Nanotechnology at Work: Hydrogel Drug Delivery Architectures

Abstract

Hydrogels represent three-dimensional, interconnected networks known to absorb substantial amounts of H2O but at the same time, being insoluble in the aforementioned solvent. Their exceptional hydrophilic nature, biocompatibility and diverse therapeutic potential position them as highly promising biomaterials within biological and biomedical fields. These materials, on account of their innoxious innate characteristics and safe utilization, have garnered widespread acceptance across tremendous and diverse biomedical applications ranging from traditional therapies to state-of-the-art advancements. This extensive review incorporates a spectrum of varied types of hydrogels, elaborating on both their chemical, physical aspects and also throws light on the rheological, analytical and spectroscopic tools employed for their characterization. It also continues to elaborate on the various mechanisms of gelation for facilitating a better understanding of the topic under discussion. The review also discusses the different strategies which are substantiated in recent times to expand the utilisation of hydrogels. The primary intent of this review is to render a comprehensive understanding of hydrogels as an ideal drug delivery system to undergraduates, graduates, biomedical students and researchers across the globe. It also targets to unravel the fundamental, applied and general aspects of hydrogels, offering valuable insights to help individuals associated with multidisciplinary research and application spheres.


Keywords: Gelation, Biocompatibility, Cross-linking, Smart hydrogels, Polymerization, Architecture, Polymer network

Keywords: Gelation, Biocompatibility, Cross-linking, Smart hydrogels, Polymerization, Architecture, Polymer network

Downloads

Download data is not yet available.

Author Biographies

Shubhangi Aher, Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Dipti Solanki, Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Aparna Jain, Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

Department of Pharmaceutics, IPA MSB’s Bombay College of Pharmacy (Autonomous), Kalina, Santacruz East, Mumbai, India

References

(1) Gulrez H, Al-Assaf SK, S.; O, G. Hydrogels: Methods of Preparation, Characterisation and Applications. In Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications; Carpi, A., Ed.; InTech, 2011. https://doi.org/10.5772/24553.
(2) Oyen, M. L. Mechanical Characterisation of Hydrogel Materials. Int. Mater. Rev. 2014; 59(1):44–59. https://doi.org/10.1179/1743280413Y.0000000022.
(3) Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A. H.; Mujtaba, M. A.; Alghamdi, N. A.; Wageh, S.; Ramesh, K.; Ramesh, S. 3. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020; 12(11):2702. https://doi.org/10.3390/polym12112702.
(4) Bashir, S.; Teo, Y. Y.; Ramesh, S.; Ramesh, K.; Mushtaq, M. W. 4. Rheological Behavior of Biodegradable N-Succinyl Chitosan-g-Poly (Acrylic Acid) Hydrogels and Their Applications as Drug Carrier and in Vitro Theophylline Release. Int. J. Biol. Macromol. 2018, 117, 454–466. https://doi.org/10.1016/j.ijbiomac.2018.05.182.
(5) Gan, D.; Han, L.; Wang, M.; Xing, W.; Xu, T.; Zhang, H.; Wang, K.; Fang, L.; Lu, X. 7. Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods. ACS Appl. Mater. Interfaces 2018, 10 (42), 36218–36228. https://doi.org/10.1021/acsami.8b10280.
(6) Chan, P.; Kurisawa, M.; Chung, J. E.; Yang, Y.-Y. 6. Synthesis and Characterization of Chitosan-g-Poly(Ethylene Glycol)-Folate as a Non-Viral Carrier for Tumor-Targeted Gene Delivery. Biomaterials 2007, 28 (3), 540–549. https://doi.org/10.1016/j.biomaterials.2006.08.046.
(7) Verheul, R. J.; Amidi, M.; van Steenbergen, M. J.; van Riet, E.; Jiskoot, W.; Hennink, W. E. 9. Influence of the Degree of Acetylation on the Enzymatic Degradation and in Vitro Biological Properties of Trimethylated Chitosans. Biomaterials 2009, 30 (18), 3129–3135. https://doi.org/10.1016/j.biomaterials.2009.03.013.
(8) Onishi, H.; Machida, Y. 8. Biodegradation and Distribution of Water-Soluble Chitosan in Mice. Biomaterials 1999, 20 (2), 175–182. https://doi.org/10.1016/S0142-9612(98)00159-8.
