1758. https://doi.org/10.1080/09205063.2022.2068943
44. Gonz L, Ibeas S, Fern A, Antonio J, Ruiz R, Vallejos S. Polymer film as starch azure container for the easy diastase activity determination in honey. Food Chemistry.; 2021; 355; 129629; 1-5. https://doi.org/10.1016/j.foodchem.2021.129629
45. Hemamalini T, Giri V R. Comprehensive review on electrospinning of starch polymer for biomedical applications. International Journal of Biological Macromolecules.; 2017; http://dx.doi.org/doi:10.1016/j.ijbiomac.2017.08.079
46. Brumer H. Sticking to starch. J. Biol. Chem.; 2022; 298(6); 102049; 1-2. https://doi.org/10.1016/j.jbc.2022.102049
47. McDermott M, Heritage P. Polymer-grafted starch micro particles for oral and nasal immunisation. Immunology and cell biology.; 1998; 76; 256-262.
48. Lapointe M, Barbeau B. Dual starch polyacrylamide polymer system for improved flocculation. Water Research.; 2017; 124; 202e209. http://dx.doi.org/10.1016/j.watres.2017.07.044
49. Yazdia M, Taghizadehb A, Taghizadehb M, Stadlera F. Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release.; 2020; 326; 523-543 https://doi.org/10.1016/j.jconrel.2020.07.028
50. Zucca P, Sanjust E. Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules.; 2016; 21; 1577; 1-25. doi: http://dx.doi.org/10.3390/molecules21111577
51. Venkataramana M, Sanyal S. Immobilized -cyclodextrin polymer coupled to agarose gel properly refolding recombinant Staphylococcus aureus elongation factor-G in combination with detergent micelle. Protein Expression and Purification.; 2006; 45; 72–79. doi: http://dx.doi.org/10.1016/j.pep.2005.05.006
52. Miguel S, Brancal H. Thermo-responsive chitosan–agarose hydrogel for skin regeneration. Carbohydrate Polymers.; 2014; 111; 366–373
53. Trudicova M, Adamkova K, Hrubanova K. Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tuneable Rheological and Transport Performance Polymers.; 2020; 12; 2561; 1-25. doi: http://dx.doi.org/10.3390/polym12112561
54. Costantino M, Belluzo M, Cortizo A. Terpolymer-chitosan membranes as biomaterial J Biomed Mater Res.; 2021; 1–11. DOI: http://dx.doi.org/10.1002/jbm.a.37295
55. Cohen E, Poverenov E. Hydrophilic Chitosan Derivatives: Synthesis and Applications. Chem. Eur. J.; 2022; e202202156; 1-13.
56. Pestov A. Bratskaya S. Chitosan and Its Derivatives as Highly Efficient Polymer Ligands. Molecules.; 2016; 21; 330; 1-35. doi: http://dx.doi.org/10.3390/molecules21030330
57. Bonin M, Sreekumar S, Moerschbacher B. Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. Int. J. Mol. Sci.; 2020; 21; 7835; 1-22 doi: http://dx.doi.org/10.3390/ijms21217835
58. Li J, Tian X, Fu J, Poon T. Chitosan Natural Polymer Material for Improving Antibacterial Properties of Textiles. ACS Appl. Bio Mater.; 2021; https://doi.org/10.1021/acsabm.1c00078
59. Rena Y, Shenb M, Dinga Y, Yuan M. Study on preparation and controlled release in vitro of bergenin-amino polylactic acid polymer. International Journal of Biological Macromolecules.; 2020; 153; 650–660. https://doi.org/10.1016/j.ijbiomac.2020.02.205
60. Esmail M, Farag M, Mohamed A. Resorbable polylactic acid polymer plates in repair of blow-out orbital floor fractures. European Journal of Ophthalmology.; 2020; 00(0) 1-7.
61. Boix V. Polylactic acid implants. A new smile for lipoatrophic faces? AIDS.; 2003; 17(17); 2533-2535. DOI: http://dx.doi.org/10.1097/01.aids.0000088228.55968.eb
62. Sun J, Walker J. Characterization of commercial PLGAs by NMR spectroscopy. Drug Delivery and Translational Research.; 2021; 1-10. https://doi.org/10.1007/s13346-021-01023-3
63. Srujana S, Anjamma M, Alimuddin, Singh B, Dhakar RC, Natarajan S, Hechhu R. A Comprehensive Study on the Synthesis and Characterization of TiO2 Nanoparticles Using Aloe vera Plant Extract and Their Photocatalytic Activity against MB Dye. Adsorption Science & Technology. 2022;2022 https://doi.org/10.1155/2022/7244006
64. Generali M, Kehl D, Parker K. Comparative Analysis of Poly-glycolic Acid-based Hybrid Polymer Starter Matrices for In vitro Tissue Engineering. Colloids and Surfaces B: Biointerfaces.; 2017; 1-26. http://dx.doi.org/doi:10.1016/j.colsurfb.2017.06.046
