Advancing Insights into Progression of Acute Kidney Injury with Sepsis: Early Detection and Management
Abstract
Acute kidney injury (AKI) associated with sepsis is a major contributor to morbidity and mortality in critically ill patients. The progression of sepsis-induced AKI (S-AKI) is complex and involves a dysregulated immune response, including systemic inflammation, endothelial dysfunction, and microvascular injury. These mechanisms compromise renal function, leading to significant challenges in management. Early detection and timely intervention are crucial to improving outcomes, yet effective treatment strategies remain elusive.
Advances in understanding the pathophysiology of S-AKI have provided critical insights into the underlying mechanisms of kidney damage during sepsis. These insights have led to the identification of potential biomarkers that can aid in early diagnosis, predict disease progression, and guide therapeutic decisions. Current management of S-AKI includes fluid resuscitation, broad-spectrum antibiotics, and renal replacement therapy (RRT), aimed at stabilizing the patient and supporting renal function. Emerging therapies, such as novel pharmacological agents and approaches to modulate the immune response, are under investigation, offering promise for improving clinical outcomes. However, more research is needed to validate these treatments and ensure their safety and efficacy.
The advancing insights into the pathophysiology of S-AKI, coupled with the development of innovative diagnostic tools and therapeutic strategies is critical for improving the management of sepsis-induced kidney injury. Future research should focus on bridging the gap between basic science, clinical practice, and large-scale clinical trials to optimize care and outcomes for patients suffering from S-AKI.
Keywords: Sepsis, Acute kidney injury, Immune response, Systemic inflammation, Endothelial dysfunction, Microvascular injury.
Keywords:
Sepsis, Acute kidney injury, Systemic inflammation, Endothelial dysfunction, Microvascular injury.DOI
https://doi.org/10.22270/jddt.v15i2.6997References
1. Cao, C., Yu, M. & Chai, Y. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis 2019;10:782. https://doi.org/10.1038/s41419-019-2015-1 PMid:31611560 PMCid:PMC6791888
2. Tamargo C, Hanouneh M, Cervantes CE. Treatment of Acute Kidney Injury: A Review of Current Approaches and Emerging Innovations. Journal of Clinical Medicine. 2024;13(9):2455. https://doi.org/10.3390/jcm13092455 PMid:38730983 PMCid:PMC11084889
3. Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019 Nov;96(5):1083-1099. https://doi.org/10.1016/j.kint.2019.05.026 PMid:31443997 PMCid:PMC6920048
4. Godin M, Murray P, Mehta RL. Clinical approach to the patient with AKI and sepsis. Semin Nephrol. 2015 Jan;35(1):12-22. https://doi.org/10.1016/j.semnephrol.2015.01.003 PMid:25795496 PMCid:PMC5617729
5. Stasi A, Franzin R, Caggiano G, Losapio R, Fiorentino M, Alfieri C, et al. New Frontiers in Sepsis-Induced Acute Kidney Injury and Blood Purification Therapies: The Role of Polymethylmethacrylate Membrane Hemofilter. Blood Purif. 2023, 52: 71-84. https://doi.org/10.1159/000528685 PMid:36693337 PMCid:PMC10210082
6. He FF, Wang YM, Chen YY, Huang W, Li ZQ, Zhang C. Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Frontiers in Pharmacology. 2022 Sep 15;13. https://doi.org/10.3389/fphar.2022.981578 PMid:36188562 PMCid:PMC9522319
7. Acharya Balkrishna, Sinha S, Kumar A, Arya V, Ajay Kumar Gautam, Vališ M, et al. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomedicine & Pharmacotherapy. 2023 Sep 1;165 https://doi.org/10.1016/j.biopha.2023.115183 PMid:37487442
8. Chang Y-M, Chou Y-T, Kan W-C, Shiao C-C. Sepsis and Acute Kidney Injury: A Review Focusing on the Bidirectional Interplay. Int. J. Mol. Sci.. 2022; 23(16):9159. https://doi.org/10.3390/ijms23169159 PMid:36012420 PMCid:PMC9408949
9. Lankadeva YR, Okazaki N, Evans RG, Bellomo R, May CN. Renal Medullary Hypoxia: A New Therapeutic Target for Septic Acute Kidney Injury? Seminars in Nephrology. 2019 Nov;39(6):543-53. https://doi.org/10.1016/j.semnephrol.2019.10.004 PMid:31836037
10. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, et al. Fate Tracing Reveals the Pericyte and Not Epithelial Origin of Myofibroblasts in Kidney Fibrosis. The American Journal of Pathology. 2010 Jan;176(1):85-97. https://doi.org/10.2353/ajpath.2010.090517 PMid:20008127 PMCid:PMC2797872
11. Kuwabara, Shuhei; Goggins, Eibhlin; Okusa, Mark D.. The Pathophysiology of Sepsis-Associated AKI. CJASN 17(7):p 1050-1069, July 2022. https://doi.org/10.2215/CJN.00850122 PMid:35764395 PMCid:PMC9269625
12. Flannery, A.H., Ortiz-Soriano, V., Li, X. et al. Serum renin and major adverse kidney events in critically ill patients: a multicenter prospective study. Crit Care 25, 294 (2021). https://doi.org/10.1186/s13054-021-03725-z PMid:34391450 PMCid:PMC8364694
13. Zarbock, A., Chawla, L. & Bellomo, R. Why the renin-angiotensin-aldosterone system (RAAS) in critically ill patients can no longer be ignored. Crit Care 25, 389 (2021). https://doi.org/10.1186/s13054-021-03816-x PMid:34775967 PMCid:PMC8590862
14. Ferreira GS, Frota ML, Gonzaga MJD, Vattimo MFF, Lima C. The Role of Biomarkers in Diagnosis of Sepsis and Acute Kidney Injury. Biomedicines. 2024 Apr 23;12(5): 931. https://doi.org/10.3390/biomedicines12050931 PMid:38790893 PMCid:PMC11118225
15. Walczak-Wieteska P, Zuzda K, Małyszko J, Andruszkiewicz P. Proenkephalin A 119-159 in Perioperative and Intensive Care-A Promising Biomarker or Merely Another Option? Diagnostics. 2024; 14(21):2364. https://doi.org/10.3390/diagnostics14212364 PMid:39518330 PMCid:PMC11545452
16. Rosenqvist M, Bronton K, Hartmann O, Bergmann A, Struck J, Melander O. Proenkephalin a 119-159 (penKid) - a novel biomarker for acute kidney injury in sepsis: an observational study. BMC Emerg Med. 2019 Nov 28;19(1):75. https://doi.org/10.1186/s12873-019-0283-9 PMid:31779591 PMCid:PMC6883703
17. Acharya b, Sinha S, Kumar A, Arya V, Ajay Kumar Gautam, Vališ M, et al. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomedicine & Pharmacotherapy. 2023 Sep 1;165:115183-3. https://doi.org/10.1016/j.biopha.2023.115183 PMid:37487442
18. Soni SS, Cruz D, Bobek I, Chionh CY, Nalesso F, Lentini P, de Cal M, Corradi V, Virzi G, Ronco C. NGAL: a biomarker of acute kidney injury and other systemic conditions. Int Urol Nephrol. 2010 Mar;42(1):141-50. https://doi.org/10.1007/s11255-009-9608-z PMid:19582588
19. Ferguson, Thomas W.a; Komenda, Paula,b; Tangri, Navdeepa,b. Cystatin C as a biomarker for estimating glomerular filtration rate. Current Opinion in Nephrology and Hypertension 24(3):p 295-300, May 2015. https://doi.org/10.1097/MNH.0000000000000115 PMid:26066476
20. Leem AY, Park MS, Park BH, Jung WJ, Chung KS, Kim SY, Kim EY, Jung JY, Kang YA, Kim YS, Kim SK, Chang J, Song JH. Value of Serum Cystatin C Measurement in the Diagnosis of Sepsis-Induced Kidney Injury and Prediction of Renal Function Recovery. Yonsei Med J. 2017 May;58(3):604-612. https://doi.org/10.3349/ymj.2017.58.3.604 PMid:28332367 PMCid:PMC5368147
21. Xu F, Tan X, Wang J, Lu S, Ding H, Xue M, Chen Y, Wang S, Teng J, Shi Y, Song Z. Cell-free DNA predicts all-cause mortality of sepsis-induced acute kidney injury. Ren Fail. 2024 Dec;46(1):2273422. https://doi.org/10.1080/0886022X.2023.2273422 PMid:38419570 PMCid:PMC10906115
22. Su L, Xie L, Liu D. Urine sTREM-1 may be a valuable biomarker in diagnosis and prognosis of sepsis-associated acute kidney injury. Crit Care. 2015 Jul 14;19(1):281. https://doi.org/10.1186/s13054-015-0998-2 PMid:26169055 PMCid:PMC4501200
23. Sherif, H., Farghal, A., Al Sisi, A. et al. Urinary strem-1 is an early outcome predictor for sepsis and sepsis-induced acute kidney injury. ICMx 2015;3:A255. https://doi.org/10.1186/2197-425X-3-S1-A255 PMCid:PMC4796765
24. Hattori, N., Oda, S. Cytokine-adsorbing hemofilter: old but new modality for septic acute kidney injury. Ren Replace Ther 2016;2:41. https://doi.org/10.1186/s41100-016-0051-1
25. Schittek, G.A., Zoidl, P., Eichinger, M. et al. Adsorption therapy in critically ill with septic shock and acute kidney injury: a retrospective and prospective cohort study. Ann. Intensive Care 2020;10:154. https://doi.org/10.1186/s13613-020-00772-7 PMid:33206229 PMCid:PMC7672170
