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Abstract 
_______________________________________________________________________________________________________________ 

Biodegradable polymers have revolutionized the field of drug delivery systems, offering a 
promising solution to the limitations of traditional drug administration techniques. These 
polymers can be designed to degrade at specific rates, releasing therapeutics in a controlled and 
sustained manner, thereby improving bioavailability and reducing side effects. This review 
provides an overview of biodegradable polymers, including natural polymers like collagen, 
albumin, and gelatin, as well as synthetic polymers like polyesters, polyorthoesters, and 
polyphosphoesters. Here discuss the types of biodegradable polymers, their mechanisms, and 
benefits in drug delivery systems, including controlled release, targeted release, transdermal 
delivery, gene delivery, and tissue engineering. The review also highlights the future prospects and 
trends in biodegradable polymers, including the development of new polymers, blends, and 
nanoparticles.  

Keywords: Biodegradable polymers, Drug delivery systems, Controlled release, Targeted delivery, 
Regenerative medicine 

 

 

Introduction: 

Drug delivery systems (DDS), which aim to maximise 
therapeutic effectiveness while minimising side effects, 
are critical to therapy administration efficiency. 
Traditional drug administration techniques frequently 
have drawbacks such as systemic toxicity, rapid 
elimination, and low bioavailability. Because of their 
ability to release medicines in a controlled, sustained, 
and targeted manner, biodegradable polymers are now 
an essential component of sophisticated drug delivery 
systems 1. Biodegradable polymers are materials that can 
be degraded by various environmental microorganisms, 
such as bacteria and fungi, to produce water and carbon 
dioxide 2. Biodegradable polymers are being developed 
as an alternative to non-biodegradable polymer 
materials in a variety of applications 3. Biodegradation of 
biodegradable polymers is defined as the chemical 
decomposition of substances accomplished through the 
enzymatic work of microorganisms, resulting in a change 
in chemical composition, mechanical and structural 
properties, and the formation of metabolic products, 
which are environmentally friendly materials such as 
methane, water, biomass, and carbon dioxide 4. The most 
effective way to manage non-biodegradable plastic waste 

is to replace the usage of uneconomical non-
biodegradable materials for recycling or reuse with 
biodegradable polymers, which are environmentally 
friendly 5. Because of the environmental contamination 
caused by the usage of non-biodegradable materials, 
research and development on biodegradable materials 
has risen 6. Biodegradable polymers are materials that 
can function for a limited period before disintegrating 
into easily disposed products following a regulated 
process 7. They could be generated from a number of 
wastes or bioresources, including food, animal, and agro-
waste, as well as other sources including starch and 
cellulose4. Biodegradable plastics and polymers were 
first developed in the 1980s 8. Polyesters were the first 
successful biodegradable polymers created for suture 
materials 9. Bioplastics made from renewable resources 
are frequently less expensive than those made from 
microbial resources, causing producers to focus on 
producing bioplastics from renewable resources 7. The 
usage of biodegradable polymers has environmental 
benefits such as raw material regeneration, 
biodegradation, and reduced carbon dioxide emissions, 
which contribute to global warming 10. Biodegradable 
polymers can be consumed by microorganisms like 
bacteria and fungi, which then transform them into 
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methane, CO2, and H2O. The composition of the 
substance determines the biodegradation process 11. The 
biodegradation process is influenced by the polymer's 
molecular weight, shape, structure, and chemical and 
radiation treatments 12. Biopolymers are another name 
for biodegradable polymers 13. The use of biodegradable 
or renewable polymers offers an alternate option. 
Therefore, there is a considerable increase in the 
manufacture and use of bio-based and biodegradable 
polymer materials, which can help reduce environmental 
issues related to waste polymer materials 8. Research on 
renewable resources focusses on using corn, soy, 
sugarcane, potato, rice, or wheat, as well as oil-rich seeds 
or fermentation products, as raw materials to 
manufacture biopolymeric polymers 14. The use of 
biomass to make biopolymers offers numerous 
advantages, as biomass-derived polymers are 
biodegradable and very easy to recycle 8. Experts 
estimate that polymer manufacture consumes up to 7% 
of global oil and gas supplies 15.  

