Humic nanoparticles as a tool for eliminating the toxicity of zinc L-valinate
Abstract
Earlier, we showed (Morozova M.A. et al., 2022) that solutions of the humic acids (HAs) and fulvic acids (FAs) complex used as a solvent are applicable for increasing the solubility and colloidal stability of antiviral drugs. In this study, we investigated the ability of humates to form stable colloidal systems with chelated zinc complexes with amino acids. The study of the dispersion properties of the samples was carried out using the dynamic light scattering (DLS) technique. There were obtained HAs and FAs dilutions that form a colloidal solution with zinc chelate complexes with specified characteristics of particle size and zeta potential. The solutions contained mainly 20 nm nanoparticles and their zeta potential was -24 mV. The toxicity was assessed using the Spirotox method. A comparative toxicological analysis of zinc valinate samples dissolved in HAs and water showed that the use of HAs as an adjuvant allows for a radical decrease in the toxicity of zinc chelate.
Keywords: extract of humic substances; fulvic acid; zinc chelate complexes; zincvalinate; toxicity; Spirotox-method
Keywords:
extract of humic substances, fulvic acid, zinc chelates, L-valine, toxicity, Spirotox testDOI
https://doi.org/10.22270/jddt.v15i2.7010References
1. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010 Sep;12(3):348-60. doi: 10.1208/s12248-010-9183-3. Epub 2010 May 1 https://doi.org/10.1208/s12248-010-9183-3 PMid:20437123 PMCid:PMC2895432
2. Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Local-ized Drug Delivery. Ann Biomed Eng. 2016 Jun;44(6):2049-61. https://doi.org/10.1007/s10439-016-1583-9 PMid:26951462 PMCid:PMC4880511
3. Villarreal-Otalvaro C, Coburn JM. Fabrication Methods and Form Factors of Gellan Gum-Based Materials for Drug De-livery and Anti-Cancer Applications. ACS Biomater Sci Eng. 2023 Jul 10;9(7):3832-3842. https://doi.org/10.1021/acsbiomaterials.1c00685 PMid:34898174
4. Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its application in cancer. Int J Nanomedicine. 2017 Aug 21;12:6027-6044. https://doi.org/10.2147/IJN.S132434 PMid:28860764 PMCid:PMC5573051
5. Ding B, Zheng P, Tan J, Chen H, Meng Q, Li J, Li X, Han D, Li Z, Ma X, Ma P, Lin J. Sodium Bicar-bonate Nanoparticles for Amplified Cancer Immunotherapy by Inducing Pyroptosis and Regulating Lactic Acid Metabolism. Angew Chem Int Ed Engl. 2023 Oct 2;62(40):e202307706. https://doi.org/10.1002/anie.202307706 PMid:37587061
6. Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021 May 15;601:120571. https://doi.org/10.1016/j.ijpharm.2021.120571 PMid:33812967
7. Beach MA, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev. 2024 May 8;124(9):5505-5616. https://doi.org/10.1021/acs.chemrev.3c00705 PMid:38626459
8. Arshad A, Arshad S, Alamgeer, Mahmood A, Hussain Asim M, Ijaz M, Muhammad Irfan H, Rubab M, Ali S, Raza Hashmi A. Zeta potential changing self-nanoemulsifying drug delivery systems: A newfangled approach for enhancing oral bioavailability of poorly soluble drugs. Int J Pharm. 2024 Apr 25;655:123998. https://doi.org/10.1016/j.ijpharm.2024.123998 PMid:38490401
9. Lalevee G., David L., Montembault A., Blanchard K., Meadows J., Malaise S., Crepet A., Grillo I., Morfin I., Delair T., et al. Highly stretchable hydrogels from complex coacervation of natural polyelectrolytes. Soft Matter. 2017;13:6594-6605. https://doi.org/10.1039/C7SM01215B PMid:28905969
10. Winkler J., Ghosh S. Therapeutic Potential of Fulvic Acid in Chronic Inflammatory Diseases and Diabetes. J. Diabetes Res. 2018;10:5391014. https://doi.org/10.1155/2018/5391014 PMid:30276216 PMCid:PMC6151376
11. Zamoshchina T.A., Zykova M.V., Gostyukhina A.A., Logvinova L.A., Zaitsev K.V., Lasukova T.V., Svetlik M.V., Kurtsevich E.A., Abdulkina N.G., Belousov M.V., et al. Effect of Humic Acids from Lowland Peat on Endurance of Rats in Forced Swim Test in Relation to Serum Lactate and Corticosterone. Bull. Exp. Biol. 2020 https://doi.org/10.1007/s10517-020-04967-7 PMid:33098504
12. Hou D., He J., Lü C., Wang W., Zhang F. Spatial Distributions of Humic Substances and Evaluation of Sediment Organic Index on Lake Dalinouer, China. J. Geochem.
