Drugs Based on Bioactive Oligopeptides
Abstract
Oligopeptides, i.e. biopolymers containing up to fifty amino acids, are being recognized as first-line treatments for a growing number of disorders. The review encompasses various aspects of the application of these active pharmaceutical ingredients, ranging from methods for obtaining a peptide molecule and formulating a dosage form, including excipients and their key properties, to various information on the pharmacokinetics and pharmacodynamics of peptide drugs supported by scientific experimental data, as well as modern quality control methods. The review considers that the application of peptide therapeutics covers a wide range of diseases. They include cancers of various genesis; bacterial infections; type 2 diabetes, neurological diseases, and eye diseases. The review notes that this is just a small fraction of the nosologies in which peptide bioregulators have demonstrated effective clinical activity. The review considers the role of excipients. A distinctive feature of the review is the consideration of innovative methods for quality control of peptide therapeutics. The methods include: high-performance liquid chromatography with tandem mass spectrometry, ultracentrifugation with flow-through rotors, dynamic laser light scattering, small-angle laser light scattering. The review specifically highlights the analysis of dispersion in turbid and opaque media – two-dimensional dynamic laser light scattering based on the kinetics of diffuse reflection with data analysis using a mathematical topological model. A non-invasive method for detecting intrinsic radiothermal emission of biologically active nanoparticles, which can be easily used for peptide molecules, is also described. The review presents a hypothesis according to which the background level of peptides forms a specific electromagnetic field of cells and tissues.
Keywords: peptide drugs, modern drugs, safe drugs, peptide drugs review, peptide synthesis, peptide pharmacokinetics, peptide pharmacodynamics, drug excipients.
Keywords:
peptide drugs, modern drugs, safe drugs, peptide drugs review, synthesis, peptide pharmacokinetics, peptide pharmacodynamics, drug excipientsDOI
https://doi.org/10.22270/jddt.v15i6.7194References
1. Leko M, Filippova P, Rustler K, Bruckdorfer T, Burov S. Solid‐Phase Synthesis of Peptide Hydrazides: Moving Toward Green Chemistry. Journal of Peptide Science 2025;31. https://doi.org/10.1002/psc.70010.
2. Wang T, Zhang Y-R, Liu X-H, Ge S, Zhu Y-S. Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry. Biomolecules 2019;9:733. https://doi.org/10.3390/biom9110733.
3. Yang H, Cao J, Lin X, Yue J, Zieneldien T, Kim J, et al. Developing an Effective Peptide-Based Vaccine for COVID-19: Preliminary Studies in Mice Models. Viruses 2022;14:449. https://doi.org/10.3390/v14030449.
4. Zhang L, Huang Y, Lindstrom AR, Lin T-Y, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019;9:7807–25. https://doi.org/10.7150/thno.37194.
5. Deo S, Turton KL, Kainth T, Kumar A, Wieden H-J. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022;59:107968. https://doi.org/10.1016/j.biotechadv.2022.107968.
6. Zeiders SM, Chmielewski J. Antibiotic–cell‐penetrating peptide conjugates targeting challenging drug‐resistant and intracellular pathogenic bacteria. Chem Biol Drug Des 2021;98:762–78. https://doi.org/10.1111/cbdd.13930.
7. Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev 2021;179:114008. https://doi.org/10.1016/j.addr.2021.114008.
8. Zheng S, Tu Y, Li B, Qu G, Li A, Peng X, et al. Antimicrobial peptide biological activity, delivery systems and clinical translation status and challenges. J Transl Med 2025;23:292. https://doi.org/10.1186/s12967-025-06321-9.
9. Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024;16:570. https://doi.org/10.3390/v16040570.
10. Yadav A, Pandey D, Ashraf GMd, Rachana. Peptide Based Therapy for Neurological Disorders. Curr Protein Pept Sci 2021;22:656–65. https://doi.org/10.2174/1389203722666210920151810.