Biodegradable and Nonbiodegradable:  

1 Biodegradable polymers:  

Biodegradable polymers undergo degradation, non-
enzymatically and enzymatically and generate a 
harmless, biocompatible by-product 16. Biodegradable 
polymers have a notable emphasis on the chemistry in 
the scheme of new molecules in targeted drug delivery 
applications. The use of biocompatible polymers reduces 
the side effects of a given drug 17. Biodegradable 
biomaterials have no constant inflammatory effect, good 
permeability, and good therapeutic properties 18. 
Biodegradable polymers are materials that can be 

degraded by various environmental microorganisms, 
such as bacteria and fungi, into water and carbon dioxide 
2. Biodegradation methods or decomposition begin on 
the polymer surface as a result of the action of 
microorganisms' extracellular enzymes, which generate 
oligomers. These matching oligomers subsequently enter 
the microorganism cell, where they serve as carbon 
sources and are converted into CO2 and water 16. 

2 Nonbiodegradable polymer:  

Local antibody injection is carried out using clinically 
non-biodegradable polymers. Acrylic polymers, cellulose 
derivatives, and silicon are among the most common non-
biodegradable polymers 17. Polymethyl methacrylate 
(PMMA) is an acrylic-based, non-biodegradable polymer 
that is mostly employed in bone cement or PMMA beads 
18. Because of the drawbacks of non-biodegradable 
polymers, scientists are working on developing 
biodegradable, biocompatible polymer synthesis for a 
drug delivery system 16. The usage of nonbiodegradable 
polymer materials is dangerous to human health because 
they contain phthalates, which are chemical substances 
found in thermoplastics 17. Human exposure to these 
components comes through food consumption and has 
been linked to negative health impacts, including 
hormone disturbance 19. The most effective way to 
manage non-biodegradable plastic waste is to replace the 
usage of uneconomical non-biodegradable materials for 
recycling or reuse with biodegradable polymers, which 
are environmentally friendly 5. Because of the 
environmental contamination caused by the usage of 
non-biodegradable materials, research and development 
on biodegradable materials has risen 6. 

 

 

Types of Biodegradable Polymer: 

 

Figure 1: Types of biodegradable polymers 20. 
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Natural Polymer:  

Protein based polymers: - Collagen, Albumin, Gelatin 21. 

Polysaccharides: - Starch, Agarose, alginate, carrageenan, 
hyaluronic acid, dextran, chitosan, cyclodextrins 22. 

Synthetic Polymer: 

Polyesters: - Poly (lactic acid), poly (glycolic acid), poly 
(hydroxy butyrate), poly (ε-caprolactone), poly (β-malic 
acid), poly (dioxanones) 23. 

Polyorthoesters: - Poly (sebacic acid), poly (adipic acid), 
poly (terephthalic acid) and various copolymers 24. 

Polyamides: - Poly (amino carbonates), poly amino acids 
25. 

Polyphosphoesters: - Polyphosphates, poly 
phosphonates, poly phosphagens 26. 

Others: - Poly (cyanoacrylates), polyurethanes, poly 
ortho esters, poly dihydropyrans, polyacetals 27. 

Non-Biodegradable: 

Cellulose derivatives: - Carboxymethyl cellulose, ethyl 
cellulose, cellulose acetate, cellulose acetate propionate, 
hydroxypropyl methyl cellulose 28. 

Silicones: - Polydimethylsiloxane, colloidal silica 29. 

Acrylic polymers: - Polymethacrylates, poly (methyl 
methacrylate), poly hydro (ethyl- methacrylate) 30. 

Others: - Polyvinyl pyrrolidone, ethyl vinyl acetate, 
poloxamers, polyamines 31. 

Natural Polymer 

Protein-Based Polymer 

1 Collagens:  

The most prevalent proteins in mammals are collagens. 
There are 28 members of the collagen family that have at 
least one triple-helical domain 32. Three distinguishing 
characteristics define the entire family of glycoproteins 
that are collectively referred to as "collagen." The amino 
acid repeating sequence [Gly–X–Y] n, both with and 
without breaks, is the first of these 33. The second 
distinguishing property is that proline and its 
hydroxylated counterpart, hydroxyproline, respectively, 
occupy the X and Y locations. Third, collagen has a 
distinct quaternary structure due to the formation of the 
right-handed triple helix from three left-handed 
polyproline αchains of the same length 34. The structure 
of the many collagen types, their splice variations, the 
existence of extra non-helical domains, their assembly, 
and their functions are all highly complex and diverse 35. 
Although the peptides were heterogeneous polymers, the 
development of solid-state peptide synthesis allowed for 

the synthesis of peptides with specific lengths and 
sequences to simulate biological activity and elucidate 
triple-helix stability principles 36. 