13. Di Iorio E, Circelli L, Angelico R, Torrent J, Tan W, Colombo C. Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review. Chemosphere. 2022 Sep;303(Pt 2):135172 https://doi.org/10.1016/j.chemosphere.2022.135172 PMid:35649442
14. Fava F, Piccolo A. Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil. Biotechnol Bioeng. 2002 Jan 20;77(2):204-11 https://doi.org/10.1002/bit.10140 PMid:11753927
15. Anielak AM, Kłeczek A. Humus Acids in the Digested Sludge and Their Properties. Materials (Basel). 2022 Feb 16;15(4):1475 https://doi.org/10.3390/ma15041475 PMid:35208014 PMCid:PMC8880807
16. Nosik D.N., Nosik N.N., Teplyakova T.V., Kiseleva I.A., Kondrashina N.G., Bochkova M.S., Ananko G.G. Antiviral activity of extracts of basidiomycetes and humic compounds substances against Human Immunodeficiency Virus (Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus 1) and Herpes Simplex Virus (Herpesviridae: Simplexvirus: Human alphaherpesvirus 1) Vopr Virusol. 2020;65:276-283 https://doi.org/10.36233/0507-4088-2020-65-5-4 PMid:33533211
17. Lu F.J., Tseng S.N., Li M.L., Shih S.R. In vitro anti-influenza virus activity of synthetic humate analogues derived from protocatechuic acid. Arch. Virol. 2002;147:273-284 https://doi.org/10.1007/s705-002-8319-5 PMid:11890523
18. Klocking R., Helbig B., Schotz G., Schacke M., Wutzler P. Anti-HSV-1 activity of synthetic humic acid-like polymers derived from p-diphenolic starting com-pounds. Antivir. Chem. Chemother. 2002;13:241-249. https://doi.org/10.1177/095632020201300405 PMid:12495212
19. Orlov A.A., Zherebker A., Eletskaya A.A., Chernikov V.S., Kozlovskaya L.I., Zhernov Y.V., Kostyukevich Y., Palyulin V.A., Nikolaev E.N., Osolodkin D.I., et al. Examination of molecular space and feasible structures of bioactive components of humic substances by FTICR MS data mining in ChEMBL database. Sci. Rep. 2019;9:12066 https://doi.org/10.1038/s41598-019-48000-y PMid:31427609 PMCid:PMC6700089
20. Rensburg C.E., Dekker A.S. An in vitro investigation of the antimicrobial activity of oxifulvic acid. J. Antimicrob. Chemother. 2000;46:853-854 https://doi.org/10.1093/jac/46.5.853 PMid:11062218
21. Uspenskaya, E.V.; Syroeshkin, A.V.; Pleteneva, T.V.; Kazimova, I.V.; Grebennikova, T.V.; Fedyakina, I.T.; Lebedeva, V.V.; Latyshev, O.E.; Eliseeva, O.V.; Larichev, V.F.; et al. Nanodispersions of polyelectrolytes based on humic substances: Isolation, physicochemical characterization and evaluation of biological activity. Pharmaceutics 2021, 13, 1954 https://doi.org/10.3390/pharmaceutics13111954 PMid:34834368 PMCid:PMC8623726
22. Gupta S, Brazier AKM, Lowe NM. Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation. J Hum Nutr Diet. 2020 Oct; 33(5):624-643. https://doi.org/10.1111/jhn.12791 PMid:32627912
23. Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol. 2020 May; 94(5):1443-1460. https://doi.org/10.1007/s00204-020-02702-9 PMid:32394086
24. Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. J Res Med Sci. 2013 Feb;18(2):144-57.