(9) Tanan, W.; Panichpakdee, J.; Saengsuwan, S. 11. Novel Biodegradable Hydrogel Based on Natural Polymers: Synthesis, Characterization, Swelling/Reswelling and Biodegradability. Eur. Polym. J. 2019, 112, 678–687. https://doi.org/10.1016/j.eurpolymj.2018.10.033.
(10) Bashir, S.; Teo, Y. Y.; Ramesh, S.; Ramesh, K. 10. Synthesis and Characterization of Karaya Gum-g- Poly (Acrylic Acid) Hydrogels and in Vitro Release of Hydrophobic Quercetin. Polymer 2018, 147, 108–120. https://doi.org/10.1016/j.polymer.2018.05.071.
(11) Fanesi, G.; Abrami, M.; Zecchin, F.; Giassi, I.; Ferro, E. D.; Boisen, A.; Grassi, G.; Bertoncin, P.; Grassi, M.; Marizza, P. 13. Combined Used of Rheology and LF-NMR for the Characterization of PVP-Alginates Gels Containing Liposomes. Pharm. Res. 2018, 35 (9), 171. https://doi.org/10.1007/s11095-018-2427-0.
(12) Sathaye, S.; Mbi, A.; Sonmez, C.; Chen, Y.; Blair, D. L.; Schneider, J. P.; Pochan, D. J. 12. Rheology of Peptide- and Protein-Based Physical Hydrogels: Are Everyday Measurements Just Scratching the Surface? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7 (1), 34–68. https://doi.org/10.1002/wnan.1299.
(13) Unadkat, H. V.; Hulsman, M.; Cornelissen, K.; Papenburg, B. J.; Truckenmüller, R. K.; Carpenter, A. E.; Wessling, M.; Post, G. F.; Uetz, M.; Reinders, M. J. T.; Stamatialis, D.; Van Blitterswijk, C. A.; De Boer, J. 14. An Algorithm-Based Topographical Biomaterials Library to Instruct Cell Fate. Proc. Natl. Acad. Sci. 2011, 108 (40), 16565–16570. https://doi.org/10.1073/pnas.1109861108.
(14) Lei, L.; Bai, Y.; Qin, X.; Liu, J.; Huang, W.; Lv, Q. Current Understanding of Hydrogel for Drug Release and Tissue Engineering. Gels 2022, 8 (5), 301.
(15) Hu, Y.; Zhang, Z.; Li, Y.; Ding, X.; Li, D.; Shen, C.; Xu, F.-J. Dual‐crosslinked Amorphous Polysaccharide Hydrogels Based on Chitosan/Alginate for Wound Healing Applications. Macromol. Rapid Commun. 2018, 39 (20), 1800069.
(16) Kwiecień, I.; Kwiecień, M. Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems. Gels 2018, 4 (2), 47.
(17) Shailesh Kumar Singh; Archana Dhyani; Divya Juyal. 58. Hydrogel: Preparation, Characterization and Applications. Pharma Innov. 2017, 6 (6), 25–32.
(18) Iizawa, T.; Taketa, H.; Maruta, M.; Ishido, T.; Gotoh, T.; Sakohara, S. Synthesis of Porous Poly( N ‐isopropylacrylamide) Gel Beads by Sedimentation Polymerization and Their Morphology. J. Appl. Polym. Sci. 2007, 104 (2), 842–850. https://doi.org/10.1002/app.25605.
(19) Sikarwar, U.; Khasherao, B. Y.; Sandhu, D. A Review on Hydrogel: Classification, Preparation Techniques and Applications. Pharma Innov. 2022, 11 (7), 1172–1179. https://doi.org/10.22271/tpi.2022.v11.i7o.13944.
(20) Ahmed, E. M. 59. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6 (2), 105–121. https://doi.org/10.1016/j.jare.2013.07.006.
(21) Yang, J.; Chen, J.; Pan, D.; Wan, Y.; Wang, Z. pH-Sensitive Interpenetrating Network Hydrogels Based on Chitosan Derivatives and Alginate for Oral Drug Delivery. Carbohydr. Polym. 2013, 92 (1), 719–725. https://doi.org/10.1016/j.carbpol.2012.09.036.