2 Albumin:  

Albumin is the most prevalent plasma protein (35-50 g/L 
of human serum). Albumin is considered harmless, with 
low immunogenicity, biocompatibility, and 
biodegradability. Most critically, it acts as a transporter 
for many chemicals in the plasma 37. Albumin improves 
drug solubility and targeting efficacy, and a number of 
nanoscale drug delivery methods have been investigated 
as anticancer agents 38. Protein-polymer bioconjugates 
combine the strengths of both components to address 
challenges in biological applications 39. 

 

Figure 2: Activity of albumin polymer and drug 37 

3 Gelatin:  

Gelatin derived from fish skin or bones is known for its 
biocompatibility, biodegradability, good solubility, non-
immunogenicity, low cost, and biological origin. Its most 
notable feature is the abundance of arginine-glycine-
aspartic acid (RGD) groups that promote cell adherence, 
migration, and differentiation 40. Many researchers have 
turned their focus to gelatin, which is one of the most 
prominent natural polymers. Even though gelatin is made 
from collagen, it is less expensive than cell 41. The cell 
polymer construct paradigm, which involves infusing a 
suspension of cells into an erodable porous scaffold, 
serves as the foundation for many tissue engineering 
techniques. Numerous characteristics of the developing 
tissue, such as food availability and growth kinetics, cell-
cell interactions, extracellular matrix deposition, and 
morphological changes, are determined by the three-
dimensional arrangement of cells implanted within the 
scaffold 42. Scaffolds that combine bone cells with natural 
and synthetic biopolymers or composites are thought to 
be a promising way to get around the drawbacks of the 
traditional method of treating bone injuries 43.
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Figure 3: Cross-sectional SEM images of freeze-dried (A) GelMA, (B) GelMA-SF, (C) GelMA-SNAP, and (D) GelMA-SF-SNAP 
40,41. 

Polysaccharides:  

1 Starch:  

Starch is an emergent polymer in biomedical research 
due to its ease of availability, low cost, and biological 
properties 44. Starch polymer has been employed as a 
powder and film in tissue engineering and haemostasis 
applications 45. The starch is semicrystalline in form, with 
glucose units connected by glycosidic linkages 46. Protein 
in starch is essential for creating a clean and transparent 
solution 47. Phosphate in starch in the form of 
monophosphate improves solution stability and slows 
retrogradation rate 48. 

2 Agarose:  

Agarose is a well-known marine polysaccharide with 
reversible thermos gelling tendency, excellent 
mechanical characteristics, strong bioactivity, and 
switchable chemical reactivity for functionalisation 49. 
The majority of polysaccharides display a high surface 
charge. This event occurs when the drug carrier hits an 
impediment during its circulation within the body, such 
as protein corona formation 50. While agarose has a 
neutral surface charge at varying pH levels, this property 
allows agarose to transport drugs with little protein 
corona formation and improves delivery efficiency 51. 
Drug carriers have low drug absorption, pharmacological 
leakage, inadequate targeting effects, and difficulties 
monitoring cellular events after administration; 
nonetheless, agarose and its derivatives are 
distinguished by their high efficacy in delivery processes 
52. 

 

Figure 4 (a) Original image (1 wt.% agarose gel without 
any interpenetrating component). (b) Binary projection 
(grayscale thresholding using MaxEntropy algorithm) of 
the original image. (c) An image mask is provided by the 
application of the ‘Analyze particles’ tool. (d) Image mask 
is provided by the application of the ‘Analyze skeleton’ 
tool 53. 

3 Chitosan:  

Chitosan (Ch), derived from chitin deacetylation, is one of 
the most often utilised biopolymers. Chitin is a 
polysaccharide found in the exoskeletons of arthropods 
such as lobster and crab, as well as the endoskeletons of 
cephalopod molluscs such as squid, both of which are 
frequent fishing industry waste items 54. Chitosan is the 
only known natural polycation with a greater DD%, 
increasing its charge density potential 55. Functional 
chitosan derivatives can be classified into two groups 
based on their chemical structure: linker-containing 
derivatives and linker-free derivatives. Linkers are 
described as extra structural fragments between the 
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inserted functional substituent and the polymer 
backbone 56. Some chitosan inhibits nematode growth 
and development, while others have antiviral action. 
Chitosan promotes plant growth and development, 
induces disease resistance, and improves abiotic stress 
tolerance 57. Chitosan supports scar-free wound healing 
in animals and people, some appear to limit cancer cell 
proliferation, some may have anti-inflammatory or anti-
oxidant potential, and a variety of other biomedically 
important bioactivities have also been described 58. 

