Intranasal nanoparticulate drug delivery systems for neurodegenerative disorders: an Overview

Authors

Abstract

Intranasal nanoparticulate drug delivery systems have received increased attention in pharmaceutical research due to their ability to increase drug bioavailability, bypass the blood-brain barrier (BBB), and provide non-invasive, patient-friendly alternatives to drug administration, particularly for drugs intended for central nervous system (CNS) disorders. Drugs delivered via nasal route can enter the CNS via the olfactory pathway or the trigeminal nerve pathway, enabling access to deeper regions. Intranasal nanoparticulate systems have several pharmacological benefits, including increased bioavailability, a faster onset of action, higher patient compliance, and less systemic adverse effects. Intranasal nanoparticulate drug delivery has shown promise in a variety of therapeutic areas, including Alzheimer's disease, Parkinson's disease, depression, and anxiety. Intranasal vaccinations and antibacterial Nanoparticle are also utilized to treat respiratory and viral illnesses. This technique is thought to be useful in brain-targeted chemotherapeutic drugs for glioblastoma treatment. The authors of this review attempted to investigate the pharmacological features of nanoparticulate drug delivery systems, including their benefits, mechanisms, formulation methodologies, and clinical applications.

Keywords: Alzheimer's disease, Drug delivery, Nanoparticle, Nasal route, Neuro inflammation, Parkinson’s disease, 

Keywords:

Alzheimer's disease, Drug delivery, Nanoparticle, Nasal route, inflammation, Parkinson’s disease

DOI

https://doi.org/10.22270/jddt.v15i11.7462

Author Biographies

Poonam Sahu , Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Kunal Chandrakar , University College of Pharmacy, CSVTU, Bhilai-491107, C.G., India

University College of Pharmacy, CSVTU, Bhilai-491107, C.G., India

Princy Kashyap , Department of Pharmacy, Guru Ghasidas Central University, Koni, Bilaspur-495009, C.G., India

Department of Pharmacy, Guru Ghasidas Central University, Koni, Bilaspur-495009, C.G., India

Manoj Kumar , Department of Pharmacy, Guru Ghasidas Central University, Koni, Bilaspur-495009, C.G., India

Department of Pharmacy, Guru Ghasidas Central University, Koni, Bilaspur-495009, C.G., India

Arvind Kumar , Faculty of Pharmacy, Kalinga University, Kotni, Naya Raipur-492001, C.G., India

Faculty of Pharmacy, Kalinga University, Kotni, Naya Raipur-492001, C.G., India

Abhisek Satapathy , Pt J.N.M. Medical College, Railway Station Rd, Moudhapara, Raipur-492001, C.G., India

Pt J.N.M. Medical College, Railway Station Rd, Moudhapara, Raipur-492001, C.G., India

Abinash Satapathy , College of Veterinary Science and Animal Husbandry, Anjora, Durg, 491001, C.G, India

College of Veterinary Science and Animal Husbandry, Anjora, Durg, 491001, C.G, India

Shiv Kumar Bhardwaj , Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Trilochan Satapathy , Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Columbia Institute of Pharmacy, Vill-Tekari, Near Vidhansabha, Raipur-493111, C.G., India

Manisha Chandrakar, University College of Pharmacy, CSVTU, Bhilai-491107, C.G., India

University College of Pharmacy, CSVTU, Bhilai-491107, C.G., India

References

[1] Park H, Otte A, Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J Control Release. 2022; 342:53-65. https://doi.org/10.1016/j.jconrel.2021.12.030 PMid:34971694 PMCid:PMC8840987

[2] Narine A, Mangal G. Conceptual study of Nasya Karma and its various applications. India: IAMJ; 2021.

[3] Boyetey MJ, Choi Y, Lee HY, Choi J. Nanotechnology-based delivery of therapeutics through the intranasal pathway and the blood-brain barrier for Alzheimer's disease treatment. Biomaterials Science. 2024;12(8):2007-18. https://doi.org/10.1039/D3BM02003G PMid:38456516

[4] Kim B, Park B, You S, et al. Cell membrane camouflaged nanoparticle strategy and its application in brain disease: a review. J Pharm Investing. 2024; 54:435-451. https://doi.org/10.1007/s40005-024-00680-z

[5] Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: Structure, regulation and drug delivery. Signal Transduction and Targeted Therapy. 2023;8(1):217. https://doi.org/10.1038/s41392-023-01481-w PMid:37231000 PMCid:PMC10212980

[6] Simrah, Hafeez A, Usmani SA, Izhar MP. Transfersome, an ultra-deformable lipid-based drug nanocarrier: an updated review with therapeutic applications. Naunyn-Schmiedeberg's Arch Pharmacol. 2024 ;397(2):639-73. https://doi.org/10.1007/s00210-023-02670-8 PMid:37597094

[7] Qin L, Sun Y, Gao N, Ling G, Zhang P. Nanotechnology of inhalable vaccines for enhancing mucosal immunity. Drug Deliv Transl Res. 2024 ;14(3):597-620. https://doi.org/10.1007/s13346-023-01431-7 PMid:37747597

[8] Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, Okoroafor CC, Eze SC, Kalu OL, Odoh EC, Nwadike UG. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023 ;9(6): e16732. https://doi.org/10.1016/j.heliyon.2023.e17488 PMid:37416680 PMCid:PMC10320272

[9] Feng X, Shi Y, Zhang Y, Lei F, Ren R, Tang X. Opportunities and challenges for inhalable nanomedicine formulations in respiratory diseases: a review. Int J Nanomedicine. 2024 ;19:1509-38. https://doi.org/10.2147/IJN.S446919 PMid:38384321 PMCid:PMC10880554

[10] Abdellatif AA, Mohammed HA, Khan RA, Singh V, Bouazzaoui A, Yusuf M, Akhtar N, Khan M, Al-Subaiyel A, Mohammed SA, Al-Omar MS. Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity. Nanotechnol Rev. 2021 ;10(1):1493-559. https://doi.org/10.1515/ntrev-2021-0096

[11] Koo J, Lim C, Oh KT. Recent advances in intranasal administration for brain-targeting delivery: a comprehensive review of lipid-based nanoparticles and stimuli-responsive gel formulations. Int J Nanomedicine. 2024; 19:1767-807. https://doi.org/10.2147/IJN.S439181 PMid:38414526 PMCid:PMC10898487

[12] Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer's disease. Adv Ther. 2021;4(3):2000076. https://doi.org/10.1002/adtp.202000076

[13] Yan X, Sha X. Nanoparticle-mediated strategies for enhanced drug penetration and retention in the airway mucosa. Pharmaceutics. 2023; 15(10):2457. https://doi.org/10.3390/pharmaceutics15102457 PMid:37896217 PMCid:PMC10610050

[14] Huang D, Sun L, Huang L, Chen Y. Nanodrug delivery systems modulate tumor vessels to increase the enhanced permeability and retention effect. J Pers Med. 2021;11(2):124. https://doi.org/10.3390/jpm11020124 PMid:33672813 PMCid:PMC7917988