(22) Dragan, E. S.; Perju, M. M.; Dinu, M. V. Preparation and Characterization of IPN Composite Hydrogels Based on Polyacrylamide and Chitosan and Their Interaction with Ionic Dyes. Carbohydr. Polym. 2012, 88 (1), 270–281. https://doi.org/10.1016/j.carbpol.2011.12.002.
(23) Pan, J.; Jin, Y.; Lai, S.; Shi, L.; Fan, W.; Shen, Y. An Antibacterial Hydrogel with Desirable Mechanical, Self-Healing and Recyclable Properties Based on Triple-Physical Crosslinking. Chem. Eng. J. 2019, 370, 1228–1238. https://doi.org/10.1016/j.cej.2019.04.001.
(24) Feng, Z.; Zuo, H.; Gao, W.; Ning, N.; Tian, M.; Zhang, L. A Robust, Self‐Healable, and Shape Memory Supramolecular Hydrogel by Multiple Hydrogen Bonding Interactions. Macromol. Rapid Commun. 2018, 39 (20), 1800138. https://doi.org/10.1002/marc.201800138.
(25) Matsumoto, K.; Kawamura, A.; Miyata, T. Structural Transition of pH-Responsive Poly(L-Lysine) Hydrogel Prepared via Chemical Crosslinking. Chem. Lett. 2015, 44 (10), 1284–1286. https://doi.org/10.1246/cl.150464.
(26) Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng. C 2017, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096.
(27) Yadav, M.; Chiu, F.-C. Cellulose Nanocrystals Reinforced κ-Carrageenan Based UV Resistant Transparent Bionanocomposite Films for Sustainable Packaging Applications. Carbohydr. Polym. 2019, 211, 181–194. https://doi.org/10.1016/j.carbpol.2019.01.114.
(28) Nep, E.; Conway, B. Grewia Gum 2: Mucoadhesive Properties of Compacts and Gels. Trop. J. Pharm. Res. 2011, 10 (4), 393–401. https://doi.org/10.4314/tjpr.v10i4.4.
(29) Tan, H.; Marra, K. G. Injectable, Biodegradable Hydrogels for Tissue Engineering Applications. Materials 2010, 3 (3), 1746–1767. https://doi.org/10.3390/ma3031746.
(30) Schmolka, I. R. Artificial Skin I. Preparation and Properties of Pluronic F‐127 Gels for Treatment of Burns. J. Biomed. Mater. Res. 1972, 6 (6), 571–582. https://doi.org/10.1002/jbm.820060609.
(31) Bonacucina, G.; Cespi, M.; Mencarelli, G.; Giorgioni, G.; Palmieri, G. F. Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems. Polymers 2011, 3 (2), 779–811. https://doi.org/10.3390/polym3020779.
(32) Mamada, A.; Tanaka, T.; Kungwatchakun, D.; Irie, M. Photoinduced Phase Transition of Gels. Macromolecules 1990, 23 (5), 1517–1519. https://doi.org/10.1021/ma00207a046.
(33) Masteiková, R.; Chalupová, Z.; Sklubalová, Z. Stimuli-Sensitive Hydrogels in Controlled and Sustained Drug Delivery. Med. Kaunas Lith. 2003, 39 Suppl 2, 19–24.
(34) Hosseinifar, T.; Sheybani, S.; Abdouss, M.; Hassani Najafabadi, S. A.; Shafiee Ardestani, M. Pressure Responsive Nanogel Base on Alginate‐Cyclodextrin with Enhanced Apoptosis Mechanism for Colon Cancer Delivery. J. Biomed. Mater. Res. A 2018, 106 (2), 349–359. https://doi.org/10.1002/jbm.a.36242.
(35) Mahinroosta, M.; Jomeh Farsangi, Z.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42–55. https://doi.org/10.1016/j.mtchem.2018.02.004.
(36) Liu, T.-Y.; Hu, S.-H.; Liu, K.-H.; Liu, D.-M.; Chen, S.-Y. Study on Controlled Drug Permeation of Magnetic-Sensitive Ferrogels: Effect of Fe3O4 and PVA. J. Controlled Release 2008, 126 (3), 228–236. https://doi.org/10.1016/j.jconrel.2007.12.006.
