Timolol Maleate Microspheres: An Ingenious Carrier for Sustained Release Antihypertensive Formulation

Authors

Abstract

Background: Timolol maleate is classified as a BCS Class I drug and functions as a non-selective β-adrenergic receptor blocker. Its ability to lower heart rate and cardiac output has led to its widespread use in the treatment of hypertension.

Objective: Timolol maleate has a short half-life and is rapidly cleared from the body, which limits its therapeutic effectiveness, requiring frequent dosing and potentially affecting patient adherence. To overcome these challenges, sustained-release microspheres of Timolol maleate were developed using the ion gelation method.

Method: The ion gelation technique was employed to create the microspheres due to its various advantages, including ease of use, scalability and gentle processing conditions.

Results: All batches exhibited a comparatively lower swelling index in 0.1M HCl (pH 1.2) than in SIF (pH 6.8). It was observed that increasing the concentration of sodium alginate resulted in higher drug content. The microspheres were sized between 400 and 900 μm and demonstrated excellent flow characteristics. An optimized batch achieved an entrapment efficiency of 88.83% and released 92.15% of the drug over 7 hrs. Furthermore, stability studies conducted according to ICH Q1A(R2) for 3 months at 5±3°C and 25±2°C/60±5% RH indicated no significant changes in evaluation parameters.

Conclusion: The optimized Timolol maleate-loaded microspheres effectively provided sustained drug release through the membrane over 7 hrs. This study contributes to the development of improved drug delivery systems for better hypertension management, addressing the unmet needs in patient compliance.

Keywords: Timolol Maleate, Microspheres, Ion gelation method, Sodium alginate, Calcium chloride, Sustained release, Hypertension

Keywords:

Timolol Maleate, Microspheres, Ion gelation method, Sodium alginate, Calcium chloride, Sustained release, Hypertension

DOI

https://doi.org/10.22270/jddt.v14i11.6830

Author Biographies

Dr. Shubhangi Aher , Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Aparna Jain , Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Dipti Solanki , Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Priyanka Yadav , Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Siddhesh Redij , Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

References

1. Varghese JS, Venkateshmurthy NS, Sudharsanan N, Jeemon P, Patel SA, Thirumurthy H, et al. Hypertension Diagnosis, Treatment, and Control in India. JAMA Netw Open. 2023 Oct 23;26(10):e2339098. https://doi.org/10.1001/jamanetworkopen.2023.39098 PMid:37870834 PMCid:PMC10594142

2. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, et al. Hypertension. Nat Rev Dis Primers. 2018 Mar 22;4(1):18014. https://doi.org/10.1038/nrdp.2018.14 PMid:29565029 PMCid:PMC6477925

3. Li SC. Factors affecting therapeutic compliance: A review from the patient’s perspective. TCRM. 2008 Feb;Volume 4:269-86. https://doi.org/10.2147/TCRM.S1458 PMid:18728716 PMCid:PMC2503662

4. Malipeddi VR, Awasthi R, Dua K. Formulation and evaluation of controlled release ethylcellulose and polyethylene glycol microspheres containing metoprolol tartrate. Interventional Medicine and Applied Science. 2016 Jun 30;8(2):60-67. https://doi.org/10.1556/1646.8.2016.2.6 PMid:28386461 PMCid:PMC5370352

5. Zimmerman TJ. Timolol: A β-Adrenergic Blocking Agent for the Treatment of Glaucoma. Arch Ophthalmol. 1977 Apr 1;95(4):601. https://doi.org/10.1001/archopht.1977.04450040067008 PMid:322648

6. S. Gaikwad S, A. Jadhav A, K. Chavan M, S. Salunkhe K, H. Ramteke K, R. Chaudhari S. Design and In Vitro Evaluations of Sublingual Tablet of Timolol Maleate. ACCTRA. 2016 Apr 8;3(1):56-63. https://doi.org/10.2174/2213476X03666160308202108

7. Morsi NM, Aboelwafa AA, Dawoud MHS. Improved bioavailability of timolol maleate via transdermal transfersomal gel: Statistical optimization, characterization, and pharmacokinetic assessment. Journal of Advanced Research. 2016 Sep;7(5):691-701. https://doi.org/10.1016/j.jare.2016.07.003 PMid:27660724 PMCid:PMC5021919

8., Brahma CK, Rao RJ, SattarMA, Panda SR. Design And Evaluation Of Sustained Release Tablets Of Timolol Maleate. BPR [Internet]. 2019;9(1-3):165-172. https://doi.org/10.21276/bpr.2019.9.6

9. Song L, He S, Ping Q. Development of a sustained-release microcapsule for delivery of metoprolol succinate. Experimental and Therapeutic Medicine. 2017 May;13(5):2435-2441. https://doi.org/10.3892/etm.2017.4247 PMid:28565860 PMCid:PMC5443309

