Solid dispersion: application and limitations
Solid dispersion Application and limitations
Abstract
Solubility and dissolution rate are essential factors in the bioavailability of a drug. The drug must be well-soluble in water to have good bioavailability. Solid dispersion is among the most widely used and effective methods for increasing solubility and releasing inadequately water-soluble medications. Solid dispersion requires the choice of a suitable carrier for the right active pharmaceutical ingredients and the proper techniques for preparing solid dispersions. The reliable dispersion system is designed in various ways to achieve the goal and avoid the accompanying obstacles.
Keywords: solid dispersion, solubility, solvent evaporation, lyophilization, generation, methods
Keywords:
solid dispersion; solubility;, solvent evaporation;, lyophilization;, generation;, methods;DOI
https://doi.org/10.22270/jddt.v14i2.6410References
Sheetal Z Godse MS, Patil, Swapnil M Kothavade RBS. Techniques for solubility enhancement of Hydrophobic drugs : A Review. J Adv Pharm Educ Res. 2013;3(4):403-414.
Administration USF and D. The Biopharmaceutics Classification System (BCS) Guidance. US Food Drug Adm Drug Eval Res. Published online 2019.
Pitani L. Solubility Enhancement of Model Compounds. Published online 2017.
Jagtap S, Magdum C, Jadge D, Jagtap R. Solubility enhancement technique: a review. J Pharm Sci Res. 2018;10(9):2205-2211.
Dahan A, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: provisional BCS classification of the world's top oral drugs. AAPS J. 2009;11:740-746. https://doi.org/10.1208/s12248-009-9144-x PMid:19876745 PMCid:PMC2782078
Kuchekar AB, Gawade A, Boldhane S. Hydrotropic Solubilization: An Emerging Approach. J Drug Deliv Ther. 2021;11(1-s):200-206. doi:10.22270/jddt.v11i1-s.4724 https://doi.org/10.22270/jddt.v11i1-s.4724
Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930-934. https://doi.org/10.1021/ja02086a003
Nernst W. Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Zeitschrift für Phys Chemie. 1904;47(1):52-55. https://doi.org/10.1515/zpch-1904-4704
Vasconcelos T, Marques S, das Neves J, Sarmento B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv Drug Deliv Rev. 2016;100:85-101. https://doi.org/10.1016/j.addr.2016.01.012 PMid:26826438
Seo JH, Park JB, Choi WK, et al. Improved oral absorption of cilostazol via sulfonate salt formation with mesylate and besylate. Drug Des Devel Ther. 2015;9:3961. https://doi.org/10.2147/DDDT.S87687 PMid:26251575 PMCid:PMC4524531
R Serrano D, H Gallagher K, Marie Healy A. Emerging nanonisation technologies: tailoring crystalline versus amorphous nanomaterials. Curr Top Med Chem. 2015;15(22):2327-2340. https://doi.org/10.2174/1568026615666150605122917 PMid:26043733
Kumar Sarangi M. "Solid Dispersion - a Novel Approach for Enhancement of Bioavailability of Poorly Soluble Drugs in Oral Drug Delivery System." Glob J Pharm Pharm Sci. 2017;3(2). https://doi.org/10.19080/GJPPS.2017.03.555608
Bhowmik D, G.Harish, S.Duraivel, Kumar BP, Raghuvanshi V, Kumar KPS. Solid Dispersion - A Approach To Enhance The Dissolution Rate of Poorly Water Soluble Drugs. Pharma Innov J. 2013;1(12):24-38. https://www.thepharmajournal.com/archives/?year=2013&vol=1&issue=12&ArticleId=104
Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11-23. https://doi.org/10.1007/s11095-004-9004-4 PMid:15771225
Gulia R, Singh S, Sharma N, Arora S. Hydrotropic solid dispersions: A robust application to undertake solubility challenges. Plant Arch. 2020;20:3279-3284.
Kapadiya N, Singhvi I, Mehta K, Karwani G, Dhrubo JS. Hydrotropy: A promising tool for solubility enhancement: A review. Int J Drug Dev Res. 2011;3(2):26-33.