(37) Hu, Y.; Kim, Y.; Hong, I.; Kim, M.; Jung, S. Fabrication of Flexible pH-Responsive Agarose/Succinoglycan Hydrogels for Controlled Drug Release. Polymers 2021, 13 (13), 2049. https://doi.org/10.3390/polym13132049.
(38) Ullah, A.; Jang, M.; Khan, H.; Choi, H. J.; An, S.; Kim, D.; Kim, Y.-R.; Kim, U.-K.; Kim, G. M. Microneedle Array with a pH-Responsive Polymer Coating and Its Application in Smart Drug Delivery for Wound Healing. Sens. Actuators B Chem. 2021, 345, 130441. https://doi.org/10.1016/j.snb.2021.130441.
(39) Traitel, T.; Cohen, Y.; Kost, J. Characterization of Glucose-Sensitive Insulin Release Systems in Simulated in Vivo Conditions. Biomaterials 2000, 21 (16), 1679–1687. https://doi.org/10.1016/S0142-9612(00)00050-8.
(40) Lee Y-J; Pruzinsky SA. Lee Y-J, Pruzinsky SA. Braun PV. Glucose-Sensitive Inverse Opal Hydrogels: Analysis of Optical Diffraction Response. Langmuir. 2004;20(8), 3096–3106.
(41) Wang, L.; Yin, Y.-L.; Liu, X.-Z.; Shen, P.; Zheng, Y.-G.; Lan, X.-R.; Lu, C.-B.; Wang, J.-Z. Current Understanding of Metal Ions in the Pathogenesis of Alzheimer’s Disease. Transl. Neurodegener. 2020, 9 (1), 10. https://doi.org/10.1186/s40035-020-00189-z.
(42) Yoshida, T.; Shakushiro, K.; Sako, K. Ion-Responsive Drug Delivery Systems. Curr. Drug Targets 2018, 19 (3). https://doi.org/10.2174/1389450117666160527142138.
(43) Chen, D.; Zhang, G.; Li, R.; Guan, M.; Wang, X.; Zou, T.; Zhang, Y.; Wang, C.; Shu, C.; Hong, H.; Wan, L.-J. Biodegradable, Hydrogen Peroxide, and Glutathione Dual Responsive Nanoparticles for Potential Programmable Paclitaxel Release. J. Am. Chem. Soc. 2018, 140 (24), 7373–7376. https://doi.org/10.1021/jacs.7b12025.
(44) Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H. M.; Tran, S. D. 2. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials 2019, 12 (20), 3323. https://doi.org/10.3390/ma12203323.
(45) Miyata, T.; Asami, N.; Uragami, T. Preparation of an Antigen-Sensitive Hydrogel Using Antigen−Antibody Bindings. Macromolecules 1999, 32 (6), 2082–2084. https://doi.org/10.1021/ma981659g.
(46) Lu, Z.; Kopečková, P.; Kopeček, J. Antigen Responsive Hydrogels Based on Polymerizable Antibody Fab′ Fragment. Macromol. Biosci. 2003, 3 (6), 296–300. https://doi.org/10.1002/mabi.200390039.
(47) Chandrawati, R. Enzyme-Responsive Polymer Hydrogels for Therapeutic Delivery. Exp. Biol. Med. 2016, 241 (9), 972–979. https://doi.org/10.1177/1535370216647186.
(48) Chang, C.; Zhang, L. Cellulose-Based Hydrogels: Present Status and Application Prospects. Carbohydr. Polym. 2011, 84 (1), 40–53. https://doi.org/10.1016/j.carbpol.2010.12.023.
(49) Jain, A.; Gupta, Y.; Jain, S. K. Perspectives of Biodegradable Natural Polysaccharides for Site-Specific Drug Delivery to the Colon. J. Pharm. Pharm. Sci. Publ. Can. Soc. Pharm. Sci. Soc. Can. Sci. Pharm. 2007, 10 (1), 86–128.
(50) libing zhang. Multifunctional Quantum Dot DNA Hydrogels.; 2017; Vol. 8.