[15] Zi Y, Yang K, He J, Wu Z, Liu J, Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev. 2022;188:114449. https://doi.org/10.1016/j.addr.2022.114449 PMid:35835353

[16] Niazi SK. Non-invasive drug delivery across the blood-brain barrier: a prospective analysis. Pharmaceutics. 2023;15(11):2599. https://doi.org/10.3390/pharmaceutics15112599 PMid:38004577 PMCid:PMC10674293

[17] de Barros C, Portugal I, Batain F, Portella D, Severino P, Cardoso J, Arcuri P, Chaud M, Alves T. Formulation, design and strategies for efficient nanotechnology-based nasal delivery systems. RPS Pharm Pharmacol Rep. 2022;1(1): rqac003. https://doi.org/10.1093/rpsppr/rqac003

[18] Spindler LM, Feuerhake A, Ladel S, Günday C, Flamm J, Günday-Türeli N, Türeli E, Tovar GE, Schindowski K, Gruber-Traub C. Nano-in-micro-particles consisting of PLGA nanoparticles embedded in chitosan microparticles via spray-drying enhances their uptake in the olfactory mucosa. Front Pharmacol. 2021; 12:732954. https://doi.org/10.3389/fphar.2021.732954 PMid:34539414 PMCid:PMC8440808

[19] Huang J, Dong G, Liang M, Wu X, Xian M, An Y, Zhan J, Xu L, Xu J, Sun W, Chen S. Toxicity of micro (nano) plastics with different size and surface charge on human nasal epithelial cells and rats via intranasal exposure. Chemosphere. 2022; 307:136093. https://doi.org/10.1016/j.chemosphere.2022.136093 PMid:36029863

[20] Gao X, Xiong Y, Chen H, Gao X, Dai J, Zhang Y, Zou W, Gao Y, Jiang Z, Han B. Mucus adhesion vs. mucus penetration? Screening nanomaterials for nasal inhalation by MD simulation. J Control Release. 2023; 353:366-79. https://doi.org/10.1016/j.jconrel.2022.11.051 PMid:36462640

[21] Guo Y, Ma Y, Chen X, Li M, Ma X, Cheng G, Xue C, Zuo YY, Sun B. Mucus penetration of surface-engineered nanoparticles in various pH microenvironments. ACS Nano. 2023;17(3):2813-28. https://doi.org/10.1021/acsnano.2c11147 PMid:36719858

[22] Mura P, Maestrelli F, Cirri M, Mennini N. Multiple roles of chitosan in mucosal drug delivery: an updated review. Mar Drugs. 2022;20(5):335. https://doi.org/10.3390/md20050335 PMid:35621986 PMCid:PMC9146108

[23] Bashiri G, Padilla MS, Swingle KL, Shepherd SJ, Mitchell MJ, Wang K. Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab Chip. 2023;23(6):1432-66. https://doi.org/10.1039/D2LC00799A PMid:36655824 PMCid:PMC10013352

[24] Kulkarni R, Fanse S, Burgess DJ. Mucoadhesive drug delivery systems: a promising noninvasive approach to bioavailability enhancement. Part II: formulation considerations. Expert Opin Drug Deliv. 2023;20(3):413-34. https://doi.org/10.1080/17425247.2023.2181332 PMid:36803264

[25] Xu Y, Fourniols T, Labrak Y, Préat V, Beloqui A, des Rieux A. Surface modification of lipid-based nanoparticles. ACS Nano. 2022;16(5):7168-96. https://doi.org/10.1021/acsnano.2c02347 PMid:35446546

[26] Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology. 2022;20(1):362. https://doi.org/10.1186/s12951-022-01539-x PMid:35933341 PMCid:PMC9356434

[27] Mura P, Maestrelli F, Cirri M, Mennini N. Multiple roles of chitosan in mucosal drug delivery: an updated review. Mar Drugs. 2022;20(5):335. https://doi.org/10.3390/md20050335 PMid:35621986 PMCid:PMC9146108

[28] Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev. 2022; 102(4):1757-836. https://doi.org/10.1152/physrev.00004.2021 PMid:35001665 PMCid:PMC9665957

[29] Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev. 2024; 53(3):1120-55. https://doi.org/10.1039/D3CS01039B PMid:38507263

[30] Dhakar RC, Maurya SD, Tilak VK, Gupta AK, A review on factors affecting the design of nasal drug delivery system, International journal of drug delivery, 2011;3(2):194

[31] Prasher P, Sharma M, Singh SK, Gulati M, Jha NK, Gupta PK, Gupta G, Chellappan DK, Zacconi F, Pinto TD, Chan Y. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem Biol Interact. 2022;365:110048. https://doi.org/10.1016/j.cbi.2022.110048 PMid:35932910

[32] Croitoru GA, Pîrvulescu DC, Niculescu AG, Grumezescu AM, Antohi AM, Nicolae CL. Metallic nanomaterials-targeted drug delivery approaches for improved bioavailability, reduced side toxicity, and enhanced patient outcomes. Rom J Morphol Embryol. 2024;65(2):145. https://doi.org/10.47162/RJME.65.2.01 PMid:39020529 PMCid:PMC11384046

[33] Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: current paradigm and future perspectives. J Control Release. 2023;362:70-96. https://doi.org/10.1016/j.jconrel.2023.08.018 PMid:37591463

[34] Jawadi Z, Yang C, Haidar ZS, Santa Maria PL, Massa S. Bio-inspired muco-adhesive polymers for drug delivery applications. Polymers (Basel). 2022;14(24):5459. https://doi.org/10.3390/polym14245459 PMid:36559825 PMCid:PMC9785024

[35] Valibeknejad M, Abdoli SM, Alizadeh R, Mihăilă SM, Raoof A. Insights into transport in mucus barrier: exploring particle penetration through the intestinal mucus layer. J Drug Deliv Sci Technol. 2023;86:104752. https://doi.org/10.1016/j.jddst.2023.104752

[36] Xu C, Xu H, Zhu Z, Shi X, Xiao B. Recent advances in mucus-penetrating nanomedicines for oral treatment of colonic diseases. Expert Opin Drug Deliv. 2023;20(10):1371-85. https://doi.org/10.1080/17425247.2023.2242266 PMid:37498079

[37] Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology. 2022;20(1):362. https://doi.org/10.1186/s12951-022-01539-x PMid:35933341 PMCid:PMC9356434

[38] Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol. 2022;19(4):219-38. https://doi.org/10.1038/s41575-021-00539-w PMid:34785786 PMCid:PMC12053541

[39] Feczko T. Polymeric nanotherapeutics acting at special regions of body. J Drug Deliv Sci Technol. 2021;64:102597. https://doi.org/10.1016/j.jddst.2021.102597

[40] Srujana S, Anjamma M, Alimuddin, Singh B, Dhakar RC, Natarajan S, Hechhu R. A Comprehensive Study on the Synthesis and Characterization of TiO2 Nanoparticles Using Aloe vera Plant Extract and Their Photocatalytic Activity against MB Dye. Adsorption Science & Technology. 2022;2022 https://doi.org/10.1155/2022/7244006

[41] Satapathy T, Panda PK. Solid lipid nanoparticles: a novel carrier in drug delivery system. Res J Pharm Dosage Forms Technol. 2013;5(2):56-61.