Arunachalam A, Karthikeyan M, Kishore K, Pottabathula HP, Sethuraman S, Hutoshkumar SA. Solid Dispersions. Curr Pharma Res. 2010;1(1). https://doi.org/10.33786/JCPR.2010.v01i01.016
Singh S, Baghel RS, Yadav L. A review on solid dispersion. Int J Pharm life Sci. 2011;2(9).
Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281-1302. https://doi.org/10.1002/jps.2600600902 PMid:4935981
Zhou D, Grant DJW, Zhang GGZ, Law D, Schmitt EA. A calorimetric investigation of thermodynamic andmolecular mobility contributions to the physical stability of two pharmaceutical glasses. J Pharm Sci. 2007;96(1):71-83. https://doi.org/10.1002/jps.20633 PMid:17031846
Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691-1698. https://doi.org/10.1023/A:1012167410376 PMid:9453055
Pokharkar VB, Mandpe LP, Padamwar MN, Ambike AA, Mahadik KR, Paradkar A. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol. 2006;167(1):20-25. https://doi.org/10.1016/j.powtec.2006.05.012
Alshehri S, Imam SS, Hussain A, et al. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Deliv. 2020;27(1):1625-1643. https://doi.org/10.1080/10717544.2020.1846638 PMid:33207947 PMCid:PMC7737680
Zhang X, Sun N, Wu B, Lu Y, Guan T, Wu W. Physical characterization of lansoprazole/PVP solid dispersion prepared by fluid-bed coating technique. Powder Technol. 2008;182(3):480-485. https://doi.org/10.1016/j.powtec.2007.07.011
Meng F, Gala U, Chauhan H. Classification of solid dispersions: correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Dev Ind Pharm. 2015;41(9):1401-1415. https://doi.org/10.3109/03639045.2015.1018274 PMid:25853292
Vo CLN, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3):799-813. https://doi.org/10.1016/j.ejpb.2013.09.007 PMid:24056053
Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics. 2018;10(3). https://doi.org/10.3390/pharmaceutics10030074 PMid:29937483 PMCid:PMC6161168
Van Duong T, Van den Mooter G. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part II: amorphous carriers. Expert Opin Drug Deliv. 2016;13(12):1681-1694. https://doi.org/10.1080/17425247.2016.1198769 PMid:27267583
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23-24):1068-1075. https://doi.org/10.1016/j.drudis.2007.09.005 PMid:18061887
Kaushik R, Budhwar V, Kaushik D. An Overview on Recent Patents and Technologies on Solid Dispersion. Recent Pat Drug Deliv Formul. 2020;14(1):63-74. https://doi.org/10.2174/1872211314666200117094406 PMid:31951172 PMCid:PMC7569281
Swain RP, Subudhi BB. Effect of semicrystalline polymers on self-emulsifying solid dispersions of nateglinide: in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2018;44(1):56-65. https://doi.org/10.1080/03639045.2017.1371739 PMid:28845687
Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23:2417-2426. https://doi.org/10.1007/s11095-006-9063-9 PMid:16933098
Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacin with poly (vinylpyrrolidone) and poly (vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res. 1999;16:1722-1728. https://doi.org/10.1023/A:1018906132279 PMid:10571278
Sun N, Zhang X, Lu Y, Wu W. In vitro evaluation and pharmacokinetics in dogs of solid dispersion pellets containing Silybum marianum extract prepared by fluid-bed coating. Planta Med. 2008;74(02):126-132. https://doi.org/10.1055/s-2008-1034294 PMid:18240100
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23-24):1068-1075. https://doi.org/10.1016/j.drudis.2007.09.005 PMid:18061887
Vo CLN, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3 PART B):799-813. https://doi.org/10.1016/j.ejpb.2013.09.007 PMid:24056053
Sekiguchi K, Obi N, Ueda Y. Studies on Absorption of Eutectic Mixture. II. Absorption of fused Conglomerates of Chloramphenicol and Urea in Rabbits. Chem Pharm Bull. 1964;12(2):134-144. https://doi.org/10.1248/cpb.12.134 PMid:14126741
