Pharmacological Potentials of Omega 3 Fatty Acid in Reduction of Atrial Fibrillation

Authors

Abstract

Atrial fibrillation (AF) is the most common type of arrhythmia in the general population with a prevalence that reaches one third of patients with arterial hypertension, diabetic and other risk factors. In atrial fibrillation, the regular impulses produced by the sinus node for a normal heart beat are overwhelmed by rapid electrical discharges produced in the atria and adjacent parts of the pulmonary veins. Omega-3 polyunsaturated fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are permanent subjects of interest in relation to the protection of cardiovascular health and the prevention of the incidence of both ventricular and atrial arrhythmias. It has been proposed that Omega-3 polyunsaturated fatty acid possess anti-inflammatory properties that can inhibit arrhythmogenic mechanisms. Potential Targets of Omega-3 PUFAs Relevant to Arrhythmias Prevention are direct inhibition of sarcolemmal ion channels & restoring cardiac connexion channels. Intake of omega-3 fatty acids significantly prevents the occurrence of AF. The purpose of this review is to focus on the novel cellular and molecular effects of omega-3 PUFAs, in the context of the mechanisms and factors involved in the development of atrial fibrillation.

Keywords: Eicosapentaenoic acid, Docosahexaenoic acid, Atrial Fibrillation, Polyunsaturated fatty acids, Arrhythmias.

Keywords:

Eicosapentaenoic acid, Docosahexaenoic acid, Atrial Fibrillation, Polyunsaturated fatty acids, Arrhythmias

DOI

https://doi.org/10.22270/jddt.v13i3.5766

Author Biographies

Kapil Kumar Verma, Minerva College of Pharmacy, Indora, Kangra, HP, India

Minerva College of Pharmacy, Indora, Kangra, HP, India

Akshay Choudhary, Minerva College of Pharmacy, Indora, Kangra, HP, India

Minerva College of Pharmacy, Indora, Kangra, HP, India

Inder Kumar, Minerva College of Pharmacy, Indora, Kangra, HP, India

Minerva College of Pharmacy, Indora, Kangra, HP, India

, Happy, Minerva College of Pharmacy, Indora, Kangra, HP, India

Minerva College of Pharmacy, Indora, Kangra, HP, India

References

Wijesurendra RS, Casadei B. Mechanisms of atrial fibrillation. Heart. 2019; 105(24):1860-7. https://doi.org/10.1136/heartjnl-2018-314267

Bosch NA, Cimini J, Walkey AJ. Atrial fibrillation in the ICU. Chest. 2018; 154(6):1424-34. https://doi.org/10.1016/j.chest.2018.03.040

Bai Y, Wang YL, Shantsila A, Lip GYH. The global burden of atrial fibrillation and stroke: a systematic review of the clinical epidemiology of atrial fibrillation in Asia. Chest. 2017; 152(4):810-20. https://doi.org/10.1016/j.chest.2017.03.048

Oliver L, Dietrich T, Marañón I, Villarán MC, Barrio RJ. Producing omega-3 polyunsaturated fatty acids: A review of sustainable sources and future trends for the EPA and DHA market. Resources. 2020; 9(12):148. https://doi.org/10.3390/resources9120148

Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients. 2019; 11(1):89. https://doi.org/10.3390/nu11010089

Goff ZD, Nissen SE. N-3 polyunsaturated fatty acids for cardiovascular risk. Curr Opin Cardiol. 2022; 37(4):356-63. https://doi.org/10.1097/HCO.0000000000000962

Pahlavani M, Ramalho T, Koboziev I, LeMieux MJ, Jayarathne S, Ramalingam L, et al. Adipose tissue inflammation in insulin resistance: review of mechanisms mediating anti-inflammatory effects of omega-3 polyunsaturated fatty acids. J Investig Med. 2017; 65(7):1021-7. https://doi.org/10.1136/jim-2017-000535

Anumonwo JMB, Herron T. Fatty infiltration of the myocardium and arrhythmogenesis: potential cellular and molecular mechanisms. Front Physiol. 2018; 9:2. https://doi.org/10.3389/fphys.2018.00002