10. Sacco P, Pedroso-Santana S, Kumar Y, Joly N, Martin P, Bocchetta P. Ionotropic Gelation of Chitosan Flat Structures and Potential Applications. Molecules. 2021 Jan 27;26(3):660. https://doi.org/10.3390/molecules26030660 PMid:33513925 PMCid:PMC7865838

11. Seelam RK, Abafita EK. Preparation and evaluation of alginate microspheres of piroxicam for controlled release. Eur J Ther. 2016 Jan 1;22(1):27-32. https://doi.org/10.5578/GMJ.27962

12. Frenț OD, Duteanu N, Teusdea AC, Ciocan S, Vicaș L, Jurca T, et al. Preparation and Characterization of Chitosan-Alginate Microspheres Loaded with Quercetin. Polymers. 2022 Jan 26;14(3):490. https://doi.org/10.3390/polym14030490 PMid:35160478 PMCid:PMC8839549

13. Abrar A, Yousuf S, Dasan MK. Formulation and evaluation of microsphere of antiulcer drug using Acacia nilotica gum. Int J Health Sci (Qassim). 2020;14(2):10-7.

14. Trivedi P, Verma A, Garud N. Preparation and characterization of aceclofenac microspheres. Asian J Pharm. 2008;2(2):110. https://doi.org/10.4103/0973-8398.42498

15. B. N, S. A. Formulation and Evaluation of Ciprofloxacin Microspheres Designed by Using Natural Polymers by Ionic Gelation Technique. Int J Pharm Pharm Sci. 2024 Jan 1;8-13. https://doi.org/10.22159/ijpps.2024v16i1.49336

16. Nayak A, Khatua S, Hasnain M, Sen K. Development of diclofenac sodium-loaded alginate-PVP K 30 microbeads using central composite design. Daru. 2011;19(5):356-66.

17. Dhakar RC, Maurya SD, Aggarwal S, Kumar G, Tilak VK, Design and evaluation of SRM microspheres of metformin hydrochloride, Pharmacie Globale (IJCP), 2010; 1(1):1-5.

18. Phutane P, Lotlikar V, Ghule A, Sutar S, Kadam V, Shidhaye S. In vitro Evaluation of Novel Sustained Release Microspheres of Glipizide Prepared by the Emulsion Solvent Diffusion-Evaporation Method. Journal of Young Pharmacists. 2010 Jan;2(1):35-41. https://doi.org/10.4103/0975-1483.62210 PMid:21331188 PMCid:PMC3035882

19. Sk. Haneesha, M. Venkataramana, N. Ramarao. Formulation and evaluation of lansoprazole loaded enteric coated microspheres. Int J Res Pharm Sci & Tech. 2020 Jul 2;1(4):124-30. https://doi.org/10.33974/ijrpst.v1i4.201

20. Maravajhala V, Dasari N, Sepuri A, Joginapalli S. Design and evaluation of niacin microspheres. Indian J Pharm Sci. 2009;71(6):663. https://doi.org/10.4103/0250-474X.59549 PMid:20376220 PMCid:PMC2846472

21. Wang M, Wang S, Zhang C, Ma M, Yan B, Hu X, et al. Microstructure Formation and Characterization of Long-Acting Injectable Microspheres: The Gateway to Fully Controlled Drug Release Pattern. IJN. 2024 Feb;Volume 19:1571-1595. https://doi.org/10.2147/IJN.S445269 PMid:38406600 PMCid:PMC10888034

22. Meng Q, Wang L, Chen F, Hao Q, Sun X. Preparation of Ramsdellite-type Li2Ti3O7 hollow microspheres with high tap density by flame melting method as anode of Li-ion battery. Materials Research Bulletin. 2023 May;161:112166. https://doi.org/10.1016/j.materresbull.2023.112166

23. Naga Durga DH, Sowjanya TL, Pavani T, Duppala L. Formulation development and in-vitro evaluation of Molsidomine matrix tablets for colon specific release. J Drug Delivery Ther. 2020 Mar 15;10(2):59-68. https://doi.org/10.22270/jddt.v10i2.3900

24. B. A, R. A, C. S, Chhajed D. D, Palavalli D, Rathore SS, et al. Design, Evaluation and Optimization of L-carnitine as Floating Microspheres for Hyperlipidemia Using 23 Full Factorial Design. app. 2023 Oct;11(4):289-310. https://doi.org/10.13189/app.2023.110406

25. Sharma VK, Sharma PP, Mazumder B, Bhatnagar A, Subramaniyan V, Fuloria S, et al. Mucoadhesive microspheres of glutaraldehyde crosslinked mucilage of Isabgol husk for sustained release of gliclazide. Journal of Biomaterials Science, Polymer Edition. 2021 Jul 24;32(11):1420-449. https://doi.org/10.1080/09205063.2021.1925389 PMid:33941041

26. Amin MdL, Ahmed T, Mannan MdA. Development of Floating-Mucoadhesive Microsphere for Site Specific Release of Metronidazole. Adv Pharm Bull. 2016 Jun 29;6(2):195-200. https://doi.org/10.15171/apb.2016.027 PMid:27478781 PMCid:PMC4961977