26. Hotchkiss RS, Colston E, Yende S, Angus DC, Moldawer LL, Crouser ED, Martin GS, Coopersmith CM, Brakenridge S, Mayr FB, Park PK, Ye J, Catlett IM, Girgis IG, Grasela DM. Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized, Placebo-Controlled, Single Ascending Dose Study of Antiprogrammed Cell Death-Ligand 1 Antibody (BMS-936559). Crit Care Med. 2019 May;47(5):632-642. https://doi.org/10.1097/CCM.0000000000003685 PMid:30747773 PMCid:PMC7254685
27. Chen Y, Guo D, Zhu C, Ren S, Sun C, Wang Y, et al. The implication of targeting PD-1:PD-L1 pathway in treating sepsis through immunostimulatory and anti-inflammatory pathways. Frontiers in Immunology 14,2023 https://doi.org/10.3389/fimmu.2023.1323797 PMid:38193090 PMCid:PMC10773890
28. Luo C, Luo F, Che L, Zhang H, Zhao L, Zhang W, Man X, Bu Q, Luan H, Zhou B, Zhou H, Xu Y. Mesenchymal stem cells protect against sepsis-associated acute kidney injury by inducing Gal-9/Tim-3 to remodel immune homeostasis. Ren Fail. 2023 Dec;45(1):2187229. https://doi.org/10.1080/0886022X.2023.2187229 PMid:36883358 PMCid:PMC10013538
29. Xiang, H., Xu, Z., Zhang, C. et al. Macrophage-derived exosomes mediate glomerular endothelial cell dysfunction in sepsis-associated acute kidney injury. Cell Biosci 2023;13:46. https://doi.org/10.1186/s13578-023-00990-z PMid:36879272 PMCid:PMC9990300
30. Zhang, X.; Wang, J.; Zhang, J.; Tan, Y.; Li, Y.; Peng, Z. Exosomes Highlight Future Directions in the Treatment of Acute Kidney Injury. Int. J. Mol. Sci. 2023;24:15568. https://doi.org/10.3390/ijms242115568 PMid:37958550 PMCid:PMC10650293
31. Cheungpasitporn W, Thongprayoon C, Kashani KB. Artificial intelligence and machine learning's role in sepsis-associated acute kidney injury. Kidney Res Clin Pract. 2024 Jul;43(4):417-432. https://doi.org/10.23876/j.krcp.23.298 PMid:38934028 PMCid:PMC11237333
32. Kumar A, Singh NP. Antimicrobial dosing in critically ill patients with sepsis-induced acute kidney injury. Indian J Crit Care Med. 2015 Feb;19(2):99-108. https://doi.org/10.4103/0972-5229.151018 PMid:25722552 PMCid:PMC4339912
33. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006 Jun;34(6):1589-96. https://doi.org/10.1097/01.CCM.0000217961.75225.E9 PMid:16625125
34. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001 Nov 8;345(19):1368-77. https://doi.org/10.1056/NEJMoa010307 PMid:11794169
35. Ahmed AR, Obilana A, Lappin D. Renal Replacement Therapy in the Critical Care Setting. Critical Care Research and Practice . 2019;1-11. https://doi.org/10.1155/2019/6948710 PMid:31396416 PMCid:PMC6664494
36. An JN, Kim SG, Song YR. When and why to start continuous renal replacement therapy in critically ill patients with acute kidney injury. Kidney Res Clin Pract. 2021 Dec;40(4):566-577. https://doi.org/10.23876/j.krcp.21.043 PMid:34781642 PMCid:PMC8685358
37. Mehta RL. Renal-Replacement Therapy in the Critically Ill--Does Timing Matter? N Engl J Med. 2016 Jul 14;375(2):175-6. https://doi.org/10.1056/NEJMe1606125 PMid:27181293
38. Jakob SM, Ruokonen E, Grounds RM, Sarapohja T, Garratt C, Pocock SJ, Bratty JR, Takala J; Dexmedetomidine for Long-Term Sedation Investigators. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012 Mar 21;307(11):1151-60. https://doi.org/10.1001/jama.2012.304 PMid:22436955
39. Nakashima T, Miyamoto K, Shima N, Kato S, Kawazoe Y, Ohta Y, Morimoto T, Yamamura H; DESIRE Trial Investigators. Dexmedetomidine improved renal function in patients with severe sepsis: an exploratory analysis of a randomized controlled trial. J Intensive Care. 2020 Jan 2;8:1. https://doi.org/10.1186/s40560-019-0415-z PMid:31908779 PMCid:PMC6939335
40. Pickkers, P., Angus, D.C., Bass, K. et al. Phase-3 trial of recombinant human alkaline phosphatase for patients with sepsis-associated acute kidney injury (REVIVAL). Intensive Care Med 50, 68-78 (2024). https://doi.org/10.1007/s00134-023-07271-w PMid:38172296 PMCid:PMC10810941
Published



How to Cite
Issue
Section
Copyright (c) 2025 Tadikonda Rama Rao, Rayapudi Vasavi Sai Saraswati , Arthika Chauhan Laudia, Saniya Mehrin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).