(51) Yang, X.; Zhang, C.; Deng, D.; Gu, Y.; Wang, H.; Zhong, Q. Multiple Stimuli‐Responsive MXene‐Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small 2022, 18 (5), 2104368. https://doi.org/10.1002/smll.202104368.
(52) Chen, Y.; Song, G.; Yu, J.; Wang, Y.; Zhu, J.; Hu, Z. Mechanically Strong Dual Responsive Nanocomposite Double Network Hydrogel for Controlled Drug Release of Asprin. J. Mech. Behav. Biomed. Mater. 2018, 82, 61–69. https://doi.org/10.1016/j.jmbbm.2018.03.002.
(53) Mahdavinia, G. R.; Rahmani, Z.; Karami, S.; Pourjavadi, A. Magnetic/pH-Sensitive κ -Carrageenan/Sodium Alginate Hydrogel Nanocomposite Beads: Preparation, Swelling Behavior, and Drug Delivery. J. Biomater. Sci. Polym. Ed. 2014, 25 (17), 1891–1906. https://doi.org/10.1080/09205063.2014.956166.
(54) Ma, S.; Yu, B.; Pei, X.; Zhou, F. 60. Structural Hydrogels. Polymer 2016, 98, 516–535. https://doi.org/10.1016/j.polymer.2016.06.053.
(55) Gils, P. S.; Sahu, N. K.; Ray, D.; Sahoo, P. K. 61. Hydrolyzed Collagen-Based Hydrogel System Design, Characterization and Application in Drug Delivery. Am. J. Biomed. Sci. 2012, 167–177. https://doi.org/10.5099/aj120200167.
(56) Hossein Omidian; Kinam Park. 62. Hydrogels. Fundam. Appl. Control. Release Drug Deliv. 2012, 75–106.
(57) Jang, J.; Seol, Y.-J.; Kim, H. J.; Kundu, J.; Kim, S. W.; Cho, D.-W. Effects of Alginate Hydrogel Cross-Linking Density on Mechanical and Biological Behaviors for Tissue Engineering. J. Mech. Behav. Biomed. Mater. 2014, 37, 69–77. https://doi.org/10.1016/j.jmbbm.2014.05.004.
(58) Hoare, T. R.; Kohane, D. S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49 (8), 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027.
(59) Iijima, M.; Hatakeyama, T.; Takahashi, M.; Hatakeyama, H. Effect of Thermal History on Kappa-Carrageenan Hydrogelation by Differential Scanning Calorimetry. Thermochim. Acta 2007, 452 (1), 53–58. https://doi.org/10.1016/j.tca.2006.10.019.
(60) john; sebastian. Highly Stretchable Hydrogels from Complex Coacervation of Natural Polyelectrolytes; 2017.
(61) Hennink, W. E.; Van Nostrum, C. F. Novel Crosslinking Methods to Design Hydrogels. Adv. Drug Deliv. Rev. 2002, 54 (1), 13–36. https://doi.org/10.1016/S0169-409X(01)00240-X.
(62) Giannouli, P.; Morris, E. R. Cryogelation of Xanthan. Food Hydrocoll. 2003, 17 (4), 495–501. https://doi.org/10.1016/S0268-005X(03)00019-5.
(63) Zhang, Y.; Gao, P.; Zhao, L.; Chen, Y. Preparation and Swelling Properties of a Starch-g-Poly(Acrylic Acid)/Organo-Mordenite Hydrogel Composite. Front. Chem. Sci. Eng. 2016, 10 (1), 147–161. https://doi.org/10.1007/s11705-015-1546-y.
(64) Yuan, L.; Wu, Y.; Gu, Q.; El-Hamshary, H.; El-Newehy, M.; Mo, X. Injectable Photo Crosslinked Enhanced Double-Network Hydrogels from Modified Sodium Alginate and Gelatin. Int. J. Biol. Macromol. 2017, 96, 569–577. https://doi.org/10.1016/j.ijbiomac.2016.12.058.
(65) Larrañeta, E.; Henry, M.; Irwin, N. J.; Trotter, J.; Perminova, A. A.; Donnelly, R. F. 75. Synthesis and Characterization of Hyaluronic Acid Hydrogels Crosslinked Using a Solvent-Free Process for Potential Biomedical Applications. Carbohydr. Polym. 2018, 181, 1194–1205. https://doi.org/10.1016/j.carbpol.2017.12.015.