[42] Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Adv Drug Deliv Rev. 2023;199:114904. https://doi.org/10.1016/j.addr.2023.114904 PMid:37263542 PMCid:PMC10526705

[43] Prajapati SK, Maurya SD, Das MK, Tilak VK, Verma KK, Dhakar RC, Dendrimers in drug delivery, diagnosis and therapy: basics and potential applications, Journal of Drug Delivery and Therapeutics. 2016;6(1):67-92 https://doi.org/10.22270/jddt.v6i1.1190

[44] Ghosh M, Roy D, Thakur S, Singh A. Exploring the potential of nasal drug delivery for brain targeted therapy: a detailed analysis. Biopharm Drug Dispos. 2024;45(4-6):161-89. https://doi.org/10.1002/bdd.2400 PMid:39665188

[45] Zheng Y, Luo S, Xu M, He Q, Xie J, Wu J, Huang Y. Transepithelial transport of nanoparticles in oral drug delivery: from the perspective of surface and holistic property modulation. Acta Pharm Sin B. 2024;14(6):1234-52. https://doi.org/10.1016/j.apsb.2024.06.015 PMid:39309496 PMCid:PMC11413706

[46] Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon. 2022;8(1):e08743. https://doi.org/10.1016/j.heliyon.2021.e08674 PMid:35028457 PMCid:PMC8741465

[47] Kesharwani D, Paul SD, Paliwal R, Satapathy T. Exploring potential of diacerin nanogel for topical application in arthritis: formulation development, QbD-based optimization and pre-clinical evaluation. Colloids Surf B Biointerfaces. 2023;223:113160. https://doi.org/10.1016/j.colsurfb.2023.113160 PMid:36736175

[48] Wu F, Qiu F, Wai-Keong SA, Diao Y. Smart dual-stimuli responsive nanoparticles for controlled anti-tumor drug release and cancer therapy. Anti-Cancer Agents Med Chem. 2021;21(10):1202-15. https://doi.org/10.2174/1871520620666200924110418 PMid:32972353

[49] Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev. 2021;50(15):8669-742. https://doi.org/10.1039/D0CS00461H PMid:34156040

[50] Alagusundaram M, Jain NK, Begum MY, Parameswari SA, Nelson VK, Bayan MF, Chandrasekaran B. Development and characterization of gel-based buccoadhesive bilayer formulation of nifedipine. Gels. 2023;9(9):688. https://doi.org/10.3390/gels9090688 PMid:37754369 PMCid:PMC10530715

[51] Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602-63. https://doi.org/10.1021/acs.chemrev.5b00346 PMid:26854975 PMCid:PMC5509216

[52] Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, Rodríguez SA, Román RÁ, Fessi H, Elaissari A. Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm. 2017;532(1):66-81. https://doi.org/10.1016/j.ijpharm.2017.08.064 PMid:28801107

[53] Colinet I, Dulong V, Mocanu G, Picton L, Le Cerf D. Effect of chitosan coating on the swelling and controlled release of a poorly water-soluble drug from an amphiphilic and pH-sensitive hydrogel. Int J Biol Macromol. 2010;47(2):120-5. https://doi.org/10.1016/j.ijbiomac.2010.05.011 PMid:20471413

[54] Paul W, Sharma CP. Chitosan, a drug carrier for the 21st century: a review. STP Pharma Sci. 2000;10(1):5-22.

[55] Chen EY, Wang YC, Chen CS, Chin WC. Functionalized positive nanoparticles reduce mucin swelling and dispersion. PLoS One. 2010;5(11):e15434. https://doi.org/10.1371/journal.pone.0015434 PMid:21085670 PMCid:PMC2978103

[56] Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4(1):35-51. https://doi.org/10.1517/14712598.4.1.35 PMid:14680467

[57] Engineer C, Parikh J, Raval A. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs. 2011;25(2):79-85.

[58] Djekic L. Novel mucoadhesive polymers for nasal drug delivery. In: Nasal Drug Delivery: Formulations, Developments, Challenges, and Solutions. 2023;189-234. https://doi.org/10.1007/978-3-031-23112-4_11

[59] Anjali S, Abhijeet K, Ajay S, Kulkarni A. Nasal in situ gel: novel approach for nasal drug delivery. J Drug Deliv Ther. 2020;10(2):183-97. https://doi.org/10.22270/jddt.v10i2-s.4029

[60] Sahu M, Satapathy T, Bahadur S, Saha S, Purabiya P, Kaushik S, Netam AK, Prasad J. Preparation methods for nanoparticles: a smart carrier system for treatment of cancer. Int J Pharm Sci Rev Res. 2018;7(19):216-26.

[61] He S, Mu H. Microenvironmental pH modification in buccal/sublingual dosage forms for systemic drug delivery. Pharmaceutics. 2023;15(2):637. https://doi.org/10.3390/pharmaceutics15020637 PMid:36839959 PMCid:PMC9961113

[62] Shaibie NA, Ramli NA, Mohammad Faizal ND, Srichana T, Mohd Amin MC. Poly(N-isopropylacrylamide)-based polymers: recent overview for the development of temperature responsive drug delivery and biomedical applications. Macromol Chem Phys. 2023;224(20):2300157. https://doi.org/10.1002/macp.202300157

[63] Koo J, Lim C, Oh KT. Recent advances in intranasal administration for brain-targeting delivery: a comprehensive review of lipid-based nanoparticles and stimuli-responsive gel formulations. Int J Nanomedicine. 2024;19:1767-807. https://doi.org/10.2147/IJN.S439181 PMid:38414526 PMCid:PMC10898487

[64] Mohamed S, Nasr M, Salama A, Refai H. Novel lipid-polymer hybrid nanoparticles incorporated in thermosensitive in situ gel for intranasal delivery of terbutaline sulphate. J Microencapsul. 2020;37(8):577-94. https://doi.org/10.1080/02652048.2020.1826590 PMid:32969722

[65] Sunoqrot S, Hasan L, Alsadi A, Hamed R, Tarawneh O. Interactions of mussel-inspired polymeric nanoparticles with gastric mucin: implications for gastro-retentive drug delivery. Colloids Surf B Biointerfaces. 2017;156:1-8. https://doi.org/10.1016/j.colsurfb.2017.05.005 PMid:28499200

[66] Araújo F, Martins C, Azevedo C, Sarmento B. Chemical modification of drug molecules as strategy to reduce interactions with mucus. Adv Drug Deliv Rev. 2018;124:98-106. https://doi.org/10.1016/j.addr.2017.09.020 PMid:28964880