11. Liu P, Zhang T, Chen Q, Li C, Chu Y, Guo Q, et al. Biomimetic Dendrimer–Peptide Conjugates for Early Multi‐Target Therapy of Alzheimer’s Disease by Inflammatory Microenvironment Modulation. Advanced Materials 2021;33. https://doi.org/10.1002/adma.202100746.
12. Mitchell JL, Lyons HS, Walker JK, Yiangou A, Grech O, Alimajstorovic Z, et al. The effect of GLP-1RA exenatide on idiopathic intracranial hypertension: a randomized clinical trial. Brain 2023;146:1821–30. https://doi.org/10.1093/brain/awad003.
13. Herrera-Barrera M, Ryals RC, Gautam M, Jozic A, Landry M, Korzun T, et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci Adv 2023;9. https://doi.org/10.1126/sciadv.add4623.
14. Tomašević N, Emser FS, Muratspahić E, Gattringer J, Hasinger S, Hellinger R, et al. Discovery and development of macrocyclic peptide modulators of the cannabinoid 2 receptor. Journal of Biological Chemistry 2024;300:107330. https://doi.org/10.1016/j.jbc.2024.107330.
15. Vaida V, Deal AM. Peptide synthesis in aqueous microdroplets. Proceedings of the National Academy of Sciences 2022;119. https://doi.org/10.1073/pnas.2216015119.
16. Hu Y-X, Liu Z, Zhang Z, Deng Z, Huang Z, Feng T, et al. Antihepatoma peptide, scolopentide, derived from the centipede scolopendra subspinipes mutilans. World J Gastroenterol 2023;29:1875–98. https://doi.org/10.3748/wjg.v29.i12.1875.
17. Wang W, Liu Z, Liu Y, Su Z, Liu Y. Plant polypeptides: A review on extraction, isolation, bioactivities and prospects. Int J Biol Macromol 2022;207:169–78. https://doi.org/10.1016/j.ijbiomac.2022.03.009.
18. Wang W, Liu Z, Liu Y, Su Z, Liu Y. Plant polypeptides: A review on extraction, isolation, bioactivities and prospects. Int J Biol Macromol 2022;207:169–78. https://doi.org/10.1016/j.ijbiomac.2022.03.009.
19. Mudgil P, Baba WN, Kamal H, FitzGerald RJ, Hassan HM, Ayoub MA, et al. A comparative investigation into novel cholesterol esterase and pancreatic lipase inhibitory peptides from cow and camel casein hydrolysates generated upon enzymatic hydrolysis and in-vitro digestion. Food Chem 2022;367:130661. https://doi.org/10.1016/j.foodchem.2021.130661.
20. Ruth DM, McMahon G, Ó’Fágáin C. Peptide synthesis by recombinant Fasciola hepatica cathepsin L1. Biochimie 2006;88:117–20. https://doi.org/10.1016/j.biochi.2005.06.004.
21. Dohan Ehrenfest DM, Pinto NR, Pereda A, Jiménez P, Corso M Del, Kang B-S, et al. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets 2018;29:171–84. https://doi.org/10.1080/09537104.2017.1293812.
22. Josic D, Kovac S. Reversed‐Phase High Performance Liquid Chromatography of Proteins. Curr Protoc Protein Sci 2010;61. https://doi.org/10.1002/0471140864.ps0807s61.
23. Zhang G, Annan RS, Carr SA, Neubert TA. Overview of Peptide and Protein Analysis by Mass Spectrometry. Curr Protoc Protein Sci 2010;62. https://doi.org/10.1002/0471140864.ps1601s62.
24. Adamski Z, Bufo SA, Milella L, Scrano L. Identification and Functional Characterization of Plant Toxins. Toxins (Basel) 2021;13:228. https://doi.org/10.3390/toxins13030228.
25. Androphy EJ, Hubbert NL, Schiller JT, Lowy DR. Identification of the HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO J 1987;6:989–92. https://doi.org/10.1002/j.1460-2075.1987.tb04849.x.