(66) Guiseppi-Elie, A. 73. Electroconductive Hydrogels: Synthesis, Characterization and Biomedical Applications. Biomaterials 2010, 31 (10), 2701–2716. https://doi.org/10.1016/j.biomaterials.2009.12.052.
(67) Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. 93. Injectable Hydrogels for Cartilage and Bone Tissue Engineering. Bone Res. 2017, 5 (1), 17014. https://doi.org/10.1038/boneres.2017.14.
(68) Wang, W. Y.; Pearson, A. T.; Kutys, M. L.; Choi, C. K.; Wozniak, M. A.; Baker, B. M.; Chen, C. S. 76. Extracellular Matrix Alignment Dictates the Organization of Focal Adhesions and Directs Uniaxial Cell Migration. APL Bioeng. 2018, 2 (4), 046107. https://doi.org/10.1063/1.5052239.
(69) Raab, M.; Discher, D. E. 77. Matrix Rigidity Regulates Microtubule Network Polarization in Migration. Cytoskeleton 2017, 74 (3), 114–124. https://doi.org/10.1002/cm.21349.
(70) Yahia, Lh. 78. History and Applications of Hydrogels. J. Biomed. Sci. 2015, 04 (02). https://doi.org/10.4172/2254-609X.100013.
(71) Denzer, B. R.; Kulchar, R. J.; Huang, R. B.; Patterson, J. 79. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels 2021, 7 (4), 158. https://doi.org/10.3390/gels7040158.
(72) Complex Hydrogels Composed of Chitosan with Ring-Opened Polyvinyl Pyrrolidone as a Gastroretentive Drug Dosage Form to Enhance the Bioavailability of Bisphosphonates; 2018; Vol. 8.
(73) Cascone, S.; Lamberti, G. Hydrogel-Based Commercial Products for Biomedical Applications: A Review. Int. J. Pharm. 2020, 573, 118803. https://doi.org/10.1016/j.ijpharm.2019.118803.
(74) Miyazaki, S.; Suzuki, S.; Kawasaki, N.; Endo, K.; Takahashi, A.; Attwood, D. In Situ Gelling Xyloglucan Formulations for Sustained Release Ocular Delivery of Pilocarpine Hydrochloride. Int. J. Pharm. 2001, 229 (1–2), 29–36. https://doi.org/10.1016/S0378-5173(01)00825-0.
(75) Prasannan, A.; Tsai, H.-C.; Hsiue, G.-H. Formulation and Evaluation of Epinephrine-Loaded Poly(Acrylic Acid-Co-N-Isopropylacrylamide) Gel for Sustained Ophthalmic Drug Delivery. React. Funct. Polym. 2018, 124, 40–47. https://doi.org/10.1016/j.reactfunctpolym.2018.01.001.
(76) Li, Z.; Qu, T.; Ding, C.; Ma, C.; Sun, H.; Li, S.; Liu, X. Injectable Gelatin Derivative Hydrogels with Sustained Vascular Endothelial Growth Factor Release for Induced Angiogenesis. Acta Biomater. 2015, 13, 88–100. https://doi.org/10.1016/j.actbio.2014.11.002.
(77) Chen, G.; Li, J.; Song, M.; Wu, Z.; Zhang, W.; Wang, Z.; Gao, J.; Yang, Z.; Ou, C. A Mixed Component Supramolecular Hydrogel to Improve Mice Cardiac Function and Alleviate Ventricular Remodeling after Acute Myocardial Infarction. Adv. Funct. Mater. 2017, 27 (34), 1701798. https://doi.org/10.1002/adfm.201701798.
(78) Hopkins, A. M.; De Laporte, L.; Tortelli, F.; Spedden, E.; Staii, C.; Atherton, T. J.; Hubbell, J. A.; Kaplan, D. L. Silk Hydrogels as Soft Substrates for Neural Tissue Engineering. Adv. Funct. Mater. 2013, 23 (41), 5140–5149. https://doi.org/10.1002/adfm.201300435.