27. Rai SY, Ravikumar P. Development and Evaluation of Microsphere Based Topical Formulation using Design of Experiments. ijps [Internet]. 2016 [cited 2024 Oct 5];78(2). https://doi.org/10.4172/pharmaceutical-sciences.1000102 PMid:27168687 PMCid:PMC4852582

28. Javed S, Kohli K, Ahsan W. Bioavailability augmentation of silymarin using natural bioenhancers: An in vivo pharmacokinetic study. Braz J Pharm Sci. 2022;58:e20160. https://doi.org/10.1590/s2175-97902022e20160

29. B.S Rahul, S Lakshmi, S SL, M SMohan, M J R. Mucoadhesive microspheres of ferrous sulphate - A novel approach for oral iron delivery in treating anemia. Colloids and Surfaces B: Biointerfaces. 2020 Nov;195:111247. https://doi.org/10.1016/j.colsurfb.2020.111247 PMid:32711237

30. Jacob S, Shirwaikar A. Preparation and evaluation of microencapsulated fast melt tablets of ambroxol hydrochloride. Indian J Pharm Sci. 2009;71(3):276. https://doi.org/10.4103/0250-474X.56028 PMid:20490294 PMCid:PMC2865786

31. Müller V, Piai JF, Fajardo AR, Fávaro SL, Rubira AF, Muniz EC. Preparation and Characterization of Zein and Zein-Chitosan Microspheres with Great Prospective of Application in Controlled Drug Release. Journal of Nanomaterials. 2011;2011:1-6. https://doi.org/10.1155/2011/928728

32. Bansode. Formulation and evaluation of telmisartan microspheres by emulsion solvent evaporation technique. J App Pharm Sci. 2012; https://doi.org/10.7324/JAPS.2012.21022

33. Dasari V, Shaikh A, Sisodiya D, Bhargava T, Dangi R, Nagwe S, et al. Stability Study of Mucoadhesive Microsphere Containing Nateglinide by Using Biodegradable Polymer Chitosan. JPRI. 2021 Oct 30;866-72. https://doi.org/10.9734/jpri/2021/v33i47A33086

34. Kyzioł A, Mazgała A, Michna J, Regiel-Futyra A, Sebastian V. Preparation and characterization of alginate/chitosan formulations for ciprofloxacin-controlled delivery. J Biomater Appl. 2017 Aug;32(2):162-74. https://doi.org/10.1177/0885328217714352 PMid:28649925

35. Abu-Izza K, Garcia-Contreras L, Lu DR. Preparation and Evaluation of Zidovudine-Loaded Sustained-Release Microspheres. 2. Optimization of Multiple Response Variables. Journal of Pharmaceutical Sciences. 1996 Jun;85(6):572-6. https://doi.org/10.1021/js960021k PMid:8773951

36. Łętocha A, Miastkowska M, Sikora E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers. 2022 Sep 14;14(18):3834. https://doi.org/10.3390/polym14183834 PMid:36145992 PMCid:PMC9502979

37. Fitzpatrick J. Powder properties in food production systems. In: Handbook of Food Powders [Internet]. Elsevier; 2013; 285-308. https://doi.org/10.1533/9780857098672.2.285

38. Mathematical models of drug release. In: Strategies to Modify the Drug Release from Pharmaceutical Systems [Internet]. Elsevier; 2015; 63-86. https://doi.org/10.1016/B978-0-08-100092-2.00005-9

39. Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia, West Bengal, India, Roy D, Das S, Panda A, Mandal S, Biswas NM, et al. Development and Comparative Analysis of Metronidazole Microspheres Prepared with Different Combinations of Polymers Using Ionotropic Gelation Technique. IJST. 2023 Nov 13;16(42):3821-3828. https://doi.org/10.17485/IJST/v16i42.2293

40. Hossain KMZ, Patel U, Ahmed I. Development of microspheres for biomedical applications: a review. Prog Biomater. 2015 Mar;4(1):1-19. https://doi.org/10.1007/s40204-014-0033-8 PMid:29470791 PMCid:PMC5151111

Published

15-11-2024
Statistics
Abstract Display: 39
PDF Downloads: 37
PDF Downloads: 3

How to Cite

1.
Aher S, Jain A, Solanki D, Yadav P, Redij S. Timolol Maleate Microspheres: An Ingenious Carrier for Sustained Release Antihypertensive Formulation. J. Drug Delivery Ther. [Internet]. 2024 Nov. 15 [cited 2024 Dec. 6];14(11):39-53. Available from: https://jddtonline.info/index.php/jddt/article/view/6830

How to Cite

1.
Aher S, Jain A, Solanki D, Yadav P, Redij S. Timolol Maleate Microspheres: An Ingenious Carrier for Sustained Release Antihypertensive Formulation. J. Drug Delivery Ther. [Internet]. 2024 Nov. 15 [cited 2024 Dec. 6];14(11):39-53. Available from: https://jddtonline.info/index.php/jddt/article/view/6830