26. Bistaffa E, Rossi M, De Luca CMG, Moda F. Biosafety of Prions, 2017, p. 455–85. https://doi.org/10.1016/bs.pmbts.2017.06.017.
27. Wickner RB. Yeast and Fungal Prions. Cold Spring Harb Perspect Biol 2016;8:a023531. https://doi.org/10.1101/cshperspect.a023531.
28. Kurt TD, Sigurdson CJ. Cross-species transmission of CWD prions. Prion 2016;10:83–91. https://doi.org/10.1080/19336896.2015.1118603.
29. Oliveira CS, Torres MDT, Pedron CN, Andrade VB, Silva PI, Silva FD, et al. Synthetic Peptide Derived from Scorpion Venom Displays Minimal Toxicity and Anti-infective Activity in an Animal Model. ACS Infect Dis 2021;7:2736–45. https://doi.org/10.1021/acsinfecdis.1c00261.
30. Behrendt R, White P, Offer J. Advances in Fmoc solid‐phase peptide synthesis. Journal of Peptide Science 2016;22:4–27. https://doi.org/10.1002/psc.2836.
31. Pisk J, Agustin D, Poli R. Organic Salts and Merrifield Resin Supported [PM12O40]3− (M = Mo or W) as Catalysts for Adipic Acid Synthesis. Molecules 2019;24:783. https://doi.org/10.3390/molecules24040783.
32. Tulla-Puche J, Barany G. On-Resin Native Chemical Ligation for Cyclic Peptide Synthesis. J Org Chem 2004;69:4101–7. https://doi.org/10.1021/jo049839d.
33. Posada L, Serra G. Three Methods for Peptide Cyclization Via Lactamization, 2022, p. 3–17. https://doi.org/10.1007/978-1-0716-1689-5_1.
34. Behrendt R, White P, Offer J. Advances in Fmoc solid‐phase peptide synthesis. Journal of Peptide Science 2016;22:4–27. https://doi.org/10.1002/psc.2836.
35. Sabatino G, Papini AM. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis. Curr Opin Drug Discov Devel 2008;11:762–70.
36. Yang X, Lin H, Lu W, Wang D. Compatibility Study of Merrifield Linker in Fmoc Strategy Peptide Synthesis. Protein Pept Lett 2013;20:140–5. https://doi.org/10.2174/092986613804725343.
37. Mäde V, Els-Heindl S, Beck-Sickinger AG. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein Journal of Organic Chemistry 2014;10:1197–212. https://doi.org/10.3762/bjoc.10.118.
38. Sharma A, Kumar A, de la Torre BG, Albericio F. Liquid-Phase Peptide Synthesis (LPPS): A Third Wave for the Preparation of Peptides. Chem Rev 2022;122:13516–46. https://doi.org/10.1021/acs.chemrev.2c00132.
39. Demidova TYu, Ushanova FO, Bogacheva TL. Semaglutide in type 2 diabetes management: review of current evidence from concept to date. FOCUS Endocrinology 2023;4:13–28. https://doi.org/10.15829/2713-0177-2023-3-11.
40. Fiani B, Covarrubias C, Wong A, Doan T, Reardon T, Nikolaidis D, et al. Cerebrolysin for stroke, neurodegeneration, and traumatic brain injury: review of the literature and outcomes. Neurological Sciences 2021;42:1345–53. https://doi.org/10.1007/s10072-021-05089-2.
41. V Kalmykova G, Chefranova ZhYu, Rybnikova VF, Zubova KO. Cortexin administration due to improvement of cognitive and behavioral disorders in children and teenagers with epilepsy. Zhurnal Nevrologii i Psikhiatrii Im SS Korsakova 2021;121:127. https://doi.org/10.17116/jnevro2021121031127.
42. Malakhova AI, Strakhov VV, Kovaleva YD, Malakhova YA. Objective functional monitoring of retinoprotective treatment in diabetic retinopathy. Russian Annals of Ophthalmology 2024;140:45. https://doi.org/10.17116/oftalma202414001145.
