Pharmacological Potentials of Omega 3 Fatty Acid in Reduction of Atrial Fibrillation
Abstract
Atrial fibrillation (AF) is the most common type of arrhythmia in the general population with a prevalence that reaches one third of patients with arterial hypertension, diabetic and other risk factors. In atrial fibrillation, the regular impulses produced by the sinus node for a normal heart beat are overwhelmed by rapid electrical discharges produced in the atria and adjacent parts of the pulmonary veins. Omega-3 polyunsaturated fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are permanent subjects of interest in relation to the protection of cardiovascular health and the prevention of the incidence of both ventricular and atrial arrhythmias. It has been proposed that Omega-3 polyunsaturated fatty acid possess anti-inflammatory properties that can inhibit arrhythmogenic mechanisms. Potential Targets of Omega-3 PUFAs Relevant to Arrhythmias Prevention are direct inhibition of sarcolemmal ion channels & restoring cardiac connexion channels. Intake of omega-3 fatty acids significantly prevents the occurrence of AF. The purpose of this review is to focus on the novel cellular and molecular effects of omega-3 PUFAs, in the context of the mechanisms and factors involved in the development of atrial fibrillation.
Keywords: Eicosapentaenoic acid, Docosahexaenoic acid, Atrial Fibrillation, Polyunsaturated fatty acids, Arrhythmias.
Downloads
References
2. Bosch NA, Cimini J, Walkey AJ. Atrial fibrillation in the ICU. Chest. 2018; 154(6):1424-34. https://doi.org/10.1016/j.chest.2018.03.040
3. Bai Y, Wang YL, Shantsila A, Lip GYH. The global burden of atrial fibrillation and stroke: a systematic review of the clinical epidemiology of atrial fibrillation in Asia. Chest. 2017; 152(4):810-20. https://doi.org/10.1016/j.chest.2017.03.048
4. Oliver L, Dietrich T, Marañón I, Villarán MC, Barrio RJ. Producing omega-3 polyunsaturated fatty acids: A review of sustainable sources and future trends for the EPA and DHA market. Resources. 2020; 9(12):148. https://doi.org/10.3390/resources9120148
5. Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients. 2019; 11(1):89. https://doi.org/10.3390/nu11010089
6. Goff ZD, Nissen SE. N-3 polyunsaturated fatty acids for cardiovascular risk. Curr Opin Cardiol. 2022; 37(4):356-63. https://doi.org/10.1097/HCO.0000000000000962
7. Pahlavani M, Ramalho T, Koboziev I, LeMieux MJ, Jayarathne S, Ramalingam L, et al. Adipose tissue inflammation in insulin resistance: review of mechanisms mediating anti-inflammatory effects of omega-3 polyunsaturated fatty acids. J Investig Med. 2017; 65(7):1021-7. https://doi.org/10.1136/jim-2017-000535
8. Anumonwo JMB, Herron T. Fatty infiltration of the myocardium and arrhythmogenesis: potential cellular and molecular mechanisms. Front Physiol. 2018; 9:2. https://doi.org/10.3389/fphys.2018.00002
9. Innes JK, Calder PC. Marine omega-3 (N-3) fatty acids for cardiovascular health: an update for 2020. Int J Mol Sci. 2020; 21(4):1362. https://doi.org/10.3390/ijms21041362
10. Skulas-Ray AC, Wilson PWF, Harris WS, Brinton EA, Kris-Etherton PM, Richter CK, et al. Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American Heart Association. Circulation. 2019; 140(12):e673-91. https://doi.org/10.1161/CIR.0000000000000709
11. Román GC, Jackson RE, Gadhia R, Román AN, Reis J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol (Paris). 2019; 175(10):724-41. https://doi.org/10.1016/j.neurol.2019.08.005
12. Greenberg JW, Lancaster TS, Schuessler RB, Melby SJ. Postoperative atrial fibrillation following cardiac surgery: a persistent complication. Eur J Cardio-Thoracic Surg. 2017;52(4):665-72. https://doi.org/10.1093/ejcts/ezx039
13. Watanabe Y, Tatsuno I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future. Expert Rev Clin Pharmacol. 2017; 10(8):865-73. https://doi.org/10.1080/17512433.2017.1333902
14. Tan AY, Zimetbaum P. Atrial fibrillation and atrial fibrosis. J Cardiovasc Pharmacol. 2022;
15. Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol. 2017; 3(5):425-35. https://doi.org/10.1016/j.jacep.2017.03.002
16. Dobrev D, Aguilar M, Heijman J, Guichard JB, Nattel S. Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat Rev Cardiol. 2019; 16(7):417-36. https://doi.org/10.1038/s41569-019-0166-5
17. Rubio I, Osuchowski MF, Shankar-Hari M, Skirecki T, Winkler MS, Lachmann G, et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect Dis. 2019; 19(12):e422-36. https://doi.org/10.1016/S1473-3099(19)30567-5