Sekiguchi K, Obi N. Studies on Absorption of Eutectic Mixture. I. A Comparison of the Behavior of Eutectic Mixture of Sulfathiazole and that of Ordinary Sulfathiazole in Man. Chem Pharm Bull. 1961;9(11):866-872. https://doi.org/10.1248/cpb.9.866
Kaur N, Gupta RC. To quantify the luteolin content from the aerial parts of Heteropogon contortus (L.) Beauv.(spear grass) through High-performance thin-layer chromatography. Asian J Pharm Clin Res. 2018;11(1):191-194. https://doi.org/10.22159/ajpcr.2018.v11i1.22116
Vo CL, Park C, Lee B. European Journal of Pharmaceutics and Biopharmaceutics Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85:799-813. https://doi.org/10.1016/j.ejpb.2013.09.007 PMid:24056053
Saharan V, Kukkar V, Kataria M, Gera M, Choudhury PK. Dissolution enhancement of drugs. Part I: technologies and effect of carriers. Int J Heal Res. 2009;2(2). https://doi.org/10.4314/ijhr.v2i2.55401
Hülsmann S, Backensfeld T, Keitel S, Bodmeier R. Melt extrusion-an alternative method for enhancing the dissolution rate of 17β-estradiol hemihydrate. Eur J Pharm Biopharm. 2000;49(3):237-242. https://doi.org/10.1016/S0939-6411(00)00077-1 PMid:10799815
Jatwani S, Rana AC, Singh G, Aggarwal G. An overview on solubility enhancement techniques for poorly soluble drugs and solid dispersion as an eminent strategic approach. Int J Pharm Sci Res. 2012;3(4):942. https://doi.org/10.1002/chin.201313244
Shuai S, Yue S, Huang Q, et al. Preparation, characterization and in vitro/vivo evaluation of tectorigenin solid dispersion with improved dissolution and bioavailability. Eur J Drug Metab Pharmacokinet. 2016;41:413-422. https://doi.org/10.1007/s13318-015-0265-6 PMid:25669445
Daravath B, Tadikonda RR, Vemula SK. Formulation and pharmacokinetics of gelucire solid dispersions of flurbiprofen. Drug Dev Ind Pharm. 2015;41(8):1254-1262. https://doi.org/10.3109/03639045.2014.940963 PMid:25039470
Dhapte V, Mehta P. Advances in hydrotropic solutions: An updated review. St Petersbg Polytech Univ J Phys Math. 2015;1(4):424-435. https://doi.org/10.1016/j.spjpm.2015.12.006
Mustapha O, Kim KS, Shafique S, et al. Comparison of three different types of cilostazol-loaded solid dispersion: Physicochemical characterization and pharmacokinetics in rats. Colloids Surfaces B Biointerfaces. 2017;154:89-95. https://doi.org/10.1016/j.colsurfb.2017.03.017 PMid:28324691
Al-Hamidi H, Obeidat WM, Nokhodchi A. The dissolution enhancement of piroxicam in its physical mixtures and solid dispersion formulations using gluconolactone and glucosamine hydrochloride as potential carriers. Pharm Dev Technol. 2015;20(1):74-83. https://doi.org/10.3109/10837450.2013.871029 PMid:24392858
Kim SJ, Lee HK, Na YG, et al. A novel composition of ticagrelor by solid dispersion technique for increasing solubility and intestinal permeability. Int J Pharm. 2019;555:11-18. https://doi.org/10.1016/j.ijpharm.2018.11.038 PMid:30448313
Zhang W, Zhang C ning, He Y, et al. Factors affecting the dissolution of indomethacin solid dispersions. Aaps Pharmscitech. 2017;18:3258-3273. https://doi.org/10.1208/s12249-017-0813-2 PMid:28584898
Crucitti VC, Migneco LM, Piozzi A, et al. Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties. Eur J Pharm Biopharm. 2018;125:114-123. https://doi.org/10.1016/j.ejpb.2018.01.012 PMid:29366926
Frizon F, de Oliveira Eloy J, Donaduzzi CM, Mitsui ML, Marchetti JM. Dissolution rate enhancement of loratadine in polyvinylpyrrolidone K-30 solid dispersions by solvent methods. Powder Technol. 2013;235:532-539. https://doi.org/10.1016/j.powtec.2012.10.019
Khuspe PR, Kokate K, Mandhare T, Otari K, Katiyar P. THE COMPREHENSIVE REVIEW ON SOLID DISPERSION TECHNOLOGY. Published online 2017.