43. Ushkalova EA, Zyryanov SK, Zatolochina KE. Muramyldipeptide - based compounds in current medicine: focus on glucosaminylmuramyl dipeptide. Ter Arkh 2019;91:122–7. https://doi.org/10.26442/00403660.2019.12.000471.
44. Panikratova YaR, Lebedeva IS, Sokolov OYu, Rumshiskaya AD, Kupriyanov DA, Kost N V., et al. Functional Connectomic Approach to Studying Selank and Semax Effects. Doklady Biological Sciences 2020;490:9–11. https://doi.org/10.1134/S001249662001007X.
45. de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 2018;10. https://doi.org/10.1126/scitranslmed.aan4044.
46. Khamaganova I V, Akhmedov KB, Tarabrina NP, Khromova SS, Mezentseva M V, Koval’chuk L V, et al. [Effect of combined therapy using complex of natural cytokines and antimicrobial peptides in urogenital infections caused by Chlamydia and Mycoplasma]. Zh Mikrobiol Epidemiol Immunobiol 2011:90–3.
47. Smits MM, Van Raalte DH. Safety of Semaglutide. Front Endocrinol (Lausanne) 2021;12. https://doi.org/10.3389/fendo.2021.645563.
48. Lundgren JR, Janus C, Jensen SBK, Juhl CR, Olsen LM, Christensen RM, et al. Healthy Weight Loss Maintenance with Exercise, Liraglutide, or Both Combined. New England Journal of Medicine 2021;384:1719–30. https://doi.org/10.1056/NEJMoa2028198.
49. Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. Journal of Cell Biology 2018;217:2273–89. https://doi.org/10.1083/jcb.201802095.
50. Gomazkov OA. Cortexin. Molecular mechanisms and targets of neuroprotective activity. Zhurnal Nevrologii i Psikhiatrii Im SS Korsakova 2015;115:99. https://doi.org/10.17116/jnevro20151158199-104.
51. Suetov AA, Alekperov SI, Odinokaya MA, Kostina AA. Retinoprotective effects of Retinalamin studied in an experimental model of photochemical damage to rabbit retinas. Vestn Oftalmol 2021;137:57. https://doi.org/10.17116/oftalma202113705157.
52. Trofimova S V, Linkova NS, Klimenko AA, Kvetnaia T V, Khavinson VK. [Pineamin increased pineal melatonin synthesis in elderly people]. Adv Gerontol 2017;30:422–6.
53. Latyshev OE, Zaykova ON, Eliseeva O V., Savochkina TE, Chernoryzh YYu, Syroeshkin A V., et al. Development, production and characterization of SARS-CoV-2 virus-like particles (Coronaviridae: Orthocoronavirinae: Betacoronavirus: Sarbecovirus). Probl Virol 2024;69:175–86. https://doi.org/10.36233/0507-4088-226.
54. Timms RT, Zhang Z, Rhee DY, Harper JW, Koren I, Elledge SJ. A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science (1979) 2019;365. https://doi.org/10.1126/science.aaw4912.
55. Selivanova OM, Grishin SYu, Glyakina A V., Sadgyan AS, Ushakova NI, Galzitskaya O V. Analysis of Insulin Analogs and the Strategy of Their Further Development. Biochemistry (Moscow) 2018;83:S146–62. https://doi.org/10.1134/S0006297918140122.
56. Maikawa CL, Nguyen LT, Mann JL, Appel EA. Formulation Excipients and Their Role in Insulin Stability and Association State in Formulation. Pharm Res 2022;39:2721–8. https://doi.org/10.1007/s11095-022-03367-y.
57. Deacon CF. Peptide degradation and the role of DPP-4 inhibitors in the treatment of type 2 diabetes. Peptides (NY) 2018;100:150–7. https://doi.org/10.1016/j.peptides.2017.10.011.
58. Griffiths RC, Smith FR, Li D, Wyatt J, Rogers DM, Long JE, et al. Cysteine‐Selective Modification of Peptides and Proteins via Desulfurative C−C Bond Formation. Chemistry – A European Journal 2023;29. https://doi.org/10.1002/chem.202202503.