65. Kapoor D, Bhatia A, Kaur R, Sharma R. PLGA: a unique polymer for drug delivery. Ther. Deliv.; 2015; 6(1); 41–58.
66. Astete C, Sabliov C. Journal of Biomaterials Science, Polymer Edition. J. Biomater. Sci. Polymer Edn.; 2006; 17(3); 247–289. https://doi.org/10.1163/156856206775997322
67. Zada M, Basu A, Hagigit T, Schlinger R. Alternating Poly (Ester-Anhydride) by Insertion Polycondensation. Biomac.; 2016; 1-19. DOI: http://dx.doi.org/10.1021/acs.biomac.6b00523
68. Layre A, Gref R, Richard J, Requier D. Nanoencapsulation of a crystalline drug. International Journal of Pharmaceutics.; 2005; 298; 323–327. doi: http://dx.doi.org/10.1016/j.ijpharm.2005.02.039
69. Parajapati S, Maurya S, Das M, Tilak VK, Verma KK, Dhakar RC. Potential Application of Dendrimers in Drug Delivery: A Concise Review and Update. Journal of Drug Delivery and Therapeutics. 2016;6(2):71-88 https://doi.org/10.22270/jddt.v6i2.1195
70. Ponnurangam S, Somasundaran P. Biocompatibility of polysebacic anhydride microparticles with chondrocytes in engineered cartilage. Colloids and Surfaces B: Biointerfaces.; 2015; 136; 207–213. http://dx.doi.org/10.1016/j.colsurfb.2015.08.040
71. Shikanov A, Domb J. Poly(sebacic acid-co-ricinoleic acid) Biodegradable Injectable in Situ Gelling Polymer. Biomacromolecules.; 2006; 7; 288-296.
72. Deng Z, Riga J, Lienkamp K. Degradable Polymer Films Made from Poly(salicylic-acid co-sebacic acid) and Poly(sebacic anhydride)/Poly(adipic anhydride) Blends: Degradation Kinetics and Use as Sacrificial Layers for Polymer Multilayer Systems. Macromol. Chem. Phys.; 2020; 221; 2000106; 1-9. DOI: http://dx.doi.org/10.1002/macp.202000106
73. Psarrou M, Kothri M, Vamvakaki M. Photo and Acid-Degradable Polyacylhydrazone Doxorubicin Conjugates. Polymers.; 2021; 13; 2461; 1-20. https://doi.org/10.3390/polym13152461
74. Lindström A, Hakkarainen M. Development of a solid-phase extraction method for simultaneous extraction of adipic acid, succinic acid and 1,4-butanediol formed during hydrolysis of poly(butylene adipate) and poly(butylene succinate). Journal of Chromatography A.; 2004; 1022; 171–177. doi: http://dx.doi.org/10.1016/j.chroma.2003.09.036
75. Q Dasgupta, Chatterjee K, Madras G. Physical insights into salicylic acid release from poly(anhydrides). Phys. Chem. Chem. Phys.; 2016; 18; 2112-2119. DOI: http://dx.doi.org/10.1039/c5cp06858d
76. Dhakar RC, Maurya SD, Pooniya BK, Bairwa N, Gupta M, Moringa: The Herbal Gold to Combat Malnutrition, Chronicles of Young Scientists, 2011;2(3):119-125. https://doi.org/10.4103/2229-5186.90887
77. Lempart J, Jakob U. Role of Polyphosphate in Amyloidogenic Processes. Cold Spring Harb Perspect Biol.; 2019; 1-13. doi: http://dx.doi.org/10.1101/cshperspect.a034041
78. Kulakovskaya N R, Zemskova M Y, Kulakovskaya T V. Inorganic Polyphosphate and Cancer. Biochemistry (Moscow); 2018; 83(8); 961-968. DOI: http://dx.doi.org/10.1134/S0006297918080072
79. Lev S, Desmarini D. Inositol polyphosphate–protein interactions: Implications for microbial pathogenicity. Cellular Microbiology.; 2021; 23:e13325; 1-12. https://doi.org/10.1111/cmi.13325
80. Bowlin M Q, Gray M J. Inorganic polyphosphate in host and microbe biology. Trends in Microbiology.; 2021; 1-11. https://doi.org/10.1016/j.tim.2021.02.002
81. A Zennifer, P Senthilvelan, S Sethuraman. Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Carbohydrate Polymers.; 2021; 256; 11756; 1-18. https://doi.org/10.1016/j.carbpol.2020.117561
82. Wang Y, Kanie K, Sugimoto A, Takezawa T. Bi-layered carboxymethyl cellulose-collagen vitrigel dual-surface adhesion-prevention membrane. Carbohydrate Polymers.; 2022; 285; 119223; 1-10. https://doi.org/10.1016/j.carbpol.2022.119223
83. Kanikireddya V, Varaprasad K, Jayaramudu T, Karthikeyan C. Carboxymethyl cellulose-based materials for infection control and wound healing: A review. International Journal of Biological Macromolecules.; 2020; 164; 963–975. https://doi.org/10.1016/j.ijbiomac.2020.07.160