25. Kim YR, Park JI, Lee EJ, Park SH, Seong NW, Kim JH, et al. Toxicity of 100 nm zinc oxide nanoparticles: a report of 90-day repeated oral administration in Sprague Dawley rats. Int J Nanomedicine. 2014 Dec 15; 9 Suppl 2(Suppl 2):109-26. https://doi.org/10.2147/IJN.S57928 PMid:25565830 PMCid:PMC4279774
26. Chang Y, Wang K, Wen M, Wu B, Liu G, Zhao H, Chen X, Cai J, Jia G. Organic zinc glycine chelate is better than inorganic zinc in improving growth performance of cherry valley ducks by regulating intestinal morphology, barrier function, and the gut microbiome. J Anim Sci. 2023 Jan 3;101:skad279. https://doi.org/10.1093/jas/skad279 PMid:37606553 PMCid:PMC10494877
27. O. V. Levitskaya,1 A. V. Syroeshkin,1 and T. V. Pleteneva. Arrhenius kinetics as a bioactivity assessment criterion for drug substances and excipients Pharmaceutical Chemistry Journal, 2015;49(11). https://doi.org/10.1007/s11094-016-1370-9
28. V. V. Goncharuk, A. V. Syroeshkin, I. A. Zlatskiya, E. V. Uspenskaya, A. V. Orekhovab , O. V. Levitskayab , V. I. Dobrovolskiy, and T. V. Pleteneva. Quasichemical Description of the Cell Death Kinetics of Cellular Biosensor Spirostomum Ambigua for Testing the Biological Activity of Aqueous Solutions. Journal of Water Chemistry and Technology · 2017;39(2):178-187. https://doi.org/10.3103/S1063455X17020072
29. Morozova MA, Tumasov VN, Kazimova IV, Maksimova TV, Uspenskaya EV, Syroeshkin AV. Second-Order Scattering Quenching in Fluorescence Spectra of Natural Humates as a Tracer of Formation Stable Supramolecular System for the Delivery of Poorly Soluble Antiviral Drugs on the Example of Mangiferin and Favipiravir. Pharmaceutics. 2022 Mar 31;14(4):767. https://doi.org/10.3390/pharmaceutics14040767 PMid:35456601 PMCid:PMC9030643
30. Sérgio P. Moura and Ana M. Carmona-Ribeiro. Cationic Bilayer Fragments on Silica at Low Ionic Strength: Competitive Adsorption and Colloid Stability. Langmuir 2003 19 (17), 6664-6667 https://doi.org/10.1021/la034334o
31. Fernando P. Araujo, Denise F. S. Petri, and Ana M. Carmona-Ribeiro. Colloid Stability of Sodium Dihexadecyl Phosphate/Poly(diallyldimethylammonium chloride) Decorated Latex. Langmuir 2005 21 (21), 9495-9501 https://doi.org/10.1021/la051052a PMid:16207027
32. Scott A. Bradford, Hyunjung Kim, Chongyang Shen, Salini Sasidharan, and Jianying Shang. Contributions of Nanoscale Roughness to Anomalous Colloid Retention and Stability Behavior. Langmuir 2017 33 (38), 10094-10105 https://doi.org/10.1021/acs.langmuir.7b02445 PMid:28846425
33. Ishida H, Matsumoto C, Shimada M, Suzaki T. SEM observation of non-fixed and water freeze-dried Spirostomum ambiguum. Eur J Protistol. 2022 Aug; 85:125896. https://doi.org/10.1016/j.ejop.2022.125896 PMid:35709567
34. [Shimada M, Hayakawa MM, Suzaki T, Ishida H. Morphological reconstruction during cell regeneration in the ciliate Spirostomum ambiguum. Eur J Protistol. 2024 Mar 28 https://doi.org/10.1016/j.ejop.2024.126079 PMid:38593565
35. Mathijssen AJTM, Culver J, Bhamla MS, Prakash M. Collective intercellular communication through ultra-fast hydrodynamic trigger waves. Nature. 2019 Jul https://doi.org/10.1101/428573
36. Uskalova DV, Igolkina YV, Sarapultseva EI. Intravital Computer Morphometry on Protozoa: A Method for Monitoring of the Morphofunctional Disorders in Cells Exposed in the Cell Phone Communication Electromagnetic Field. Bull Exp Biol Med. 2016 Aug. https://doi.org/10.1007/s10517-016-3459-2 PMid:27591872
37. Marukhlenko AV, Morozova MA, Mbarga AMJ, Antipova NV, Syroeshkin AV, Podoprigora IV, Maksimova TV. Chelation of Zinc with Biogenic Amino Acids: Description of Properties Using Balaban Index, Assessment of Biological Activity on Spirostomum Ambiguum Cellular Biosensor, Influence on Biofilms and Direct Antibacterial Action. Pharmaceuticals (Basel). 2022 Aug 9 https://doi.org/10.3390/ph15080979 PMid:36015127 PMCid:PMC9415815