59. Liu Y, Lu X, Chen M, Wei Z, Peng G, Yang J, et al. Advances in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. BioFactors 2024;50:33–57. https://doi.org/10.1002/biof.2001.
60. Yao C, Ye G, Yang Q, Chen Z, Yang M. The Disulfide Bond-Mediated Cyclization of Oral Peptides. Curr Protein Pept Sci 2024;25:438–42. https://doi.org/10.2174/0113892037280719231214095428.
61. Choi MS, Lee CY, Kim JH, Lee YM, Lee S, Kim HJ, et al. Gramicidin, a Bactericidal Antibiotic, Is an Antiproliferative Agent for Ovarian Cancer Cells. Medicina (B Aires) 2023;59:2059. https://doi.org/10.3390/medicina59122059.
62. Burkin A V., Svistushkin VM, Nikiforova GN, Dukhanin AS. Glucosaminylmuramyl dipeptide in treatment of respiratory tract diseases. Vestn Otorinolaringol 2019;84:118. https://doi.org/10.17116/otorino201984061118.
63. Tamura K, Ono M, Kawabe T, Yonemochi E. Impact of Magnesium Stearate Content: Modeling of Drug Degradation Using a Modified Arrhenius Equation. Chem Pharm Bull (Tokyo) 2020;68:1049–54. https://doi.org/10.1248/cpb.c20-00443.
64. Skibska A, Perlikowska R. Signal Peptides - Promising Ingredients in Cosmetics. Curr Protein Pept Sci 2021;22:716–28. https://doi.org/10.2174/1389203722666210812121129.
65. Apostolopoulos V, Bojarska J, Chai T-T, Elnagdy S, Kaczmarek K, Matsoukas J, et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021;26:430. https://doi.org/10.3390/molecules26020430.
66. Gan P-Y, Tan DSY, Ooi JD, Alikhan MA, Kitching AR, Holdsworth SR. Myeloperoxidase Peptide–Based Nasal Tolerance in Experimental ANCA–Associated GN. Journal of the American Society of Nephrology 2016;27:385–91. https://doi.org/10.1681/ASN.2015010089.
67. Lebedeva IS, Panikratova YaR, Sokolov OYu, Kupriyanov DA, Rumshiskaya AD, Kost N V., et al. Effects of Semax on the Default Mode Network of the Brain. Bull Exp Biol Med 2018;165:653–6. https://doi.org/10.1007/s10517-018-4234-3.
68. Leonidovna YA, Aleksandrovna SM, Aleksandrovna TA, Aleksandrovna BO, Fedorovich MN, Aleksandrovna AL. The Influence of Selank on the Level of Cytokines Under the Conditions of “Social” Stress. Current Reviews in Clinical and Experimental Pharmacology 2021;16:162–7. https://doi.org/10.2174/1574884715666200704152810.
69. Pestka S, Krause CD, Walter MR. Interferons, interferon‐like cytokines, and their receptors. Immunol Rev 2004;202:8–32. https://doi.org/10.1111/j.0105-2896.2004.00204.x.
70. Ham AS, Buckheit RW. Designing and Developing Suppository Formulations for anti-HIV Drug Delivery. Ther Deliv 2017;8:805–17. https://doi.org/10.4155/tde-2017-0056.
71. Korneev IAK. Russian experience with Vitaprost Forte suppositories in patients with lower urinary tract symptoms and benign prostatic hyperplasia: comparative analysis of studies. Urologiia 2017;3_2017:138–44. https://doi.org/10.18565/urol.2017.3.138-144.
72. Wang L, Hu Z, Chen J, Wang T, Wu P, Ying Y. Simultaneous Determination of 12 Preservatives in Pastries Using Gas Chromatography–Mass Spectrometry. Foods 2023;12:3819. https://doi.org/10.3390/foods12203819.
73. Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chem Rev 2021;121:13915–35. https://doi.org/10.1021/acs.chemrev.1c00712.