18. Bosch NA, Cohen DM, Walkey AJ. Risk factors for new-onset atrial fibrillation in patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2019; 47(2):280-7. https://doi.org/10.1097/CCM.0000000000003560
19. da Silva RMFL. Influence of inflammation and atherosclerosis in atrial fibrillation. Curr Atheroscler Rep. 2017; 19:1-7. https://doi.org/10.1007/s11883-017-0639-0
20. Jeevaratnam K, Chadda KR, Huang CLH, Camm AJ. Cardiac potassium channels: physiological insights for targeted therapy. J Cardiovasc Pharmacol Ther. 2018; 23(2):119-29. https://doi.org/10.1177/1074248417729880
21. Linz D, Elliott AD, Hohl M, Malik V, Schotten U, Dobrev D, et al. Role of autonomic nervous system in atrial fibrillation. Int J Cardiol. 2019; 287:181-8. https://doi.org/10.1016/j.ijcard.2018.11.091
22. Carlisle MA, Fudim M, DeVore AD, Piccini JP. Heart failure and atrial fibrillation, like fire and fury. JACC Hear Fail. 2019; 7(6):447-56. https://doi.org/10.1016/j.jchf.2019.03.005
23. Prabhu S, Voskoboinik A, Kaye DM, Kistler PM. Atrial fibrillation and heart failure-cause or effect? Hear Lung Circ. 2017; 26(9):967-74. https://doi.org/10.1016/j.hlc.2017.05.117
24. Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017; 14(1):30-8. https://doi.org/10.1038/nrcardio.2016.163
25. Lip GYH, Collet JP, Haude M, Byrne R, Chung EH, Fauchier L, et al. 2018 joint European consensus document on the management of antithrombotic therapy in atrial fibrillation patients presenting with acute coronary syndrome and/or undergoing percutaneous cardiovascular interventions: a joint consensus document of the Europ. Ep Eur. 2019; 21(2):192-3. https://doi.org/10.1093/europace/euy174
26. Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, et al. Molecular pathophysiology of congenital long QT syndrome. Physiol Rev. 2017; 97(1):89-134. https://doi.org/10.1152/physrev.00008.2016
27. Lavie CJ, Pandey A, Lau DH, Alpert MA, Sanders P. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis: effects of weight loss and exercise. J Am Coll Cardiol. 2017; 70(16):2022-35. https://doi.org/10.1016/j.jacc.2017.09.002
28. Michniewicz E, Mlodawska E, Lopatowska P, Tomaszuk-Kazberuk A, Malyszko J. Patients with atrial fibrillation and coronary artery disease-double trouble. Adv Med Sci. 2018; 63(1):30-5. https://doi.org/10.1016/j.advms.2017.06.005
29. Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights. Circ Res. 2020; 127(1):4-20. https://doi.org/10.1161/CIRCRESAHA.120.316340
30. Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, et al. Screening for atrial fibrillation with electrocardiography: US Preventive Services Task Force recommendation statement. Jama. 2018; 320(5):478-84. https://doi.org/10.1001/jama.2018.10321
31. Ebrahimi Z, Loni M, Daneshtalab M, Gharehbaghi A. A review on deep learning methods for ECG arrhythmia classification. Expert Syst with Appl X. 2020; 7:100033. https://doi.org/10.1016/j.eswax.2020.100033
32. Margulescu AD, Mont L. Persistent atrial fibrillation vs paroxysmal atrial fibrillation: differences in management. Expert Rev Cardiovasc Ther. 2017; 15(8):601-18. https://doi.org/10.1080/14779072.2017.1355237
33. Trayanova NA, Popescu DM, Shade JK. Machine learning in arrhythmia and electrophysiology. Circ Res. 2021; 128(4):544-66. https://doi.org/10.1161/CIRCRESAHA.120.317872
34. Jonas DE, Kahwati LC, Yun JDY, Middleton JC, Coker-Schwimmer M, Asher GN. Screening for atrial fibrillation with electrocardiography: evidence report and systematic review for the US Preventive Services Task Force. Jama. 2018; 320(5):485-98. https://doi.org/10.1001/jama.2018.4190
35. Bumgarner JM, Lambert CT, Hussein AA, Cantillon DJ, Baranowski B, Wolski K, et al. Smartwatch algorithm for automated detection of atrial fibrillation. J Am Coll Cardiol. 2018; 71(21):2381-8. https://doi.org/10.1016/j.jacc.2018.03.003
36. Qureshi M, Ahmed A, Massie V, Marshall E, Harky A. Determinants of atrial fibrillation after cardiac surgery. Rev Cardiovasc Med. 2021; 22(2):329-41. https://doi.org/10.31083/j.rcm2202040
37. Zhou AG, Wang XX, Pan DB, Chen A ji, Zhang X fei, Deng H wei. Preoperative antihypertensive medication in relation to postoperative atrial fibrillation in patients undergoing cardiac surgery: a meta-analysis. Biomed Res Int. 2017; 2017. https://doi.org/10.1155/2017/1203538
38. Chau YLA, Yoo JW, Yuen HC, Waleed K Bin, Chang D, Liu T, et al. The impact of post-operative atrial fibrillation on outcomes in coronary artery bypass graft and combined procedures. J Geriatr Cardiol JGC. 2021; 18(5):319.