[67] Bandi SP, Kumbhar YS, Venuganti VV. Effect of particle size and surface charge of nanoparticles in penetration through intestinal mucus barrier. J Nanopart Res. 2020;22:1-11. https://doi.org/10.1007/s11051-020-04785-y

[68] Zeng L, An L, Wu X. Modeling drug-carrier interaction in the drug release from nanocarriers. J Drug Deliv. 2011;2011:370308. https://doi.org/10.1155/2011/370308 PMid:21845225 PMCid:PMC3154485

[69] Leal J, Smyth HD, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm. 2017;532(1):555-72. https://doi.org/10.1016/j.ijpharm.2017.09.018 PMid:28917986 PMCid:PMC5744044

]70] Pednekar DD, Liguori MA, Marques CN, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From static to dynamic: a review on the role of mucus heterogeneity in particle and microbial transport. ACS Biomater Sci Eng. 2022;8(7):2825-48. https://doi.org/10.1021/acsbiomaterials.2c00182 PMid:35696291

[71] De La Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev. 2012;64(11):967-78. https://doi.org/10.1016/j.addr.2012.01.002 PMid:22266127

[72] Araujo F, Martins C, Azevedo C, Sarmento B. Chemical modification of drug molecules as strategy to reduce interactions with mucus. Adv Drug Deliv Rev. 2018;124:98-106. https://doi.org/10.1016/j.addr.2017.09.020 PMid:28964880

[73] Ahmad R, Sardar M. Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem. 2015;4(2):1.

[74] Sarkar MA. Drug metabolism in the nasal mucosa. Pharm Res. 1992; 9:1-9. https://doi.org/10.1023/A:1018911206646 PMid:1589391

[75] Uppal S, Italiya KS, Chitkara D, Mittal A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomater. 2018;81:20-42. https://doi.org/10.1016/j.actbio.2018.09.049 PMid:30268916

[76] Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47(1):65-81. https://doi.org/10.1016/S0169-409X(00)00122-8 PMid:11251246

[77] Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, et al. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev. 2014;114(15):7740-81. https://doi.org/10.1021/cr400295a PMid:24927254 PMCid:PMC4578874

[78] Srinivasarao M, Low PS. Ligand-targeted drug delivery. Chem Rev. 2017;117(19):12133-64. https://doi.org/10.1021/acs.chemrev.7b00013 PMid:28898067

[79] Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577-91. https://doi.org/10.2147/IJN.S36111 PMid:23144561 PMCid:PMC3493258

[80] Forest V, Pourchez J. Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: A too simplistic explanation that does not take into account the nanoparticle protein corona. Mater Sci Eng C. 2017;70:889-96. https://doi.org/10.1016/j.msec.2016.09.016 PMid:27770966

[81] Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int. 2015;39(8):881-90. https://doi.org/10.1002/cbin.10459 PMid:25790433

[82] Yang Y, Nie D, Liu Y, Yu M, Gan Y. Advances in particle shape engineering for improved drug delivery. Drug Discov Today. 2019;24(2):575-83. https://doi.org/10.1016/j.drudis.2018.10.006 PMid:30342244

[83] Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SM, Mirshekari H, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457-501. https://doi.org/10.1039/C5CS00798D PMid:26776487 PMCid:PMC4775468

[84] Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30(23):1706759. https://doi.org/10.1002/adma.201706759 PMid:29582476 PMCid:PMC5984176

[85] Maghsoudnia N, Eftekhari RB, Sohi AN, Zamzami A, Dorkoosh FA. Application of nano-based systems for drug delivery and targeting: a review. J Nanopart Res. 2020;22:1-41. https://doi.org/10.1007/s11051-020-04959-8

[86] Gijs MA, Lacharme F, Lehmann U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev. 2010;110(3):1518-63. https://doi.org/10.1021/cr9001929 PMid:19961177

[87] Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine. 2017;12:4085-109. https://doi.org/10.2147/IJN.S132780 PMid:28615938 PMCid:PMC5459982

[88] Sun J, Lu Y, He L, Pang J, Yang F, Liu Y. Colorimetric sensor array based on gold nanoparticles: Design principles and recent advances. TrAC Trends Anal Chem. 2020;122:115754. https://doi.org/10.1016/j.trac.2019.115754

[89] Stolarczyk JK, Deak A, Brougham DF. Nanoparticle clusters: assembly and control over internal order, current capabilities, and future potential. Adv Mater. 2016;28(27):5400-24. https://doi.org/10.1002/adma.201505350 PMid:27411644

[90] Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine. 2017;12:4085-109. https://doi.org/10.2147/IJN.S132780 PMid:28615938 PMCid:PMC5459982

[91] Liu Y, Yang G, Jin S, Xu L, Zhao CX. Development of high‐drug‐loading nanoparticles. ChemPlusChem. 2020;85(9):2143-57. https://doi.org/10.1002/cplu.202000496 PMid:32864902

[92] Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation and drug delivery. Signal Transduct Target Ther. 2023;8(1):217. https://doi.org/10.1038/s41392-023-01481-w PMid:37231000 PMCid:PMC10212980

[93] Correia AC, Monteiro AR, Silva R, Moreira JN, Lobo JS, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier to manage neurological disorders. Adv Drug Deliv Rev. 2022;189:114485. https://doi.org/10.1016/j.addr.2022.114485 PMid:35970274

[94] D'souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13(9):1257-75. https://doi.org/10.1080/17425247.2016.1182485 PMid:27116988

[95] Pasarin D, Ghizdareanu AI, Enascuta CE, Matei CB, Bilbie C, Paraschiv-Palada L, et al. Coating materials to increase the stability of liposomes. Polymers. 2023;15(3):782. https://doi.org/10.3390/polym15030782 PMid:36772080 PMCid:PMC10004256

[96] Cunha S, Amaral MH, Lobo JS, Silva A. Lipid nanoparticles for nasal/intranasal drug delivery. Crit Rev Ther Drug Carrier Syst. 2017;34(3). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2017018693 PMid:28845761

[97] Pahor DA. The human nose & smell. Theology Med Unique Des Hum Body. 2023;21.

[98] Meng X, Zhu G. Nasal septal swell body: a distinctive structure in the nasal cavity. Ear Nose Throat J. 2021;100(8):NP362-9. https://doi.org/10.1177/01455613211010093 PMid:33881954

[99] Haghnegahdar A, Bharadwaj R, Feng Y. Exploring the role of nasal hair in inhaled airflow and coarse dust particle dynamics in a nasal cavity: A CFD-DEM study. Powder Technol. 2023;427:118710. https://doi.org/10.1016/j.powtec.2023.118710

[100] Beachey W. Respiratory Care Anatomy and Physiology: Foundations for Clinical Practice. Elsevier Health Sciences; 2022.