Innes JK, Calder PC. Marine omega-3 (N-3) fatty acids for cardiovascular health: an update for 2020. Int J Mol Sci. 2020; 21(4):1362. https://doi.org/10.3390/ijms21041362

Skulas-Ray AC, Wilson PWF, Harris WS, Brinton EA, Kris-Etherton PM, Richter CK, et al. Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American Heart Association. Circulation. 2019; 140(12):e673-91. https://doi.org/10.1161/CIR.0000000000000709

Román GC, Jackson RE, Gadhia R, Román AN, Reis J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol (Paris). 2019; 175(10):724-41. https://doi.org/10.1016/j.neurol.2019.08.005

Greenberg JW, Lancaster TS, Schuessler RB, Melby SJ. Postoperative atrial fibrillation following cardiac surgery: a persistent complication. Eur J Cardio-Thoracic Surg. 2017;52(4):665-72. https://doi.org/10.1093/ejcts/ezx039

Watanabe Y, Tatsuno I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future. Expert Rev Clin Pharmacol. 2017; 10(8):865-73. https://doi.org/10.1080/17512433.2017.1333902

Tan AY, Zimetbaum P. Atrial fibrillation and atrial fibrosis. J Cardiovasc Pharmacol. 2022;

Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol. 2017; 3(5):425-35. https://doi.org/10.1016/j.jacep.2017.03.002

Dobrev D, Aguilar M, Heijman J, Guichard JB, Nattel S. Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat Rev Cardiol. 2019; 16(7):417-36. https://doi.org/10.1038/s41569-019-0166-5

Rubio I, Osuchowski MF, Shankar-Hari M, Skirecki T, Winkler MS, Lachmann G, et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect Dis. 2019; 19(12):e422-36. https://doi.org/10.1016/S1473-3099(19)30567-5

Bosch NA, Cohen DM, Walkey AJ. Risk factors for new-onset atrial fibrillation in patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2019; 47(2):280-7. https://doi.org/10.1097/CCM.0000000000003560

da Silva RMFL. Influence of inflammation and atherosclerosis in atrial fibrillation. Curr Atheroscler Rep. 2017; 19:1-7. https://doi.org/10.1007/s11883-017-0639-0

Jeevaratnam K, Chadda KR, Huang CLH, Camm AJ. Cardiac potassium channels: physiological insights for targeted therapy. J Cardiovasc Pharmacol Ther. 2018; 23(2):119-29. https://doi.org/10.1177/1074248417729880

Linz D, Elliott AD, Hohl M, Malik V, Schotten U, Dobrev D, et al. Role of autonomic nervous system in atrial fibrillation. Int J Cardiol. 2019; 287:181-8. https://doi.org/10.1016/j.ijcard.2018.11.091

Carlisle MA, Fudim M, DeVore AD, Piccini JP. Heart failure and atrial fibrillation, like fire and fury. JACC Hear Fail. 2019; 7(6):447-56. https://doi.org/10.1016/j.jchf.2019.03.005

Prabhu S, Voskoboinik A, Kaye DM, Kistler PM. Atrial fibrillation and heart failure-cause or effect? Hear Lung Circ. 2017; 26(9):967-74. https://doi.org/10.1016/j.hlc.2017.05.117

Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017; 14(1):30-8. https://doi.org/10.1038/nrcardio.2016.163

Lip GYH, Collet JP, Haude M, Byrne R, Chung EH, Fauchier L, et al. 2018 joint European consensus document on the management of antithrombotic therapy in atrial fibrillation patients presenting with acute coronary syndrome and/or undergoing percutaneous cardiovascular interventions: a joint consensus document of the Europ. Ep Eur. 2019; 21(2):192-3. https://doi.org/10.1093/europace/euy174

Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, et al. Molecular pathophysiology of congenital long QT syndrome. Physiol Rev. 2017; 97(1):89-134. https://doi.org/10.1152/physrev.00008.2016

Lavie CJ, Pandey A, Lau DH, Alpert MA, Sanders P. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis: effects of weight loss and exercise. J Am Coll Cardiol. 2017; 70(16):2022-35. https://doi.org/10.1016/j.jacc.2017.09.002