Madgulkar A, Bandivadekar M, Shid T, Rao S. Sugars as solid dispersion carrier to improve solubility and dissolution of the BCS class II drug: clotrimazole. Drug Dev Ind Pharm. 2016;42(1):28-38. https://doi.org/10.3109/03639045.2015.1024683 PMid:25874729
de los Santos CJJ, Pérez-Martínez JI, Gómez-Pantoja ME, Moyano JR. Enhancement of albendazole dissolution properties using solid dispersions with Gelucire 50/13 and PEG 15000. J Drug Deliv Sci Technol. 2017;42:261-272. https://doi.org/10.1016/j.jddst.2017.03.030
Xu H, Liu L, Li X, Ma J, Liu R, Wang S. Extended tacrolimus release via the combination of lipid-based solid dispersion and HPMC hydrogel matrix tablets. Asian J Pharm Sci. 2019;14(4):445-454. https://doi.org/10.1016/j.ajps.2018.08.001 PMid:32104473 PMCid:PMC7032121
Karolewicz B, Gajda M, Pluta J, Górniak A. Dissolution study and thermal analysis of fenofibrate-Pluronic F127 solid dispersions. J Therm Anal Calorim. 2016;125:751-757. https://doi.org/10.1007/s10973-015-5013-2
Shen Y, Lu F, Hou J, Shen Y, Guo S. Incorporation of paclitaxel solid dispersions with poloxamer188 or polyethylene glycol to tune drug release from poly (ϵ-caprolactone) films. Drug Dev Ind Pharm. 2013;39(8):1187-1196. https://doi.org/10.3109/03639045.2012.704042 PMid:22803692
Chamsai B, Limmatvapirat S, Sungthongjeen S, Sriamornsak P. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α-tocopherol polyethylene glycol 1000 succinate and copovidone. Drug Dev Ind Pharm. 2017;43(12):2064-2075. https://doi.org/10.1080/03639045.2017.1371731 PMid:28836855
Krishnamoorthy V, Prasad VPR. Physicochemical characterization and in vitro dissolution behavior of olanzapine-mannitol solid dispersions. Brazilian J Pharm Sci. 2012;48:243-255. https://doi.org/10.1590/S1984-82502012000200008
Prasad R, Radhakrishnan P, Singh SK, Verma PRP. Furosemide-Soluplus® Solid Dispersion: Development and Characterization. Recent Pat Drug Deliv Formul. 2017;11(3):211-220. https://doi.org/10.2174/1872211311666171129120020 PMid:29189186
Betageri G V, Makarla KR. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int J Pharm. 1995;126(1-2):155-160. https://doi.org/10.1016/0378-5173(95)04114-1
Altamimi MA, Neau SH. Investigation of the in vitro performance difference of drug-Soluplus® and drug-PEG 6000 dispersions when prepared using spray drying or lyophilization. Saudi Pharm J. 2017;25(3):419-439. https://doi.org/10.1016/j.jsps.2016.09.013 PMid:28344498 PMCid:PMC5357108
Jacobsen AC, Elvang PA, Bauer-Brandl A, Brandl M. A dynamic in vitro permeation study on solid mono-and diacyl-phospholipid dispersions of celecoxib. Eur J Pharm Sci. 2019;127:199-207. https://doi.org/10.1016/j.ejps.2018.11.003 PMid:30408522
Suzuki H, Yakushiji K, Matsunaga S, et al. Amorphous solid dispersion of meloxicam enhanced oral absorption in rats with impaired gastric motility. J Pharm Sci. 2018;107(1):446-452. https://doi.org/10.1016/j.xphs.2017.05.023 PMid:28551427
Ngo AN, Thomas D, Murowchick J, Ayon NJ, Jaiswal A, Youan BBC. Engineering fast dissolving sodium acetate mediated crystalline solid dispersion of docetaxel. Int J Pharm. 2018;545(1-2):329-341. https://doi.org/10.1016/j.ijpharm.2018.04.045 PMid:29689368
Phillips EM, Stella VJ. Rapid expansion from supercritical solutions: application to pharmaceutical processes. Int J Pharm. 1993;94(1-3):1-10. https://doi.org/10.1016/0378-5173(93)90002-W
Nikolai P, Rabiyat B, Aslan A, Ilmutdin A. Supercritical CO 2: Properties and technological applications-a review. J Therm Sci. 2019;28:394-430. https://doi.org/10.1007/s11630-019-1118-4
Rantakylä M. Particle Production by Supercritical Antisolvent Processing Techniques. Helsinki University of Technology; 2004.