84. Pornpitchanarong C, Ngawhirunpat J, Rojanarata T. Maleimide-functionalized carboxymethyl cellulose: A novel mucoadhesive polymer for transmucosal drug delivery. Carbohydrate Polymers.; 2022; 288; 119368. https://doi.org/10.1016/j.carbpol.2022.119368
85. Mahnaj T, Ahmed S. Characterization of ethyl cellulose polymer. Pharmaceutical Development and Technology.; 2013; 18(5); 982–989. DOI: http://dx.doi.org/10.3109/10837450.2011.604781
86. Cui Y, Zhang H, Wang J. Preparation of ethyl cellulose particles with different morphologies through microfluidics. Soft Matter.; 2022; 18; 1455; DOI: http://dx.doi.org/10.1039/d1sm01706c
87. Davidovich-Pinhas M, Barbu S, Marangoni A G, the gelation of oil using ethyl cellulose. Carbohydrate Polymers.; 2014; http://dx.doi.org/10.1016/j.carbpol.2014.10.035
88. Everaerts M, Cool L, Adriaensen P, Reekmans G, Baatsen P. Investigating the Potential of Ethyl Cellulose and Porosity Increasing Agent as a Carrier System for the Formulation of Amorphous Solid Dispersions. Mol. Pharmaceutics.; 2022; 19; 2712−2724. https://doi.org/10.1021/acs.molpharmaceut.1c00972.
89. Halldorssana S, Lucumi E. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics 2015; 63; 218–231. http://dx.doi.org/10.1016/j.bios.2014.07.029
90. Demetrio K, Justina M, Moresch A. Polydimethylsiloxane/nano calcium phosphate composite tracheal stents: Mechanical and physiological properties. Wiley Online Library.; 2018; 1-9. DOI: http://dx.doi.org/10.1002/jbm.b.34145
91. Regehr K, Domenech M. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip.; 2009; 9; 2132–2139. DOI: http://dx.doi.org/10.1039/b903043c
92. Kartalov E, Scherer A. The Analytical Approach to Polydimethylsiloxane Microfluidic Technology and Its Biological Applications. Journal of Nanoscience and Nanotechnology.; 2006; 6(8); 2265–2277. doi: http://dx.doi.org/10.1166/jnn.2006.504
93. Lee S, Kim S. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials.; 2011;32; 9434-9443. http://dx.doi.org/10.1016/j.biomaterials.2011.08.042
94. Hu J, Jan J. Polyelectrolyte complex-silica hybrid colloidal particles decorated with different polyelectrolytes. Journal of Colloid and Interface Science.; 2015; 438; 94–101. http://dx.doi.org/10.1016/j.jcis.2014.09.063
95. Suzuki N, Yamauchi Y. Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers. Phys. Chem. Chem. Phys.; 2012; 14; 7427–7432. DOI: http://dx.doi.org/10.1039/c2cp40356k
96. Chen W, She K, Min X, Qiu L. Self-assembly of the polymer brush-grafted silica colloidal array for recognition of proteins. Chen W. et al.; 2017; DOI http://dx.doi.org/10.1007/s00216-017-0477-5
97. Jungbauer A, Hahn R. Polymethacrylate monoliths for preparative and industrial separation of biomolecular assemblies. Journal of Chromatography A, 2008; 1184; 62–79. doi: http://dx.doi.org/10.1016/j.chroma.2007.12.087
98. Wang W, Shao A, Zhang N, Fang J. Cationic Polymethacrylate Modified Liposomes Significantly Enhanced Doxorubicin Delivery and Antitumor Activity. Scientific Reports.; 2017; 7; 1-10. DOI: http://dx.doi.org/10.1038/srep43036
99. Roberts M, Ongkudon C, Forde G, Danquah M. Versatility of polymethacrylate monoliths for chromatographic purification of biomolecules. J. Sep. Sci.; 2009; 32; 2485–2494. DOI http://dx.doi.org/10.1002/jssc.200900309
100. Cilurzo F, Minghetti P, Selmin F, Casiraghi A, Montanari L. Polymethacrylate salts as new low-swellable mucoadhesive materials. Journal of Controlled Release 2003; 88; 43–53. doi: http://dx.doi.org/10.1016/S0168-3659(02)00459-5
101. Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules.; 2021; 26; 5905; 1-45. https://doi.org/10.3390/molecules26195905
102. Vinothini K, Rajan M. Mechanism for the Nano Based Drug Delivery System. Characterization and Biology of Nanomaterials for Drug Delivery. 2019; 219-263. https://doi.org/10.1016/B978-0-12-814031-4.00009-X
103. Bhowmik D, Gopinath H, Kumar P B. Controlled Release Drug Delivery Systems. “THE PHARMA INNOVATION” JOURNAL.; 2012; 1(10); 24-32.