39. Dzeshka MS, Shantsila A, Shantsila E, Lip GYH. Atrial fibrillation and hypertension. Hypertension. 2017; 70(5):854-61. https://doi.org/10.1161/HYPERTENSIONAHA.117.08934
40. Caldeira D, Alves D, Costa J, Ferreira JJ, Pinto FJ. Ibrutinib increases the risk of hypertension and atrial fibrillation: systematic review and meta-analysis. PLoS One. 2019; 14(2):e0211228. https://doi.org/10.1371/journal.pone.0211228
41. Asad Z, Abbas M, Javed I, Korantzopoulos P, Stavrakis S. Obesity is associated with incident atrial fibrillation independent of gender: A meta‐analysis. J Cardiovasc Electrophysiol. 2018; 29(5):725-32. https://doi.org/10.1111/jce.13458
42. Csige I, Ujvárosy D, Szabó Z, Lőrincz I, Paragh G, Harangi M, et al. The impact of obesity on the cardiovascular system. J Diabetes Res. 2018; 2018. https://doi.org/10.1155/2018/3407306
43. Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021; 143(21):e984-1010. https://doi.org/10.1161/CIR.0000000000000973
44. Wang A, Green JB, Halperin JL, Piccini JP. Atrial fibrillation and diabetes mellitus: JACC review topic of the week. J Am Coll Cardiol. 2019; 74(8):1107-15. https://doi.org/10.1016/j.jacc.2019.07.020
45. Marulanda-Londono E, Chaturvedi S. The interplay between obstructive sleep apnea and atrial fibrillation. Front Neurol. 2017; 8:668. https://doi.org/10.3389/fneur.2017.00668
46. Linz D, McEvoy RD, Cowie MR, Somers VK, Nattel S, Lévy P, et al. Associations of obstructive sleep apnea with atrial fibrillation and continuous positive airway pressure treatment: a review. JAMA Cardiol. 2018; 3(6):532-40. https://doi.org/10.1001/jamacardio.2018.0095
47. Patel N, Donahue C, Shenoy A, Patel A, El-Sherif N. Obstructive sleep apnea and arrhythmia: a systemic review. Int J Cardiol. 2017; 228:967-70. https://doi.org/10.1016/j.ijcard.2016.11.137
48. Chung MK, Eckhardt LL, Chen LY, Ahmed HM, Gopinathannair R, Joglar JA, et al. Lifestyle and risk factor modification for reduction of atrial fibrillation: a scientific statement from the American Heart Association. Circulation. 2020; 141(16):e750-72. https://doi.org/10.1161/CIR.0000000000000748
49. Elagizi A, Kachur S, Carbone S, Lavie CJ, Blair SN. A review of obesity, physical activity, and cardiovascular disease. Curr Obes Rep. 2020; 9:571-81. https://doi.org/10.1007/s13679-020-00403-z
50. Babapoor-Farrokhran S, Gill D, Alzubi J, Mainigi SK. Atrial fibrillation: the role of hypoxia-inducible factor-1-regulated cytokines. Mol Cell Biochem. 2021; 476:2283-93. https://doi.org/10.1007/s11010-021-04082-9
51. Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D. A review of the molecular mechanisms underlying cardiac fibrosis and atrial fibrillation. J Clin Med. 2021; 10(19):4430. https://doi.org/10.3390/jcm10194430
52. Goette A, Lendeckel U. Atrial cardiomyopathy: pathophysiology and clinical consequences. Cells. 2021; 10(10):2605. https://doi.org/10.3390/cells10102605
53. Goudis CA. Chronic obstructive pulmonary disease and atrial fibrillation: an unknown relationship. J Cardiol. 2017; 69(5):699-705. https://doi.org/10.1016/j.jjcc.2016.12.013
54. Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019; 20(24):6140. https://doi.org/10.3390/ijms20246140
55. Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol. 2022; https://doi.org/10.1016/j.jjcc.2022.09.002
56. Liu Y, Shi Q, Ma Y, Liu Q. The role of immune cells in atrial fibrillation. J Mol Cell Cardiol. 2018; 123:198-208. https://doi.org/10.1016/j.yjmcc.2018.09.007
57. Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys. 2018; 640:47-52. https://doi.org/10.1016/j.abb.2018.01.004
58. Ndrepepa G. Myeloperoxidase-A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim acta. 2019; 493:36-51. https://doi.org/10.1016/j.cca.2019.02.022