[101] Shang Y, Inthavong K, Qiu D, Singh N, He F, Tu J. Prediction of nasal spray drug absorption influenced by mucociliary clearance. PLoS One. 2021;16(1):e0246007. https://doi.org/10.1371/journal.pone.0246007 PMid:33507973 PMCid:PMC7842989

[102] Roe K. The epithelial cell types and their multi-phased defenses against fungi and other pathogens. Clin Chim Acta. 2024;119889. https://doi.org/10.1016/j.cca.2024.119889 PMid:39117034

[103] Azman M, Sabri AH, Anjani QK, Mustaffa MF, Hamid KA. Intestinal absorption study: challenges and absorption enhancement strategies in improving oral drug delivery. Pharmaceuticals. 2022;15(8):975. https://doi.org/10.3390/ph15080975 PMid:36015123 PMCid:PMC9412385

[104] Khunt D, Misra M. An overview of anatomical and physiological aspects of the nose and the brain. In: Direct Nose-to-Brain Drug Delivery. 2021; p. 3-14. https://doi.org/10.1016/B978-0-12-822522-6.00029-1

[105] Terrier LM, Hadjikhani N, Destrieux C. The trigeminal pathways. J Neurol. 2022;269(7):3443-60. https://doi.org/10.1007/s00415-022-11002-4 PMid:35249132

[106] Crowe TP, Hsu WH. Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics. 2022;14(3):629. https://doi.org/10.3390/pharmaceutics14030629 PMid:35336004 PMCid:PMC8950509

[107] Zhang R, Zhang L, Li P, Pang K, Liu H, Tian L. Epithelial barrier in the nasal mucosa, related risk factors and diseases. Int Arch Allergy Immunol. 2023;184(5):481-501. https://doi.org/10.1159/000528969 PMid:36724763 PMCid:PMC10137320

[108] Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary respiratory epithelium integrity in molecular defense and susceptibility to pulmonary viral infections. Biology. 2021;10(2):95. https://doi.org/10.3390/biology10020095 PMid:33572760 PMCid:PMC7911113

[109] Yan X, Sha X. Nanoparticle-mediated strategies for enhanced drug penetration and retention in the airway mucosa. Pharmaceutics. 2023;15(10):2457. https://doi.org/10.3390/pharmaceutics15102457 PMid:37896217 PMCid:PMC10610050

[110] Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer's disease. Adv Ther. 2021;4(3):2000076. https://doi.org/10.1002/adtp.202000076

[111] Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer nanoparticles for nose-to-brain drug delivery: a new promising approach for the treatment of neurological diseases. J Funct Biomater. 2022;13(3):125. https://doi.org/10.3390/jfb13030125 PMid:36135560 PMCid:PMC9504125

[112] Gandhi S, Shastri DH, Shah J, Nair AB, Jacob S. Nasal delivery to the brain: harnessing nanoparticles for effective drug transport. Pharmaceutics. 2024;16(4):481. https://doi.org/10.3390/pharmaceutics16040481 PMid:38675142 PMCid:PMC11055100

[113] Praganta J. Clinical Effects of Advanced Platelet-Rich Fibrin (A-PRF) on the Outcomes of Third Molar Removal Surgery [Doctoral dissertation]. University of Otago; 2021.

[114] Arslan D, Unal Cevik I. Interactions between the painful disorders and the autonomic nervous system. Agri J Turk Soc Algol. 2022;34(3). https://doi.org/10.14744/agri.2021.43078 PMid:35792695

[115] Luciani-Giacobbe LC, Sanchez MF, Olivera ME. Nasal route of drug delivery. In: The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics. Cham: Springer; 2022. p. 660-70. https://doi.org/10.1007/978-3-030-84860-6_102

[116] Khunt D, Misra M. An overview of anatomical and physiological aspects of the nose and the brain. In: Direct Nose-to-Brain Drug Delivery. 2021; p. 3-14. https://doi.org/10.1016/B978-0-12-822522-6.00029-1

[117] Yokel RA. Direct nose to the brain nanomedicine delivery presents a formidable challenge. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(2):e1767. https://doi.org/10.1002/wnan.1767 PMid:34957707

[118] Fritzsch B, Elliott KL, Yamoah EN. Neurosensory development of the four brainstem-projecting sensory systems and their integration in the telencephalon. Front Neural Circuits. 2022;16:913480. https://doi.org/10.3389/fncir.2022.913480 PMid:36213204 PMCid:PMC9539932

[119] Yeomans DC, Hanson LR, Carson DS, Tunstall BJ, Lee MR, Tzabazis AZ, et al. Nasal oxytocin for the treatment of psychiatric disorders and pain: achieving meaningful brain concentrations. Transl Psychiatry. 2021;11(1):388. https://doi.org/10.1038/s41398-021-01511-7 PMid:34247185 PMCid:PMC8272715

[120] Lee D, Minko T. Nanotherapeutics for nose-to-brain drug delivery: an approach to bypass the blood-brain barrier. Pharmaceutics. 2021;13(12):2049. https://doi.org/10.3390/pharmaceutics13122049 PMid:34959331 PMCid:PMC8704573

[121] Park KS. Nervous system. In: Humans and Electricity: Understanding Body Electricity and Applications. Cham: Springer; 2023. p. 27-51. https://doi.org/10.1007/978-3-031-20784-6_2

[122] Mohapatra P, Gopikrishnan M, Doss CGP, Chandrasekaran N. How precise are nanomedicines in overcoming the blood-brain barrier? A comprehensive review of the literature. Int J Nanomedicine. 2024;19:2441-67. https://doi.org/10.2147/IJN.S442520 PMid:38482521 PMCid:PMC10932758

[123] Moradi F, Dashti N. Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(2):133-48 https://doi.org/10.1007/s00210-021-02196-x PMid:34982185

[124] Campora S, Ghersi G. Recent developments and applications of smart nanoparticles in biomedicine. Nanotechnol Rev. 2022;11(1):2595-631. https://doi.org/10.1515/ntrev-2022-0148

[125] Correia AC, Monteiro AR, Silva R, Moreira JN, Lobo JS, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: crossing or circumventing the blood-brain barrier to manage neurological disorders. Adv Drug Deliv Rev. 2022;189:114485 https://doi.org/10.1016/j.addr.2022.114485 PMid:35970274

[126] Zhang R, Zhang L, Li P, Pang K, Liu H, Tian L. Epithelial barrier in the nasal mucosa, related risk factors and diseases. Int Arch Allergy Immunol. 2023;184(5):481-501 https://doi.org/10.1159/000528969 PMid:36724763 PMCid:PMC10137320

[127] Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer's disease. Adv Ther. 2021;4(3):2000076. https://doi.org/10.1002/adtp.202000076

[128] Khunt D, Misra M. An overview of anatomical and physiological aspects of the nose and the brain. In: Direct Nose-to-Brain Drug Delivery. 2021; p. 3-14. https://doi.org/10.1016/B978-0-12-822522-6.00029-1

[129] Akram J, Akbar NS. Electroosmotically actuated peristaltic-ciliary flow of propylene glycol + water conveying titania nanoparticles. Sci Rep. 2023;13(1):11801. https://doi.org/10.1038/s41598-023-38820-4 PMid:37479868 PMCid:PMC10362056