38. Syroeshkin AV, Antipova NV, Zlatska AV, Zlatskiy IA, Skylska MD, Grebennikova TV, Goncharuk VV. The effect of the deuterium depleted water on the biological activity of the eukaryotic cells. J Trace Elem Med Biol. 2018 Dec https://doi.org/10.1016/j.jtemb.2018.05.004 PMid:29773469
39. Syroeshkin AV, Uspenskaya EV, Pleteneva TV, Morozova MA, Zlatskiy IA, Koldina AM, Nikiforova MV. Mechanical Transformation of Compounds Leading to Physical, Chemical, and Biological Changes in Pharmaceutical Substances. ScientificWorldJournal. 2018 Dec https://doi.org/10.1155/2018/8905471 PMid:30643492 PMCid:PMC6311245
40. Nałęcz-Jawecki G, Wawryniuk M, Giebułtowicz J, Olkowski A, Drobniewska A. Influence of Selected Antidepressants on the Ciliated Protozoan Spirostomum ambiguum: Toxicity, Bioaccumulation, and Biotransformation Products. Molecules. 2020 Mar 25 https://doi.org/10.3390/molecules25071476 PMid:32218111 PMCid:PMC7180767
41. Rashid I, Murtaza G, Dar AA, Wang Z. The influence of humic and fulvic acids on Cd bioavailability to wheat cultivars grown on sewage irrigated Cd-contaminated soils. Ecotoxicol Environ Saf. 2020 Dec https://doi.org/10.1016/j.ecoenv.2020.111347 PMid:32961489
42. Šebesta M, Koleněcík M, Urík M, Bujdoš M, Vávra I, Dobroěcka E, Smilek J, Kalina M, Diviš P, Pavúk M, Miglierini M, Kratošová G, Matúš P. Increased Colloidal Stability and Decreased Solubility-Sol-Gel Synthesis of Zinc Oxide Nanoparticles with Humic Acids. J Nanosci Nanotechnol. 2019 May 1 https://doi.org/10.1166/jnn.2019.15868 PMid:30501816
43. Mohd Omar F, Abdul Aziz H, Stoll S. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid. Sci Total Environ. 2014 Jan 15 https://doi.org/10.1016/j.scitotenv.2013.08.044 PMid:24029691
44. Kowalewska A, Nowacka M. Supramolecular Interactions in Hybrid Polylactide Blends-The Structures, Mechanisms and Properties. Molecules. 2020 Jul 23 https://doi.org/10.3390/molecules25153351 PMid:32718056 PMCid:PMC7435468
45. Mirza MA, Agarwal SP, Rahman MA, Rauf A, Ahmad N, Alam A, Iqbal Z. Role of humic acid on oral drug delivery of an antiepileptic drug. Drug Dev Ind Pharm. 2011 Mar;37(3):310-9. https://doi.org/10.3109/03639045.2010.512011 PMid:20815797
46. Murugesan G, Latha N, Suganya K, Murugan M, Munusamy MA, Rajan M. Stimulus-responsive zinc oxide-functionalized macromolecular humic acid nanocarrier for enhancement of antibacterial activity of ciprofloxacin hydrochloride. Int J Biol Macromol. 2018 Jul 15;114:1109-1116. https://doi.org/10.1016/j.ijbiomac.2018.03.120 PMid:29578024
47. Cuprys A, Pulicharla R, Lecka J, Brar SK, Drogui P, Surampalli RY. Ciprofloxacin-metal complexes -stability and toxicity tests in the presence of humic substances. Chemosphere. 2018 Jul;202:549-559. https://doi.org/10.1016/j.chemosphere.2018.03.117 PMid:29587236
48. Pleteneva, T. V., Galkina, D. A., Fatkulina, O. A., Ogotoeva, D. D., Levitskaya, O. V., Uspenskaya, E. V., & Syroeshkin, A. V. (2023). Arrhenius kinetics in the evaluation of the biological activity of pharmaceutical tinctures. International Journal of Applied Pharmaceutics, 15(4), 277-281. https://doi.org/10.22159/ijap.2023v15i4.48058
49. Tumasov V.N., Marukhlenko A.V., Novikov A.P., Hoang Q.T.N., Koldina A.M., Morozova M.A. Chiral Properties of Zinc Complexes with Bi- and Tridentate Ligands of L- and D-Amino Acids. JAPS, 2025 15 (4). https://doi.org/10.7324/JAPS.2025.209656
Published



How to Cite
Issue
Section
Copyright (c) 2025 Vladimir N. Tumasov , Alla V. Marukhlenko, Anton V. Syroeshkin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).