59. Korantzopoulos P, Letsas K, Fragakis N, Tse G, Liu T. Oxidative stress and atrial fibrillation: an update. Free Radic Res. 2018; 52(11-12):1199-209. https://doi.org/10.1080/10715762.2018.1500696
60. Korantzopoulos P, Letsas KP, Tse G, Fragakis N, Goudis CA, Liu T. Inflammation and atrial fibrillation: a comprehensive review. J arrhythmia. 2018; 34(4):394-401. https://doi.org/10.1002/joa3.12077
61. Simons SO, Elliott A, Sastry M, Hendriks JM, Arzt M, Rienstra M, et al. Chronic obstructive pulmonary disease and atrial fibrillation: an interdisciplinary perspective. Eur Heart J. 2021; 42(5):532-40. https://doi.org/10.1093/eurheartj/ehaa822
62. Morgan AD, Zakeri R, Quint JK. Defining the relationship between COPD and CVD: what are the implications for clinical practice? Ther Adv Respir Dis. 2018; 12:1753465817750524. https://doi.org/10.1177/1753465817750524
63. Hohl M, Linz B, Bohm M, Linz D. Obstructive sleep apnea and atrial arrhythmogenesis. Curr Cardiol Rev. 2014; 10(4):362-8. https://doi.org/10.2174/1573403X1004140707125137
64. Ravens U, Cerbai E. Role of potassium currents in cardiac arrhythmias. Europace. 2008; 10(10):1133-7. https://doi.org/10.1093/europace/eun193
65. Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev. 2014; 94(2):609-53. https://doi.org/10.1152/physrev.00022.2013
66. Ravens U. Atrial-selective K+ channel blockers: potential antiarrhythmic drugs in atrial fibrillation? Can J Physiol Pharmacol. 2017; 95(11):1313-8. https://doi.org/10.1139/cjpp-2017-0024
67. Hijazi Z, Oldgren J, Siegbahn A, Granger CB, Wallentin L. Biomarkers in atrial fibrillation: a clinical review. Eur Heart J. 2013; 34(20):1475-80. https://doi.org/10.1093/eurheartj/eht024
68. Costabel JP, Burgos LM, Trivi M. The significance of troponin elevation in atrial fibrillation. J Atr Fibrillation. 2017; 9(6). https://doi.org/10.4022/jafib.1530
69. Hijazi Z, Oldgren J, Siegbahn A, Wallentin L. Application of biomarkers for risk stratification in patients with atrial fibrillation. Clin Chem. 2017; 63(1):152-64. https://doi.org/10.1373/clinchem.2016.255182
70. Jeremias A, Gibson CM. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann Intern Med. 2005; 142(9):786-91. https://doi.org/10.7326/0003-4819-142-9-200505030-00015
71. Van Den Bos EJ, Constantinescu AA, van Domburg RT, Akin S, Jordaens LJ, Kofflard MJM. Minor elevations in troponin I are associated with mortality and adverse cardiac events in patients with atrial fibrillation. Eur Heart J. 2011; 32(5):611-7. https://doi.org/10.1093/eurheartj/ehq491
72. Vaquero M, Calvo D, Jalife J. Cardiac fibrillation: from ion channels to rotors in the human heart. Hear Rhythm. 2008; 5(6):872-9. https://doi.org/10.1016/j.hrthm.2008.02.034
73. Kalla M, Herring N, Paterson DJ. Cardiac sympatho-vagal balance and ventricular arrhythmia. Auton Neurosci. 2016; 199:29-37. https://doi.org/10.1016/j.autneu.2016.08.016
74. Grunnet M, Bentzen BH, Sørensen US, Diness JG. Cardiac ion channels and mechanisms for protection against atrial fibrillation. Rev Physiol Biochem Pharmacol Vol 162. 2012; 1-58. https://doi.org/10.1007/112_2011_3
75. Watanabe Y, Tatsuno I. Prevention of cardiovascular events with omega-3 polyunsaturated fatty acids and the mechanism involved. J Atheroscler Thromb. 2020; 27(3):183-98. https://doi.org/10.5551/jat.50658
76. Domei T, Yokoi H, Kuramitsu S, Soga Y, Arita T, Ando K, et al. Ratio of serum n-3 to n-6 polyunsaturated fatty acids and the incidence of major adverse cardiac events in patients undergoing percutaneous coronary intervention. Circ J. 2012; 76(2):423-9. https://doi.org/10.1253/circj.CJ-11-0941
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).