74. Pei Z, Song Q, Xu J, Yu S, Ma H. The Cyclic Antimicrobial Peptide C-LR18 Has Enhanced Antibacterial Activity, Improved Stability, and a Longer Half-Life Compared to the Original Peptide. Antibiotics 2025;14:312. https://doi.org/10.3390/antibiotics14030312.
75. Moiola M, Memeo MG, Quadrelli P. Stapled Peptides—A Useful Improvement for Peptide-Based Drugs. Molecules 2019;24:3654. https://doi.org/10.3390/molecules24203654.
76. Meng Y, Li XJ, Li Y, Zhang TY, Liu D, Wu YQ, et al. Novel Double-Layer Dissolving Microneedles for Transmucosal Sequential Delivery of Multiple Drugs in the Treatment of Oral Mucosa Diseases. ACS Appl Mater Interfaces 2023. https://doi.org/10.1021/acsami.2c19913.
77. Bruun TUJ, Andersson A-MC, Draper SJ, Howarth M. Engineering a Rugged Nanoscaffold To Enhance Plug-and-Display Vaccination. ACS Nano 2018;12:8855–66. https://doi.org/10.1021/acsnano.8b02805.
78. Zhang B, Sun X, Mei H, Wang Y, Liao Z, Chen J, et al. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 2013;34:9171–82. https://doi.org/10.1016/j.biomaterials.2013.08.039.
79. Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int J Nanomedicine 2007;2:595–607.
80. Haddadzadegan S, Dorkoosh F, Bernkop-Schnürch A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022;182:114097. https://doi.org/10.1016/j.addr.2021.114097.
81. Bezir K, Pelit Arayici P, Akgül B, Abamor EŞ, Acar S. RABV antigenic peptide loaded polymeric nanoparticle production, characterization, and preliminary investigation of its biological activity. Nanotechnology 2025;36:025603. https://doi.org/10.1088/1361-6528/ad84fe.
82. Mikolajczak DJ, Berger AA, Koksch B. Catalytically Active Peptide–Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes. Angewandte Chemie International Edition 2020;59:8776–85. https://doi.org/10.1002/anie.201908625.
83. Dragulska SA, Santiago MA, Poursharifi M, Mieszawska AJ. Peptide-Coated Nanoparticles for Noninvasive Biomedical Imaging, 2025, p. 37–53. https://doi.org/10.1007/978-1-0716-4402-7_3.
84. Moradian A, Goonatilleke E, Lin T-T, Hatten-Beck M, Emrick M, Schepmoes AA, et al. Interlaboratory Comparison of Antibody-Free LC-MS/MS Measurements of C-peptide and Insulin. Clin Chem 2024;70:855–64. https://doi.org/10.1093/clinchem/hvae034.
85. Scrosati PM, Konermann L. Atomistic Details of Peptide Reversed-Phase Liquid Chromatography from Molecular Dynamics Simulations. Anal Chem 2023;95:3892–900. https://doi.org/10.1021/acs.analchem.2c05667.
86. Von Bahr-Lindstróm H, Moberg U, Sjódahl J, Jórnvall H. Ion-exchange high-performance liquid-chromatography steps in peptide purifications. Biosci Rep 1982;2:803–11. https://doi.org/10.1007/BF01114940.
87. Treblin M, von Oesen T, Class L-C, Kuhnen G, Clawin-Rädecker I, Martin D, et al. Two-dimensional high-performance thin-layer chromatography for the characterization of milk peptide properties and a prediction of the retention behavior – a proof-of-principle study. J Chromatogr A 2021;1653:462442. https://doi.org/10.1016/j.chroma.2021.462442.
88. Huang Q, Gao Q, Chai X, Ren W, Zhang G, Kong Y, et al. A novel thrombin inhibitory peptide discovered from leech using affinity chromatography combined with ultra-high performance liquid chromatography-high resolution mass spectroscopy. Journal of Chromatography B 2020;1151:122153. https://doi.org/10.1016/j.jchromb.2020.122153.