Synthetic Polymer:  

Polyesters:  

1 Polylactic Acid:  

Polylactic acid polymer interference screws are 
commonly Q5 used in anterior cruciate ligament (ACL) 
reconstructions, especially in proximal tibia fixation 59. 
However, several concerns have been raised, including 
the acid products during its degradation in vivo 60. In 
recent years, biodegradable magnesium (Mg) based 
implants have become attractive because of their 
favourable mechanical properties, which are more 
similar to those of natural bone when compared with 
other degradable materials, such as polymers, apart from 
their alkaline nature during degradation 61. 

2 Poly glycolic acid:  

Poly (lactic-co-glycolic acid) (PLGA) is one of the most 
studied biodegradable polymers in a variety of biological 
applications, including drug delivery and tissue 
engineering 62. Polymeric biomaterials have been widely 
employed in commercial biomedical goods for decades 63. 
Poly (lactic-co-glycolic acid) or poly(lactide-co-glycolide) 
(PLGA) is a thermoplastic co-polyester composed of 
various monomer ratios that is hydrolysed in vivo into 
non-toxic lactic and glycolic acids, which are metabolised 
in the tricarboxylic acid cycle and eliminated via carbon 
dioxide and water 64. According to research findings, 
increasing glycolic acid concentration in PLGA 
(PLA/PGA) results in faster degradation because to 
increased hydrophilicity 65. 

 

Figure 5: Poly glycolic acid suture 66 

Polyorthoesters:  

1 Poly sebacic acid:  

Polyorthoesters are a type of biodegradable and 
biocompatible polymer utilised for long-term 
administration of bioactive substances 67. The rate of 
polymer breakdown is greatly dependent on the device's 
molecular weight, hydrophobicity, pH, crystallinity, 

porosity, and surface area68. Biocompatible 
polyanhydrides, such as poly(sebacic acid) (PSA) derived 
from sebacic acid, breakdown more quickly than other 
biocompatible polymers, such as poly(esters) 69. The PSA 
microparticles were spherical, ranging in size from many 
hundreds of nanometres to a few tens of micrometres 70. 
PSA-based polymeric microparticles can be used as 
carriers for long-term, consistent nutrition delivery 71. 

2 Poly adipic acid:  

Poly(adipic anhydride) decomposed faster than its 
hydrophobic counterpart, poly(sebacic anhydride) 72. In 
general, the polymer chain's breakdown rates slow down 
as its water solubility decreases 73. Thin films are created 
from poly(adipic anhydride) blends in various ratios, and 
films are also made from the copolymer poly(salicylic 
acid-co-sebacic acid) 74. These films are intended to serve 
as sacrificial layers for self-regenerating functional 
coatings, such as those that regenerate antibacterial 
surface activity 75. 

Polyphosphoesteres:  

Polyphosphate:   

Polyphosphate (polyP) is a linear arrangement of 
inorganic phosphates that defies its structural simplicity 
by performing an astonishing number of distinct 
functions in the cell 76. Polyphosphate (polyP), an 
extremely simple polyanion, has long been known to play 
a role in a wide range of cellular processes, from stress 
resistance, biofilm formation, and virulence in bacteria to 
bone mineralisation, blood clotting, and mammalian 
target of rapamycin (mTOR) signalling in mammals 77. 
Inorganic polyphosphates (polyP) are linear polymers 
made of dozens to hundreds of phosphate residues 78. 
Inositol polyphosphates (IPs) and inositol 
pyrophosphates (PP-IPs) control a variety of biological 
functions in eukaryotic cells 79. Both bacteria and their 
eukaryotic hosts manufacture inorganic polyphosphate 
(polyP), which seems to have a number of significant 
functions in the interactions between those species 80. 