[130] Moreno-Mendieta S, Guillén D, Vasquez-Martínez N, Hernández-Pando R, Sánchez S, Rodríguez-Sanoja R. Understanding the phagocytosis of particles: the key for rational design of vaccines and therapeutics. Pharm Res. 2022;39(8):1823-49. https://doi.org/10.1007/s11095-022-03301-2 PMid:35739369

[131] Moradi F, Dashti N. Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: A comprehensive review. Naunyn-Schmiedeberg's Archives of Pharmacology. 2022 ;395(2):133-48. https://doi.org/10.1007/s00210-021-02196-x PMid:34982185

[132] Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer nanoparticles for nose-to-brain drug delivery: a new promising approach for the treatment of neurological diseases. J Funct Biomater. 2022;13(3):125. https://doi.org/10.3390/jfb13030125 PMid:36135560 PMCid:PMC9504125

[133] Pho T, Champion JA. Surface engineering of protein nanoparticles modulates transport, adsorption, and uptake in mucus. ACS Appl Mater Interfaces. 2022;14(46):51697-710. https://doi.org/10.1021/acsami.2c14670 PMid:36354361

[134] Guo C, Yuan H, Wang Y, Feng Y, Zhang Y, Yin T, et al. The interplay between PEGylated nanoparticles and blood immune system. Adv Drug Deliv Rev. 2023;200:115044. https://doi.org/10.1016/j.addr.2023.115044 PMid:37541623

[135] Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical applications of functionalized gold nanoparticles: a review. J Clust Sci. 2021;32(1):1-6. https://doi.org/10.1007/s10876-020-01955-9

[136] Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021;13(24):10748-64. https://doi.org/10.1039/D1NR02065J PMid:34132312

[137] Niculescu AG, Bîrcă AC, Grumezescu AM. New applications of lipid and polymer-based nanoparticles for nucleic acids delivery. Pharmaceutics. 2021;13(12):2053. https://doi.org/10.3390/pharmaceutics13122053 PMid:34959335 PMCid:PMC8708541

[138] Haripriyaa M, Suthindhiran K. Pharmacokinetics of nanoparticles: current knowledge, future directions and its implications in drug delivery. Future J Pharm Sci. 2023;9(1):113. https://doi.org/10.1186/s43094-023-00569-y

[139] Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Adv. 2023;5(10):2674-723. https://doi.org/10.1039/D2NA00534D PMid:37205285 PMCid:PMC10186990

[140] Aswathi VP, Meera S, Maria CA, Nidhin M. Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review. Nanotechnol Environ Eng. 2023;8(2):377-97. https://doi.org/10.1007/s41204-022-00276-8 PMCid:PMC9399584

[141] Huang Y, Wang J, Jiang K, Chung EJ. Improving kidney targeting: the influence of nanoparticle physicochemical properties on kidney interactions. J Control Release. 2021;334:127-37. https://doi.org/10.1016/j.jconrel.2021.04.016 PMid:33892054 PMCid:PMC8192458

[142] Xu M, Qi Y, Liu G, Song Y, Jiang X, Du B. Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance. ACS Nano. 2023;17(21):20825-49. https://doi.org/10.1021/acsnano.3c05853 PMid:37921488

[143] Vitulo M, Gnodi E, Meneveri R, Barisani D. Interactions between nanoparticles and intestine. Int J Mol Sci. 2022;23(8):4339. https://doi.org/10.3390/ijms23084339 PMid:35457155 PMCid:PMC9024817

[144] Crowe TP, Hsu WH. Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics. 2022;14(3):629. https://doi.org/10.3390/pharmaceutics14030629 PMid:35336004 PMCid:PMC8950509

[145] Bharadwaj VN, Tzabazis AZ, Klukinov M, Manering NA, Yeomans DC. Intranasal administration for pain: oxytocin and other polypeptides. Pharmaceutics. 2021;13(7):1088. https://doi.org/10.3390/pharmaceutics13071088 PMid:34371778 PMCid:PMC8309171

[146] Egbuna C, Rudrapal M, editors. Phytochemical Drug Discovery for Central Nervous System Disorders: Biochemistry and Therapeutic Effects. John Wiley & Sons; 2023. https://doi.org/10.1002/9781119794127

[147] Maher R, Moreno-Borrallo A, Jindal D, Mai BT, Ruiz-Hernandez E, Harkin A. Intranasal polymeric and lipid-based nanocarriers for CNS drug delivery. Pharmaceutics. 2023;15(3):746. https://doi.org/10.3390/pharmaceutics15030746 PMid:36986607 PMCid:PMC10051709

[148] Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev. 2024;115239. https://doi.org/10.1016/j.addr.2024.115239 PMid:38437916

[149] Dighe S, Jog S, Momin M, Sawarkar S, Omri A. Intranasal drug delivery by nanotechnology: advances in and challenges for Alzheimer's disease management. Pharmaceutics. 2023;16(1):58. https://doi.org/10.3390/pharmaceutics16010058 PMid:38258068 PMCid:PMC10820353

[150] Lamptey RN, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci. 2022;23(3):1851. https://doi.org/10.3390/ijms23031851 PMid:35163773 PMCid:PMC8837071

[151] Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm. 2008;70:735-40. https://doi.org/10.1016/j.ejpb.2008.07.005 PMid:18684400

[152] Wilson B, Samanta MK, Muthu MS, Vinothapooshan G. Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimer's disease. Ther Deliv. 2011;2:599-609. https://doi.org/10.4155/tde.11.21 PMid:22833977

[153] Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni JK, Ali J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci. 2012;47(1):6-15. https://doi.org/10.1016/j.ejps.2012.04.013 PMid:22561106

[154] Bhavna B, Shadab A, Baboota S, Sahni JK, Bhatnagar A, Ali J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm. 2014;40:278-87. https://doi.org/10.3109/03639045.2012.758130 PMid:23369094

[155] Satapathy T, Panda PK, Mishra G. Comparative evaluation of in vitro antioxidant, amylase inhibition and cytotoxic activity of Cur-Pip dual drug loaded nanoparticles. In: Advances in Biomedical Engineering and Technology: Select Proceedings of ICBEST 2018. Singapore: Springer; 2020. p. 129-39. https://doi.org/10.1007/978-981-15-6329-4_12

[156] Andrade S, Pereira MC, Loureiro JA. Caffeic acid loaded into engineered lipid nanoparticles for Alzheimer's disease therapy. Colloids Surf B Biointerfaces. 2023;225:113270. https://doi.org/10.1016/j.colsurfb.2023.113270 PMid:36996633

[157] Yin Z, Zhang Z, Gao D, Luo G, Ma T, Wang Y, et al. Stepwise coordination-driven metal-phenolic nanoparticle as a neuroprotection enhancer for Alzheimer's disease therapy. ACS Appl Mater Interfaces. 2023;15(1):524-40. https://doi.org/10.1021/acsami.2c18060 PMid:36542560