89. Lohr J, Baukmann S, Block J, Upmann M, Spieß AC. Understanding adsorption behavior of antiviral labyrinthopeptin peptides in anion exchange chromatography. J Chromatogr A 2023;1690:463792. https://doi.org/10.1016/j.chroma.2023.463792.
90. Weiß F, Schnabel A, Planatscher H, van den Berg BHJ, Serschnitzki B, Nuessler AK, et al. Indirect protein quantification of drug-transforming enzymes using peptide group-specific immunoaffinity enrichment and mass spectrometry. Sci Rep 2015;5:8759. https://doi.org/10.1038/srep08759.
91. Nag B, Mukku P V., Arimilli S, Kendrick T, Deshpande S V., Sharma SD. Separation of complexes of major histocompatibility class II molecules and known antigenic peptide by metal chelate affinity chromatography. J Immunol Methods 1994;169:273–85. https://doi.org/10.1016/0022-1759(94)90271-2.
92. Nika H, Nieves E, Hawke DH, Angeletti RH. Phosphopeptide Enrichment by Covalent Chromatography after Derivatization of Protein Digests Immobilized on Reversed-Phase Supports. J Biomol Tech 2013;24:154–77. https://doi.org/10.7171/jbt.13-2403-004.
93. Cheung MY, Bruce J, Euerby MR, Field JK, Petersson P. Investigation into reversed-phase chromatography peptide separation systems part V: Establishment of a screening strategy for development of methods for assessment of pharmaceutical peptides’ purity. J Chromatogr A 2022;1668:462888. https://doi.org/10.1016/j.chroma.2022.462888.
94. Xia Z, Liu Z, Kong F, Fan L, Xiao H, Cao C. Comparison of antimicrobial peptide purification via free‐flow electrophoresis and gel filtration chromatography. Electrophoresis 2017;38:3147–54. https://doi.org/10.1002/elps.201700187.
95. Kielkopf CL, Bauer W, Urbatsch IL. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis of Proteins. Cold Spring Harb Protoc 2021;2021:pdb.prot102228. https://doi.org/10.1101/pdb.prot102228.
96. Kong F, Zhang M, Chen J, Fan L, Xiao H, Liu S, et al. Continuous protein concentration via free-flow moving reaction boundary electrophoresis. J Chromatogr A 2017;1508:169–75. https://doi.org/10.1016/j.chroma.2017.06.008.
97. Abildgaard U. Highly Purified Antithrombin III with Heparin Cofactor Activity Prepared by Disc Electrophoresis. Scand J Clin Lab Invest 1968;21:89–91. https://doi.org/10.3109/00365516809076981.
98. Kašička V, Prusík Z. Application of capillary isotachophoresis in peptide analysis. J Chromatogr B Biomed Sci Appl 1991;569:123–74. https://doi.org/10.1016/0378-4347(91)80228-5.
99. Hallin P, Renlund S. Evaluation of several strategies for preparing a bovine gonadotropin-like peptide using isotachophoresis, isoelectrofocusing and high-performance liquid chromatography. J Chromatogr A 1986;363:251–60. https://doi.org/10.1016/S0021-9673(01)83744-4.
100. Li Y, Ren D. Two-Dimensional Gel Electrophoresis and Pro-Q Diamond Phosphoprotein Stain-Based Plant Phosphoproteomics, 2021, p. 159–68. https://doi.org/10.1007/978-1-0716-1625-3_11.
101. Friedman M. Applications of the Ninhydrin Reaction for Analysis of Amino Acids, Peptides, and Proteins to Agricultural and Biomedical Sciences. J Agric Food Chem 2004;52:385–406. https://doi.org/10.1021/jf030490p.
102. Kokona B, Winesett ES, Nikolai von Krusenstiern A, Cryle MJ, Fairman R, Charkoudian LK. Probing the selectivity of β-hydroxylation reactions in non-ribosomal peptide synthesis using analytical ultracentrifugation. Anal Biochem 2016;495:42–51. https://doi.org/10.1016/j.ab.2015.11.011.