(79) Ren, Y.; Zhao, X.; Liang, X.; Ma, P. X.; Guo, B. Injectable Hydrogel Based on Quaternized Chitosan, Gelatin and Dopamine as Localized Drug Delivery System to Treat Parkinson’s Disease. Int. J. Biol. Macromol. 2017, 105, 1079–1087. https://doi.org/10.1016/j.ijbiomac.2017.07.130.
(80) Li, Y.; Xu, Z.; Qi, H.; Zhu, Z.; Chen, S.; Zhang, G. Observation and Nursing of the Curative Effect of Ag/TiO 2 Nanomaterials on Bacterial Vaginosis and Trichomonal Vaginitis. J. Nanosci. Nanotechnol. 2020, 20 (12), 7419–7424. https://doi.org/10.1166/jnn.2020.18624.
(81) Wenbo, Q.; Lijian, X.; Shuangdan, Z.; Jiahua, Z.; Yanpeng, T.; Xuejun, Q.; Xianghua, H.; Jingkun, Z. Controlled Releasing of SDF-1α in Chitosan-Heparin Hydrogel for Endometrium Injury Healing in Rat Model. Int. J. Biol. Macromol. 2020, 143, 163–172. https://doi.org/10.1016/j.ijbiomac.2019.11.184.
(82) Subramanian, B.; Agarwal, T.; Roy, A.; Parida, S.; Kundu, B.; Maiti, T. K.; Basak, P.; Guha, S. K. Synthesis and Characterization of PCL-DA:PEG-DA Based Polymeric Blends Grafted with SMA Hydrogel as Bio-Degradable Intrauterine Contraceptive Implant. Mater. Sci. Eng. C 2020, 116, 111159. https://doi.org/10.1016/j.msec.2020.111159.
(83) Das, A.; Wadhwa, S.; Srivastava, A. K. Cross-Linked Guar Gum Hydrogel Discs for Colon-Specific Delivery of Ibuprofen: Formulation and In Vitro Evaluation. Drug Deliv. 2006, 13 (2), 139–142. https://doi.org/10.1080/10717540500313455.
(84) Suhail, M.; Shao, Y.-F.; Vu, Q. L.; Wu, P.-C. Designing of pH-Sensitive Hydrogels for Colon Targeted Drug Delivery; Characterization and In Vitro Evaluation. Gels 2022, 8 (3), 155. https://doi.org/10.3390/gels8030155.
(85) Gaffey, A. C.; Chen, M. H.; Venkataraman, C. M.; Trubelja, A.; Rodell, C. B.; Dinh, P. V.; Hung, G.; MacArthur, J. W.; Soopan, R. V.; Burdick, J. A.; Atluri, P. 97. Injectable Shear-Thinning Hydrogels Used to Deliver Endothelial Progenitor Cells, Enhance Cell Engraftment, and Improve Ischemic Myocardium. J. Thorac. Cardiovasc. Surg. 2015, 150 (5), 1268–1277. https://doi.org/10.1016/j.jtcvs.2015.07.035.
(86) Liu, Y.; Hsu, S. 94. Synthesis and Biomedical Applications of Self-Healing Hydrogels. Front. Chem. 2018, 6, 449. https://doi.org/10.3389/fchem.2018.00449.
(87) Loebel, C.; Rodell, C. B.; Chen, M. H.; Burdick, J. A. 95. Shear-Thinning and Self-Healing Hydrogels as Injectable Therapeutics and for 3D-Printing. Nat. Protoc. 2017, 12 (8), 1521–1541. https://doi.org/10.1038/nprot.2017.053.
(88) Wang, L. L.; Highley, C. B.; Yeh, Y.; Galarraga, J. H.; Uman, S.; Burdick, J. A. 96. Three‐dimensional Extrusion Bioprinting of Single‐ and Double‐network Hydrogels Containing Dynamic Covalent Crosslinks. J. Biomed. Mater. Res. A 2018, 106 (4), 865–875. https://doi.org/10.1002/jbm.a.36323.
Crossmark
Statistics
90 Views | 6 Downloads
How to Cite
1.
Aher S, Solanki D, Jain A. Nanotechnology at Work: Hydrogel Drug Delivery Architectures. JDDT [Internet]. 15Mar.2024 [cited 19Apr.2024];14(3):179-96. Available from: https://jddtonline.info/index.php/jddt/article/view/6465