[158] Georgieva D, Nikolova D, Vassileva E, Kostova B. Chitosan-based nanoparticles for targeted nasal galantamine delivery as a promising tool in Alzheimer's disease therapy. Pharmaceutics. 2023;15(3):829. https://doi.org/10.3390/pharmaceutics15030829 PMid:36986689 PMCid:PMC10056147

[159] Luppi B, Bigucci F, Corace G, Delucca A, Cerchiara T, Sorrenti M, et al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur J Pharm Sci. 2011;44(4):559-65. https://doi.org/10.1016/j.ejps.2011.10.002 PMid:22009109

[160] Zara GP, Cavalli R, Bargoni A, Fundarò A, Vighetto D, Gasco MR. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target. 2002;10(4):327-35. https://doi.org/10.1080/10611860290031868 PMid:12164381

[161] Yan D, Qu X, Chen M, Wang J, Li X, Zhang Z, et al. Functionalized curcumin/ginsenoside Rb1 dual-loaded liposomes: targeting the blood-brain barrier and improving pathological features associated in APP/PS-1 mice. J Drug Deliv Sci Technol. 2023;86:104633. https://doi.org/10.1016/j.jddst.2023.104633

[162] Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release. 2007;119(1):77-85. https://doi.org/10.1016/j.jconrel.2007.01.016 PMid:17349712

[163] Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water-soluble drug into Eudragit RL nanoparticles. Res Pharm Sci. 2017;12(1):1-14. https://doi.org/10.4103/1735-5362.199041 PMid:28255308 PMCid:PMC5333474

[164] Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release. 2007;121(3):156-67. https://doi.org/10.1016/j.jconrel.2007.05.026 PMid:17628165

[165] Bari NK, Fazil M, Hassan MQ, Haider MR, Gaba B, Narang JK, et al. Brain delivery of buspirone hydrochloride chitosan nanoparticles for the treatment of general anxiety disorder. Int J Biol Macromol. 2015;81:49-59. https://doi.org/10.1016/j.ijbiomac.2015.07.041 PMid:26210037

[166] Fatouh AM, Elshafeey AH, Abdelbary A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics. Drug Des Dev Ther. 2017;11:1815-25. https://doi.org/10.2147/DDDT.S102500 PMid:28684900 PMCid:PMC5484509

[167] Elsenosy FM, Abdelbary GA, Elshafeey AH, Elsayed I, Fares AR. Brain targeting of duloxetine HCl via intranasal delivery of loaded cubosomal gel: in vitro characterization, ex vivo permeation, and in vivo biodistribution studies. Int J Nanomedicine. 2020;15:9517-37. https://doi.org/10.2147/IJN.S277352 PMid:33324051 PMCid:PMC7732760

[168] Ravouru N, Kondreddy P, Korakanchi D. Formulation and evaluation of niosomal nasal drug delivery system of folic acid for brain targeting. Curr Drug Discov Technol. 2013;10(4):270-82. https://doi.org/10.2174/15701638113109990031 PMid:23863098

[169] Singh D, Rashid M, Hallan SS, Mehra NK, Prakash A, Mishra N. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif Cells Nanomed Biotechnol. 2016;44(3):865-77.

[170] Haque S, Md S, Sahni JK, Ali J, Baboota S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res. 2014;48(1):1-12. https://doi.org/10.1016/j.jpsychires.2013.10.011 PMid:24231512

[171] Taymouri S, Shahnamnia S, Mesripour A, Varshosaz J. In vitro and in vivo evaluation of an ionic sensitive in situ gel containing nanotransfersomes for aripiprazole nasal delivery. Pharm Dev Technol. 2021;26(8):867-79. https://doi.org/10.1080/10837450.2021.1948571 PMid:34193009

[172] Yasir M, Sara UVS. Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharm Sin B. 2014;4(6):454-63. https://doi.org/10.1016/j.apsb.2014.10.005 PMid:26579417 PMCid:PMC4629108

[173] Patel MR, Patel RB, Thakore SD, Solanki AB. Brain targeted delivery of lurasidone HCl via nasal administration of mucoadhesive nanoemulsion formulation for the potential management of schizophrenia. Pharm Dev Technol. 2020;25(8):1018-30. https://doi.org/10.1080/10837450.2020.1772292 PMid:32432956

[174] Meng Q, Wang A, Hua H, Jiang Y, Wang Y, Mu H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer's disease. Int J Nanomedicine. 2018;13:705-18. https://doi.org/10.2147/IJN.S151474 PMid:29440896 PMCid:PMC5798568

[175] Ahmad N, Ahmad R, Naqvi AA, Alam MA, Samim M, Iqbal Z, et al. Quantification of rutin in rat brain by UHPLC/ESI-Q-TOF-MS/MS after intranasal administration of rutin loaded chitosan nanoparticles. EXCLI J. 2016;15:518-31.

[176] Kaur A, Nigam K, Tyagi A, et al. A preliminary pharmacodynamic study for the management of Alzheimer's disease using memantine-loaded PLGA nanoparticles. AAPS PharmSciTech. 2022;23:298. https://doi.org/10.1208/s12249-022-02449-9 PMid:36380129

[177] Handa M, Sanap SN, Bhatta RS, Patil GP, Palkhade R, Singh DP, et al. Simultaneous intranasal codelivery of donepezil and memantine in a nanocolloidal carrier: optimization, pharmacokinetics, and pharmacodynamics studies. Mol Pharm. 2023;20(9):4714-28. https://doi.org/10.1021/acs.molpharmaceut.3c00454 PMid:37523676

[178] Tao Y, Li C, Yao A, Qu Y, Qin L, Xiong Z, et al. Intranasal administration of erythropoietin rescues the photoreceptors in degenerative retina: a noninvasive method to deliver drugs to the eye. Drug Deliv. 2019;26(1):78-88. https://doi.org/10.1080/10717544.2018.1556361 PMid:30744451 PMCid:PMC6374977

[179] Pandya T, Dharamsi A. Intranasal delivery of leuprolide acetate chitosan nanoparticles for treatment of Alzheimer's disease. Drug Deliv Lett. 2023;13(2):120-32. https://doi.org/10.2174/2210303113666230120124831

[180] Silva S, Bicker J, Fonseca C, Ferreira NR, Vitorino C, Alves G, et al. Encapsulated escitalopram and paroxetine intranasal co-administration: in vitro/in vivo evaluation. Front Pharmacol. 2021;12:751321. https://doi.org/10.3389/fphar.2021.751321 PMid:34925013

[181] Patel S, Chavhan S, Soni H, Babbar AK, Mathur R, Mishra AK, et al. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target. 2010;19(6):468-74. https://doi.org/10.3109/1061186X.2010.523787 PMid:20958095

[182] Vyas TK, Babbar AK, Sharma RK, Misra A. Intranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targeting. J Drug Target. 2005;13(5):317-24. https://doi.org/10.1080/10611860500246217 PMid:16199375