103. Cardoso Mendes Moura EC, Polissi A, Sperandeo P. Membrane Fractionation by Isopycnic Sucrose Density Gradient Centrifugation for Qualitative Analysis of LPS in Escherichia coli, 2022, p. 53–69. https://doi.org/10.1007/978-1-0716-2581-1_4.
104. Zhang G, Annan RS, Carr SA, Neubert TA. Overview of Peptide and Protein Analysis by Mass Spectrometry. Curr Protoc Protein Sci 2010;62. https://doi.org/10.1002/0471140864.ps1601s62.
105. Villegas JA, Sinha NJ, Teramoto N, Von Bargen CD, Pochan DJ, Saven JG. Computational Design of Single-Peptide Nanocages with Nanoparticle Templating. Molecules 2022;27:1237. https://doi.org/10.3390/molecules27041237.
106. Takadi T. Confirmation of Molecular Weight of Aspergillus oryzae α-Amylase Using the Low Angle Laser Light Scattering Technique in Combination with High Pressure Silica Gel Chromatography1. The Journal of Biochemistry 1981;89:363–8. https://doi.org/10.1093/oxfordjournals.jbchem.a133210.
107. Odnovorov AI, Grebennikova Т V., Pleteneva T V., Garaev TM, Uspenskaya E V., Khodorovich NA, et al. Physicochemical Properties and Biological Activity of The New Antiviral Substance. International Journal of Applied Pharmaceutics 2020:237–42. https://doi.org/10.22159/ijap.2020v12i4.38136.
108. Saraiva MA. Interpretation of α-synuclein UV absorption spectra in the peptide bond and the aromatic regions. J Photochem Photobiol B 2020;212:112022. https://doi.org/10.1016/j.jphotobiol.2020.112022.
109. Patrick AL, Polfer NC. Peptide Fragmentation Products in Mass Spectrometry Probed by Infrared Spectroscopy, 2014, p. 153–81. https://doi.org/10.1007/128_2014_576.
110. Syroeshkin A V., Petrov G V., Taranov V V., Pleteneva T V., Koldina AM, Gaydashev IA, et al. Radiothermal Emission of Nanoparticles with a Complex Shape as a Tool for the Quality Control of Pharmaceuticals Containing Biologically Active Nanoparticles. Pharmaceutics 2023;15:966. https://doi.org/10.3390/pharmaceutics15030966.
111. Petrov G V., Galkina DA, Koldina AM, Grebennikova T V., Eliseeva O V., Chernoryzh YYu, et al. Controlling the Quality of Nanodrugs According to Their New Property—Radiothermal Emission. Pharmaceutics 2024;16:180. https://doi.org/10.3390/pharmaceutics16020180.
112. Petrov G V., Gaidashev IA, Syroeshkin A V. Physical and Chemical Characteristics of Aqueous Colloidal Infusions of Medicinal Plants Containing Humic Acids. International Journal of Applied Pharmaceutics 2024:76–82. https://doi.org/10.22159/ijap.2024v16i1.49339.
113. Petrov G, Syroeshkin AV. Express Method for Quality Control of Products after the Fluidized Bed Aerosol Chamber by Detecting Radio Thermal Emission of Nanoparticles. European Chemical Bulletin 2023;12. https://doi.org/10.48047/ecb/2023.12.6.273.
114. Petrov G V., Koldina AM, Ledenev O V., Tumasov VN, Nazarov AA, Syroeshkin A V. Nanoparticles and Nanomaterials: A Review from the Standpoint of Pharmacy and Medicine. Pharmaceutics 2025;17:655. https://doi.org/10.3390/pharmaceutics17050655.
Published
Abstract Display: 442
PDF Downloads: 391
PDF Downloads: 17 How to Cite
Issue
Section
Copyright (c) 2025 Oleg V. Ledenev, Olga V. Levitskaya, Anton V. Syroeshkin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.