Michniewicz E, Mlodawska E, Lopatowska P, Tomaszuk-Kazberuk A, Malyszko J. Patients with atrial fibrillation and coronary artery disease-double trouble. Adv Med Sci. 2018; 63(1):30-5. https://doi.org/10.1016/j.advms.2017.06.005

Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights. Circ Res. 2020; 127(1):4-20. https://doi.org/10.1161/CIRCRESAHA.120.316340

Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW, et al. Screening for atrial fibrillation with electrocardiography: US Preventive Services Task Force recommendation statement. Jama. 2018; 320(5):478-84. https://doi.org/10.1001/jama.2018.10321

Ebrahimi Z, Loni M, Daneshtalab M, Gharehbaghi A. A review on deep learning methods for ECG arrhythmia classification. Expert Syst with Appl X. 2020; 7:100033. https://doi.org/10.1016/j.eswax.2020.100033

Margulescu AD, Mont L. Persistent atrial fibrillation vs paroxysmal atrial fibrillation: differences in management. Expert Rev Cardiovasc Ther. 2017; 15(8):601-18. https://doi.org/10.1080/14779072.2017.1355237

Trayanova NA, Popescu DM, Shade JK. Machine learning in arrhythmia and electrophysiology. Circ Res. 2021; 128(4):544-66. https://doi.org/10.1161/CIRCRESAHA.120.317872

Jonas DE, Kahwati LC, Yun JDY, Middleton JC, Coker-Schwimmer M, Asher GN. Screening for atrial fibrillation with electrocardiography: evidence report and systematic review for the US Preventive Services Task Force. Jama. 2018; 320(5):485-98. https://doi.org/10.1001/jama.2018.4190

Bumgarner JM, Lambert CT, Hussein AA, Cantillon DJ, Baranowski B, Wolski K, et al. Smartwatch algorithm for automated detection of atrial fibrillation. J Am Coll Cardiol. 2018; 71(21):2381-8. https://doi.org/10.1016/j.jacc.2018.03.003

Qureshi M, Ahmed A, Massie V, Marshall E, Harky A. Determinants of atrial fibrillation after cardiac surgery. Rev Cardiovasc Med. 2021; 22(2):329-41. https://doi.org/10.31083/j.rcm2202040

Zhou AG, Wang XX, Pan DB, Chen A ji, Zhang X fei, Deng H wei. Preoperative antihypertensive medication in relation to postoperative atrial fibrillation in patients undergoing cardiac surgery: a meta-analysis. Biomed Res Int. 2017; 2017. https://doi.org/10.1155/2017/1203538

Chau YLA, Yoo JW, Yuen HC, Waleed K Bin, Chang D, Liu T, et al. The impact of post-operative atrial fibrillation on outcomes in coronary artery bypass graft and combined procedures. J Geriatr Cardiol JGC. 2021; 18(5):319.

Dzeshka MS, Shantsila A, Shantsila E, Lip GYH. Atrial fibrillation and hypertension. Hypertension. 2017; 70(5):854-61. https://doi.org/10.1161/HYPERTENSIONAHA.117.08934

Caldeira D, Alves D, Costa J, Ferreira JJ, Pinto FJ. Ibrutinib increases the risk of hypertension and atrial fibrillation: systematic review and meta-analysis. PLoS One. 2019; 14(2):e0211228. https://doi.org/10.1371/journal.pone.0211228

Asad Z, Abbas M, Javed I, Korantzopoulos P, Stavrakis S. Obesity is associated with incident atrial fibrillation independent of gender: A meta‐analysis. J Cardiovasc Electrophysiol. 2018; 29(5):725-32. https://doi.org/10.1111/jce.13458

Csige I, Ujvárosy D, Szabó Z, Lőrincz I, Paragh G, Harangi M, et al. The impact of obesity on the cardiovascular system. J Diabetes Res. 2018; 2018. https://doi.org/10.1155/2018/3407306

Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavie CJ, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021; 143(21):e984-1010. https://doi.org/10.1161/CIR.0000000000000973

Wang A, Green JB, Halperin JL, Piccini JP. Atrial fibrillation and diabetes mellitus: JACC review topic of the week. J Am Coll Cardiol. 2019; 74(8):1107-15. https://doi.org/10.1016/j.jacc.2019.07.020