Non Biodegredable Polymer:  

Cellulose Derivative:  

1 Carboxymethyl Cellulose: 

Carboxymethyl cellulose (CMC) is a water-soluble 
cellulose derivative and a prominent type of cellulose 
ether formed by the chemical attack of alkylating 
reagents on activated non-crystalline areas of cellulose 81. 
Carboxymethyl cellulose (CMC)-based wound dressing 
materials have sparked intense interest because to their 
noble qualities, which include biocompatibility, 
biodegradability, tissue resemblance, low cost, and non-
toxicity 82. It has a wide range of uses in the biomedical 
and pharmacological industries. CMC's hydrophilic 
nature allows it to be blended and crosslinked with other 
materials such as synthetic polymers, natural polymers, 
and inorganic materials, allowing for the development of 
novel wound dressing biomaterials 83. Carboxymethyl 
cellulose (CMC) has been shown to be useful in the 
pharmaceutical sector and is used in a variety of drug 
delivery methods, such as hydrogels, quantum dots, 
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magnetic mesoporous nano carriers, and 
nanocomposites 84. 

2 Ethyl Cellulose: 

Ethyl cellulose (EC) is produced by chemically 
substituting the naturally occurring polymer cellulose 85. 
Ethyl cellulose (EC), a water-insoluble polymer, could be 
employed to delay medication release and improve oral 
drug bioavailability 86. EC is hydrophobic in nature and is 
widely employed as a coating material, tablet binder, in 
microcapsules and microspheres, and in the manufacture 
of matrix-type controlled release tablets 87. Ethyl 
cellulose nanoparticles boosted oral bioavailability and 
could treat fungal infections safely and efficiently, 
avoiding the negative effects of some intravenous 
preparations 88. 

Silicons:  

Polydimethylsiloxane: 

Polydimethylsiloxane (PDMS)-based elastomers have 
been widely employed in biological applications for many 
years 89. PDMS is noted for its minimal toxicity, 
physiological inertness, high biocompatibility, and blood 
compatibility. PDMS-based devices include drainage 
implants for glaucoma patients, blood pumps, mammary 
prosthesis, cardiac pacemaker leads, medical adhesives, 
and denture liners 90. Polydimethylsiloxane (PDMS) has 
become a microfluidics industry standard due to its 
simple construction technique and material properties 
like as gas permeability, optical transparency, and 
flexibility 91. PDMS is a crosslinked polymer of 
hydrophobic dimethylsiloxane oligomers, which poses 
two problems for its application in cell culture systems 92. 

Colloidal / Mesoporous Silica: 

Mesoporous silica (MPS), created via the supramolecular 
polymer templating process, is one of the most appealing 
nanomaterials for biomedical applications such as drug 
administration, labelling, and tissue engineering 93. 
Nanomaterial pore shapes have been identified as one of 
the primary factors contributing to nanotoxicity due to 
differences in cellular absorption and immune response 
94. Silica is generally thought to be non-cytotoxic 95. MPS 
nanoparticles are more biocompatible than colloidal 
silica and show great promise for use in biomedical and 
biotechnological applications 96. 

Acrylic Polymer: -  

Polymethacrylate 

Polymethacrylate is the most often utilised organic 
polymer for casting monoliths for biomolecular 
separation 97. Polymethacrylate has long been employed 
in pharmaceutical preparations to produce controlled 
release in tablets, although it was only recently 
introduced into liposome modification 98. 
Polymethacrylate monoliths generally perform well in 
chromatography, and in some situations, the efficiency 
improves with increasing flow rate 99. Polymethacrylate 
monoliths have become increasingly popular in research 
applications, allowing for high throughput biomolecule 
purification on semi-preparative and preparative scales 
100. 

Mechanism And Benefits of Biodegradable 
Polymer in Drug Delivery System 

Control Drug Release:   

Mechanism:  

Biodegradable polymers can be designed to disintegrate 
at certain rates, giving precise control over the timing and 
rate of drug release 101. 

This regulated degradation allows therapeutic drugs to 
remain in the bloodstream or at the target site for longer 
periods of time 102. 

Controlled release medication delivery uses drug-
encapsulating devices that allow therapeutic agents to be 
released at controlled rates over long periods of time, 
ranging from days to months 103. 

Benefits:  

Medicine administration frequency is reduced since the 
medicine is released gradually 101.  