104. Wua J, Zhang Z, Gud J, Zhoua W, Liangd X, Zhou G. Mechanism of a long-term controlled drug release system based on simple blended electro spun fibers. Journal of Controlled Release.; 2020; 320; 337–346. https://doi.org/10.1016/j.jconrel.2020.01.020
105. Bareford L M, Swaan P W. Endocytic mechanisms for targeted drug delivery. Advanced Drug Delivery Reviews.; 2007; 59; 748–758.
106. Prabahar K, Alanazi Z, Qushawy M. Targeted Drug Delivery System: Advantages, Carriers and Strategies. Indian Journal of Pharmaceutical Education and Research.; 2021 55(2); 346-353. DOI: http://dx.doi.org/10.5530/ijper.55.2.72
107. Li J, Wang Q, Xia G, Adilijiang N, Li Y, Hou Z, Fan Z. Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy. Pharmaceutics; 2023; 15; 2233. 1-28 https://doi.org/10.3390/pharmaceutics15092233
108. Maurya SD, Prajapati S, Gupta A, Saxena G, Dhakar RC, Formulation Development and Evaluation of Ethosome of Stavudine, Indian J.Pharm. Educ. Res. 2010;44(1)
109. Maurya SD, Aggarwal S, Tilak VK, Dhakar RC, Singh A, Maurya G, Enhanced Transdermal Delivery of Indinavir Sulfate via Transfersomes, Pharmacie Globale (IJCP) 2010;1(06):1-7
110. Pan X, Veroniaina H, Su N, Sha K, Jiang F. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian Journal of Pharmaceutical Sciences.; 2021; 16; 687–703. https://doi.org/10.1016/j.ajps.2021.05.003
111. Mali S. Delivery systems for gene therapy. Indian Journal of Human Genetics.; 2013; 19(1); 1-6.
112. Sung Y K, Kim S W. Recent advances in the development of gene delivery systems; Sung and Kim Biomaterials Research.; 2019; 23(8); 1-7. https://doi.org/10.1186/s40824-019-0156-z
113. Wardhana A, Valeria M. Tissue Engineering and Regenerative Medicine: A Review. Jurnal Plastik Rekonstruksi, 2020; 7(1); 10-17. OI: 10.14228/jpr.v7i1.278
114. Meretsky C R, Polychronis A, Liovas D, Schiuma A T. Advances in Tissue Engineering and Its Future in Regenerative Medicine Compared to Traditional Reconstructive Techniques: A Comparative Analysis. Meretsky et al. Cureus.; 2024; 16(9): e68872; 1-16. DOI http://dx.doi.org/10.7759/cureus.68872
115. Almouemen N, Kelly H M. Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Computational and Structural Biotechnology Journal; 2019; 17; 591–598. https://doi.org/10.1016/j.csbj.2019.04.008
116. Alaswad S O, Mahmoud A S, Arunachalam P. Recent Advances in Biodegradable Polymers and Their Biological Applications: A Brief Review. Polymers.; 2022; 14; 4924; 1-15. https://doi.org/10.3390/polym14224924
117. Gandhi K J, Deshmane S V, Biyani K R. Polymers in Pharmaceutical Drug Delivery System: A Review. Int. J. Pharm. Sci. Rev. Res.,2012; 14(2); 57‐66.
Published
Abstract Display: 256
PDF Downloads: 114
PDF Downloads: 29 How to Cite
Issue
Section
Copyright (c) 2025 Aditya M. Mathane, Pooja R. Hatwar , Ravindra L. Bakal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.