Manna L, Banchero M, Sola D, Ferri A, Ronchetti S, Sicardi S. Impregnation of PVP microparticles with ketoprofen in the presence of supercritical CO2. J Supercrit Fluids. 2007;42(3):378-384. https://doi.org/10.1016/j.supflu.2006.12.002
Martin TM, Bandi N, Shulz R, Roberts CB, Kompella UB. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology. AAPS PharmSciTech. 2002;3:16-26. https://doi.org/10.1208/pt030318 PMid:12916933 PMCid:PMC2784047
Dohrn R, Bertakis E, Behrend O, Voutsas E, Tassios D. Melting point depression by using supercritical CO2 for a novel melt dispersion micronization process. J Mol Liq. 2007;131:53-59. https://doi.org/10.1016/j.molliq.2006.08.026
Adeli E. The use of supercritical anti-solvent (SAS) technique for preparation of Irbesartan-Pluronic® F-127 nanoparticles to improve the drug dissolution. Powder Technol. 2016;298:65-72. https://doi.org/10.1016/j.powtec.2016.05.004
Zhang J, Huang Y, Liu D, Gao Y, Qian S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur J Pharm Sci. 2013;48(4-5):740-747. https://doi.org/10.1016/j.ejps.2012.12.026 PMid:23305994
Moneghini M, Kikic I, Voinovich D, Perissutti B, Filipović-Grčić J. Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution. Int J Pharm. 2001;222(1):129-138. https://doi.org/10.1016/S0378-5173(01)00711-6 PMid:11404039
Tabbakhian M, Hasanzadeh F, Tavakoli N, Jamshidian Z. Dissolution enhancement of glibenclamide by solid dispersion: solvent evaporation versus a supercritical fluid-based solvent-antisolvent technique. Res Pharm Sci. 2014;9(5):337.
Teja SB, Patil SP, Shete G, Patel S, Bansal AK. Drug-excipient behavior in polymeric amorphous solid dispersions. J Excipients Food Chem. 2016;4(3).
Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131-144. https://doi.org/10.1016/S0378-5173(01)00891-2 PMid:11755266
Kumar R, Singh A, Salwan R, Bhanot R, Rahar S, Dhawan RK. An informative review on solid dispersion. GSC Biol Pharm Sci. 2023;22(1):114-121. https://doi.org/10.4103/jpbs.jpbs_432_22 PMid:37654356 PMCid:PMC10466630
Shah B, Kakumanu VK, Bansal AK. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci. 2006;95(8):1641-1665. https://doi.org/10.1002/jps.20644 PMid:16802362
Patel A, Jain RK, Jain V, Khangar PK. Formulation and Evaluation of Sustained Release Solid Dispersed Nifedipine Microcapsules. Asian J Dental Health Sci [Internet]. 2022 Nov. 22 [cited 2024 Feb. 8];2(3):12-8. https://doi.org/10.22270/ajdhs.v2i3.21
Berndl G, Degenhardt M, Mägerlein M, Dispersyn G. Itraconazole compositions with improved bioavailability. Published online October 6, 2015.
Kerc J, Srcic S. Thermal analysis of glassy pharmaceuticals. Thermochim Acta. 1995;248:81-95. https://doi.org/10.1016/0040-6031(94)01949-H
Kumar B. Solid dispersion-a review. PharmaTutor. 2017;5(2):24-29
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).