Marulanda-Londono E, Chaturvedi S. The interplay between obstructive sleep apnea and atrial fibrillation. Front Neurol. 2017; 8:668. https://doi.org/10.3389/fneur.2017.00668

Linz D, McEvoy RD, Cowie MR, Somers VK, Nattel S, Lévy P, et al. Associations of obstructive sleep apnea with atrial fibrillation and continuous positive airway pressure treatment: a review. JAMA Cardiol. 2018; 3(6):532-40. https://doi.org/10.1001/jamacardio.2018.0095

Patel N, Donahue C, Shenoy A, Patel A, El-Sherif N. Obstructive sleep apnea and arrhythmia: a systemic review. Int J Cardiol. 2017; 228:967-70. https://doi.org/10.1016/j.ijcard.2016.11.137

Chung MK, Eckhardt LL, Chen LY, Ahmed HM, Gopinathannair R, Joglar JA, et al. Lifestyle and risk factor modification for reduction of atrial fibrillation: a scientific statement from the American Heart Association. Circulation. 2020; 141(16):e750-72. https://doi.org/10.1161/CIR.0000000000000748

Elagizi A, Kachur S, Carbone S, Lavie CJ, Blair SN. A review of obesity, physical activity, and cardiovascular disease. Curr Obes Rep. 2020; 9:571-81. https://doi.org/10.1007/s13679-020-00403-z

Babapoor-Farrokhran S, Gill D, Alzubi J, Mainigi SK. Atrial fibrillation: the role of hypoxia-inducible factor-1-regulated cytokines. Mol Cell Biochem. 2021; 476:2283-93. https://doi.org/10.1007/s11010-021-04082-9

Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D. A review of the molecular mechanisms underlying cardiac fibrosis and atrial fibrillation. J Clin Med. 2021; 10(19):4430. https://doi.org/10.3390/jcm10194430

Goette A, Lendeckel U. Atrial cardiomyopathy: pathophysiology and clinical consequences. Cells. 2021; 10(10):2605. https://doi.org/10.3390/cells10102605

Goudis CA. Chronic obstructive pulmonary disease and atrial fibrillation: an unknown relationship. J Cardiol. 2017; 69(5):699-705. https://doi.org/10.1016/j.jjcc.2016.12.013

Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019; 20(24):6140. https://doi.org/10.3390/ijms20246140

Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol. 2022; https://doi.org/10.1016/j.jjcc.2022.09.002

Liu Y, Shi Q, Ma Y, Liu Q. The role of immune cells in atrial fibrillation. J Mol Cell Cardiol. 2018; 123:198-208. https://doi.org/10.1016/j.yjmcc.2018.09.007

Aratani Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys. 2018; 640:47-52. https://doi.org/10.1016/j.abb.2018.01.004

Ndrepepa G. Myeloperoxidase-A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim acta. 2019; 493:36-51. https://doi.org/10.1016/j.cca.2019.02.022

Korantzopoulos P, Letsas K, Fragakis N, Tse G, Liu T. Oxidative stress and atrial fibrillation: an update. Free Radic Res. 2018; 52(11-12):1199-209. https://doi.org/10.1080/10715762.2018.1500696

Korantzopoulos P, Letsas KP, Tse G, Fragakis N, Goudis CA, Liu T. Inflammation and atrial fibrillation: a comprehensive review. J arrhythmia. 2018; 34(4):394-401. https://doi.org/10.1002/joa3.12077

Simons SO, Elliott A, Sastry M, Hendriks JM, Arzt M, Rienstra M, et al. Chronic obstructive pulmonary disease and atrial fibrillation: an interdisciplinary perspective. Eur Heart J. 2021; 42(5):532-40. https://doi.org/10.1093/eurheartj/ehaa822

Morgan AD, Zakeri R, Quint JK. Defining the relationship between COPD and CVD: what are the implications for clinical practice? Ther Adv Respir Dis. 2018; 12:1753465817750524. https://doi.org/10.1177/1753465817750524