[183] Yellepeddi V, Sayre C, Burrows A, Watt K, Davies S, Strauss J, Battaglia M. Stability of extemporaneously compounded amiloride nasal spray. PLoS One. 2020;15(7):e0232435. https://doi.org/10.1371/journal.pone.0232435 PMid:32649677 PMCid:PMC7351165

[184] Yang ZZ, Zhang YQ, Wang ZZ, Wu K, Lou JN, Qi XR. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm. 2013;452(1-2):344-54. https://doi.org/10.1016/j.ijpharm.2013.05.009 PMid:23680731

[185] Sivadasu P, Gowda DV, Siddaramaiah H, Hemalatha S. Ziprasidone hydrochloride loaded nanostructured lipid carriers for intranasal delivery: optimization and in vivo studies. Int J Appl Pharm. 2020;12(1):31-41. https://doi.org/10.22159/ijap.2020v12i1.35683

[186] Iqbal R, Ahmed S, Jain GK, Vohora D. Design and development of letrozole nanoemulsion: a comparative evaluation of brain targeted nanoemulsion with free letrozole against status epilepticus and neurodegeneration in mice. Int J Pharm. 2019;565:20-32. https://doi.org/10.1016/j.ijpharm.2019.04.076 PMid:31051232

[187] Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer's disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104(10):3544-56. https://doi.org/10.1002/jps.24557

[188] Maurice T, Mustafa MH, Desrumaux C, et al. Intranasal formulation of erythropoietin showed potent protective activity against amyloid toxicity in the Aβ25-35 non-transgenic mouse model of Alzheimer's disease. J Psychopharmacol. 2013;27(11):1044-57. https://doi.org/10.1177/0269881113494939 Mid:23813967

[189] Vaz G, Clementino A, Mitsou E, Ferrari E, Buttini F, Sissa C, et al. In vitro evaluation of curcumin- and quercetin-loaded nanoemulsions for intranasal administration: effect of surface charge and viscosity. Pharmaceutics. 2022;14:194. https://doi.org/10.3390/pharmaceutics14010194 PMid:35057089 PMCid:PMC8779979

[190] Picone P, Sabatino MA, Ditta LA, Amato A, San Biagio PL, Mulè F, et al. Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J Control Release. 2018;270:23-36. https://doi.org/10.1016/j.jconrel.2017.11.040 PMid:29196041

[191] Sukumar UK, Bose RJC, Malhotra M, Babikir HA, Afjei R, Robinson E, et al. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials. 2019;2018:119342. https://doi.org/10.1016/j.biomaterials.2019.119342 PMid:31326657 PMCid:PMC6663564

[192] Liu S, Yang S, Ho PC. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci. 2018;13(1):72-81. https://doi.org/10.1016/j.ajps.2017.09.001 PMid:32104380 PMCid:PMC7032105

[193] Katare YK, Daya RP, Gray CS, Luckham RE, Bhandari J, Chauhan AS, et al. Brain targeting of a water-insoluble antipsychotic drug haloperidol via the intranasal route using PAMAM dendrimer. Mol Pharm. 2015;12(9):3380-8. https://doi.org/10.1021/acs.molpharmaceut.5b00402 PMid:26226403

[194] Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci. 2013;48:393-405. https://doi.org/10.1016/j.ejps.2012.12.007 PMid:23266466

[195] Muntimadugu E, Dhommati R, Jain A, Challa VGS, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer's disease. Eur J Pharm Sci. 2016;92:224-34. https://doi.org/10.1016/j.ejps.2016.05.012 PMid:27185298

[196] Taki H, Kanazawa T, Akiyama F, Takashima Y, Okada H. Intranasal delivery of camptothecin-loaded Tat-modified nanomicells for treatment of intracranial brain tumors. Pharmaceuticals. 2012;5:1092-102. https://doi.org/10.3390/ph5101092 PMid:24281259 PMCid:PMC3816654

[197] Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia K, Tekade RK. 'Dendrimer-cationized-albumin' encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int J Pharm. 2019;555:77-99. https://doi.org/10.1016/j.ijpharm.2018.11.035 PMid:30448308

[198] Qu Y, Li A, Ma L, Iqbal S, Sun X, Ma W, et al. Nose-to-brain delivery of disulfiram nanoemulsion in situ gel formulation for glioblastoma targeting therapy. Int J Pharm. 2021;597:120250. https://doi.org/10.1016/j.ijpharm.2021.120250 PMid:33486040

[199] Guo T, Guo Y, Gong Y, Ji J, Hao S, Deng J, et al. An enhanced charge-driven intranasal delivery of nicardipine attenuates brain injury after intracerebral hemorrhage. Int J Pharm. 2019;566:46-56. https://doi.org/10.1016/j.ijpharm.2019.05.050 PMid:31121211

[200] Mittal D, Md S, Hasan Q, Fazil M, Ali A, Baboota S, et al. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv. 2014;23(1):130-9. https://doi.org/10.3109/10717544.2014.907372 PMid:24786489

[201] Jafarieh O, Md S, Ali M, Baboota S, Sahni JK, Kumari B, et al. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm. 2014;41(10):1674-81. https://doi.org/10.3109/03639045.2014.991400 PMid:25496439

[202] Alsaidan OA, Elkomy MH, Zaki RM, Tulbah AS, Yusif RM, Eid HM. Brain targeting of venlafaxine via intranasal transbilosomes thermogel for improved management of depressive disorder. J Pharm Sci. 2024;113(11). https://doi.org/10.1016/j.xphs.2024.08.026 PMid:39216538

[203] Gonçalves J, Alves G, Carona A, et al. Pre-clinical assessment of the nose-to-brain delivery of zonisamide after intranasal administration. Pharm Res. 2020;37:74. https://doi.org/10.1007/s11095-020-02786-z PMid:32215749

[204] Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech. 2014;15(6):1598-602. https://doi.org/10.1208/s12249-014-0189-5 PMid:25142821 PMCid:PMC4245419

[205] Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech. 2014;15(6):1598-602. https://doi.org/10.1208/s12249-014-0189-5 PMid:25142821 PMCid:PMC4245419

Published

2025-11-15
Statistics
Abstract Display: 396
PDF Downloads: 286
PDF Downloads: 60

How to Cite

1.
Sahu P, Chandrakar K, Kashyap P, Kumar M, Kumar A, Satapathy A, et al. Intranasal nanoparticulate drug delivery systems for neurodegenerative disorders: an Overview. J. Drug Delivery Ther. [Internet]. 2025 Nov. 15 [cited 2026 Jan. 19];15(11):134-55. Available from: https://jddtonline.info/index.php/jddt/article/view/7462

How to Cite

1.
Sahu P, Chandrakar K, Kashyap P, Kumar M, Kumar A, Satapathy A, et al. Intranasal nanoparticulate drug delivery systems for neurodegenerative disorders: an Overview. J. Drug Delivery Ther. [Internet]. 2025 Nov. 15 [cited 2026 Jan. 19];15(11):134-55. Available from: https://jddtonline.info/index.php/jddt/article/view/7462

Most read articles by the same author(s)

<< <