Steady release eliminates the peaks and troughs 
associated with traditional dosage, resulting in optimal 
medication levels102. 

Controlled release minimises the likelihood of damage 
from large initial doses 103. 

Total drug usage was reduced when compared to usual 
therapy 104. 

Targeted Drug Release:  

Mechanism:   

Biodegradable polymers can be engineered to respond to 
specific stimuli (such as pH, temperature, and enzymes) 
found in the target tissue or disease site 105.  

This targeting capability ensures that the medicine is 
released largely at the point of action 106. 

Benefits:  

Higher local medication concentrations can be achieved, 
improving the therapeutic efficacy 106. 

Reduces drug distribution to non-target organs, lowering 
the possibility of systemic adverse effects 105. 

Enhanced targeting can result in better therapeutic 
outcomes, particularly in cancer and localised infections 
107. 

Transdermal Drug Delivery System:  

Mechanism 

Polymers are utilised in patches or gels to transfer 
medications through the skin for systemic effects 108. 

TDD is a painless way of systemically administering 
medications that involves putting a drug formulation to 
undamaged and healthy skin 109. 

Benefits: -  

Transdermal patches for consistent release of hormones 
108.  

Analgesic patches for the treatment of persistent pain 109. 
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Patches to help people quit smoking 108. 

Gene Delivery Systems 

Mechanism 

Gene therapy is made easier by biodegradable polymers, 
which both shield and transport genetic material (DNA, 
RNA) to target cells 1. 

The creation of superior drug delivery vehicles is crucial 
for the body's breakdown of gene therapy medications 
and their efficient distribution to target tissues, cells, and 
organelles 110. 

Benefits 

Delivery of genes that boost the immune system or cause 
cancer cells to undergo apoptosis 111.  

Delivery of functional genes to correct genetic 
abnormalities 110. 

Distribution of DNA vaccines that trigger robust immune 
reactions 112. 

Tissue Engineering and Regenerative Medicine 

Mechanism 

In order to promote tissue regeneration, biodegradable 
scaffolds release growth factors and offer a supporting 
framework for cell growth 113. 

A key component of tissue engineering is the creation of 
complex scaffolds that offer the support and signals 
required for cell growth and differentiation 114. 

Benefits 

Scaffolds including chondrogenic or osteogenic 
components 113. 

Skin-graft and wound-healing scaffolds 115. 

Scaffolds that supply neurotrophic nutrients and 
promote nerve development 114. 

Future Prospective 

Based on the present market size, share, growth, demand, 
and trends, it is predicted that biopolymer consumption 
and production patterns will increase over the next 
several years. However, one of the biggest obstacles to 
biopolymers capacity to compete with plastics generated 
from petroleum is still their high cost of manufacture 2.  

Enhancing drug encapsulation and release kinetics 
methods to attain the best possible therapeutic results. 
Drug loading capacity and controlled release will be 
improved by advancements in formulation science and 
drug-polymer interactions 1. 

Simplifying regulatory procedures to enable the 
commercialisation and approval of medication delivery 
devices based on biodegradable polymers. Industry, 
academics, and regulatory bodies working together will 
create uniform standards and hasten market access 116. 

Future Trend 117 

Copolymers with hydrophilic/hydrophobic interactions.  

Complexation networks responding via hydrogen or ionic 
bonding. 

Polymers as nanoparticles for immobilization of enzymes,
 drugs, peptides, or other biological agents.   

New biodegradable polymers.   

New blends of hydrocolloids and carbohydrate-
based polymers.  

Conclusion: 

Biodegradable polymers have transformed the field of 
drug delivery, offering a promising solution to the 
limitations of traditional drug administration techniques. 
Their ability to degrade at specific rates, releasing 
therapeutics in a controlled and sustained manner, has 
improved bioavailability and reduced side effects. As 
research continues to advance, we can expect to see the 
development of new biodegradable polymers, blends, 
and nanoparticles, which will further enhance the 
efficacy and safety of drug delivery systems. With 
ongoing innovation and collaboration between industry, 
academia, and regulatory bodies, biodegradable 
polymers will play a crucial role in shaping the future of 
drug delivery and regenerative medicine, ultimately 
improving patient outcomes and quality of life. The 
potential of biodegradable polymers in drug delivery 
systems is vast, and their impact will be significant, 
enabling the treatment of various diseases and 
improving human health. 
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