Hohl M, Linz B, Bohm M, Linz D. Obstructive sleep apnea and atrial arrhythmogenesis. Curr Cardiol Rev. 2014; 10(4):362-8. https://doi.org/10.2174/1573403X1004140707125137

Ravens U, Cerbai E. Role of potassium currents in cardiac arrhythmias. Europace. 2008; 10(10):1133-7. https://doi.org/10.1093/europace/eun193

Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev. 2014; 94(2):609-53. https://doi.org/10.1152/physrev.00022.2013

Ravens U. Atrial-selective K+ channel blockers: potential antiarrhythmic drugs in atrial fibrillation? Can J Physiol Pharmacol. 2017; 95(11):1313-8. https://doi.org/10.1139/cjpp-2017-0024

Hijazi Z, Oldgren J, Siegbahn A, Granger CB, Wallentin L. Biomarkers in atrial fibrillation: a clinical review. Eur Heart J. 2013; 34(20):1475-80. https://doi.org/10.1093/eurheartj/eht024

Costabel JP, Burgos LM, Trivi M. The significance of troponin elevation in atrial fibrillation. J Atr Fibrillation. 2017; 9(6). https://doi.org/10.4022/jafib.1530

Hijazi Z, Oldgren J, Siegbahn A, Wallentin L. Application of biomarkers for risk stratification in patients with atrial fibrillation. Clin Chem. 2017; 63(1):152-64. https://doi.org/10.1373/clinchem.2016.255182

Jeremias A, Gibson CM. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann Intern Med. 2005; 142(9):786-91. https://doi.org/10.7326/0003-4819-142-9-200505030-00015

Van Den Bos EJ, Constantinescu AA, van Domburg RT, Akin S, Jordaens LJ, Kofflard MJM. Minor elevations in troponin I are associated with mortality and adverse cardiac events in patients with atrial fibrillation. Eur Heart J. 2011; 32(5):611-7. https://doi.org/10.1093/eurheartj/ehq491

Vaquero M, Calvo D, Jalife J. Cardiac fibrillation: from ion channels to rotors in the human heart. Hear Rhythm. 2008; 5(6):872-9. https://doi.org/10.1016/j.hrthm.2008.02.034

Kalla M, Herring N, Paterson DJ. Cardiac sympatho-vagal balance and ventricular arrhythmia. Auton Neurosci. 2016; 199:29-37. https://doi.org/10.1016/j.autneu.2016.08.016

Grunnet M, Bentzen BH, Sørensen US, Diness JG. Cardiac ion channels and mechanisms for protection against atrial fibrillation. Rev Physiol Biochem Pharmacol Vol 162. 2012; 1-58. https://doi.org/10.1007/112_2011_3

Watanabe Y, Tatsuno I. Prevention of cardiovascular events with omega-3 polyunsaturated fatty acids and the mechanism involved. J Atheroscler Thromb. 2020; 27(3):183-98. https://doi.org/10.5551/jat.50658

Domei T, Yokoi H, Kuramitsu S, Soga Y, Arita T, Ando K, et al. Ratio of serum n-3 to n-6 polyunsaturated fatty acids and the incidence of major adverse cardiac events in patients undergoing percutaneous coronary intervention. Circ J. 2012; 76(2):423-9. https://doi.org/10.1253/circj.CJ-11-0941

Published

15-03-2023
Statistics
Abstract Display: 496
PDF Downloads: 305
PDF Downloads: 29

How to Cite

1.
Verma KK, Choudhary A, Kumar I, Happy ,. Pharmacological Potentials of Omega 3 Fatty Acid in Reduction of Atrial Fibrillation. J. Drug Delivery Ther. [Internet]. 2023 Mar. 15 [cited 2025 Apr. 27];13(3):184-93. Available from: https://jddtonline.info/index.php/jddt/article/view/5766

How to Cite

1.
Verma KK, Choudhary A, Kumar I, Happy ,. Pharmacological Potentials of Omega 3 Fatty Acid in Reduction of Atrial Fibrillation. J. Drug Delivery Ther. [Internet]. 2023 Mar. 15 [cited 2025 Apr. 27];13(3):184-93. Available from: https://jddtonline.info/index.php/jddt/article/view/5766

Most read articles by the same author(s)

> >>