Dietary Modulation of the Gut Microbiome: A Promising Approach for Management of Diabetes

Authors

Abstract

The gut microbiome has emerged as a critical regulator of host metabolism, immune function, and energy homeostasis, offering novel opportunities for the prevention and management of metabolic disorders such as diabetes mellitus. Dietary modulation represents a promising, non-pharmacological strategy to reshape gut microbial composition and functionality, thereby improving glycemic control and metabolic outcomes. Diets rich in fiber, polyphenols, fermented foods, and prebiotic compounds have been shown to enhance the abundance of beneficial bacteria species such as Bifidobacterium promote short-chain fatty acid (SCFA) production, and reduce systemic inflammation and insulin resistance. Conversely, high-fat and high-sugar Western-style diets are associated with dysbiosis, impaired gut barrier integrity, and metabolic endotoxemia, which exacerbate hyperglycemia and insulin resistance. Emerging evidence from clinical and experimental studies indicates that targeted dietary interventions, including the Mediterranean diet, plant-based diets, and functional food supplementation, can modulate gut microbiota diversity and metabolic pathways, supporting their therapeutic potential in diabetes management. This review highlights current knowledge on relationship between gut microbiome and diabetes, and offers new insights into potential preventive or therapeutic approaches that uses dietary modulation of the gut microbiome as a safe and effective adjunct to the clinical management of diabetes.

Keywords: Diabetes, Diet, Gut, Microbiome, Modulation

Keywords:

Diabetes, Diet, Gut, Microbiome, Modulation

DOI

https://doi.org/10.22270/jddt.v15i10.7423

Author Biographies

Kingsley Ikechukwu Chukwudozie , Department of Microbiology, University of Nigeria

Department of Microbiology, University of Nigeria

Izuchukwu Christopher Chukwudozie , Department of Science Laboratory Technology, University of Nigeria

Department of Science Laboratory Technology, University of Nigeria

Chidimma Precious Onyeka , Department of Microbiology, University of Nigeria

Department of Microbiology, University of Nigeria

References

1. Abonahas HH, Darwish AMG, El-Kareem HFA, Abonahas YH, Mansour SA, Korra YH, et al. Trust Your Gut: The Human Gut Microbiome in Health and Disease. Microbiome-Gut-Brain Axis Implic Heal. 2022 Jan 1;53–96.

2. De Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022 May 1 [cited 2023 Oct 17];71(5):1020–32. Available from: https://gut.bmj.com/content/71/5/1020

3. Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal Transduct Target Ther 2022 71. 2022 Apr 23 [cited 2025 Sep 4];7(1):1–28. Available from: https://www.nature.com/articles/s41392-022-00974-4

4. Sasidharan Pillai S, Gagnon CA, Foster C, Ashraf AP. Exploring the Gut Microbiota: Key Insights Into Its Role in Obesity, Metabolic Syndrome, and Type 2 Diabetes. J Clin Endocrinol Metab. 2024;109(11):2709–19. https://dx.doi.org/10.1210/clinem/dgae499

5. Madhogaria B, Bhowmik P, Kundu A. Correlation between human gut microbiome and diseases. Infect Med [Internet]. 2022;1(3):180–91. Available from: https://www.sciencedirect.com/science/article/pii/S2772431X22000375

6. Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, et al. Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol. 2022 Sep 26;13:999001.

7. Neri-Rosario D, Martínez-López YE, Esquivel-Hernández DA, Sánchez-Castañeda JP, Padron-Manrique C, Vázquez-Jiménez A, et al. Dysbiosis signatures of gut microbiota and the progression of type 2 diabetes: a machine learning approach in a Mexican cohort. Front Endocrinol (Lausanne). 2023;14:1170459.

8. Del Chierico F, Rapini N, Deodati A, Matteoli MC, Cianfarani S, Putignani L. Pathophysiology of Type 1 Diabetes and Gut Microbiota Role. Int J Mol Sci. 2022;23(23):14650. Available from: https://www.mdpi.com/1422-0067/23/23/14650/htm

9. Sadagopan A, Mahmoud A, Begg M, Tarhuni M, Fotso M, Gonzalez NA, et al. Understanding the Role of the Gut Microbiome in Diabetes and Therapeutics Targeting Leaky Gut: A Systematic Review. Cureus. 2023;15(7):e41559. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10405753/

10. Tunuguntla MN. Understanding Gut Health: Probiotics, Dysbiosis, and their Connection to Type 2 Diabetes - A Review. Int J Clin Case Reports Rev. 2024 Jun 24;18(1):01–7.

11. Chong S, Lin M, Chong D, Jensen S, Lau NS. A systematic review on gut microbiota in type 2 diabetes mellitus. Front Endocrinol (Lausanne). 2024 Jan 17;15:1486793.

12. Alshareef AA, Alrawaili MS, Almutairi SA, Ayyad MM, Alshora W. Association of Hematological Parameters and Diabetic Neuropathy: A Retrospective Study. Diabetes, Metab Syndr Obes. 2024;17:779–93. https://www.dovepress.com/association-of-hematological-parameters-and-diabetic-neuropathy-a-retr-peer-reviewed-fulltext-article-DMSO

13. Rafaqat S, Rafaqat S. Role of hematological parameters in pathogenesis of diabetes mellitus: A review of the literature. http://www.wjgnet.com/. 2023 Mar 24;10(3):25–41. Available from: https://www.wjgnet.com/2218-6204/full/v10/i3/25.htm

14. Islam S, Rahman S, Haque T, Sumon AH, Ahmed AM, Ali N. Prevalence of elevated liver enzymes and its association with type 2 diabetes: A cross‐sectional study in Bangladeshi adults. Endocrinol Diabetes Metab. 2020 Apr 1;3(2):e00116. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7170449/

15. Alam S, Raghav A, Reyaz A, Jain V, et al. Prevalence of elevated liver enzymes and its relationship with type 2 diabetes mellitus in North Indian adults. Metab. 2021;12:100130. https://www.sciencedirect.com/science/article/pii/S2589936821000542

16. Zheng D, Zhang X, You L, Li F, Lin D, Sun K, et al. The association of liver enzymes with diabetes mellitus risk in different obesity subgroups: A population-based study. Front Endocrinol (Lausanne). 2022 Oct 13;13:961762.

17. Bi Y, Yang Y, Yuan X, Wang J, Wang T, Liu Z, et al. Association between liver enzymes and type 2 diabetes: a real-world study. Front Endocrinol (Lausanne). 2024;15:1340604. https://pmc.ncbi.nlm.nih.gov/articles/PMC10913017/

18. Rinninella E, Tohumcu E, Raoul P, Fiorani M, Cintoni M, Mele MC, et al. The role of diet in shaping human gut microbiota. Best Pract Res Clin Gastroenterol. 2023;62–63:101828. Available from: https://www.sciencedirect.com/science/article/pii/S1521691823000069

19. Cruz MC, Azinheiro S, Pereira SG. Modulation of gut microbiota by diet and probiotics: potential approaches to prevent gestational diabetes mellitus. Gut Microbiome [Internet]. 2023;4:e17. https://www.cambridge.org/core/journals/gut-microbiome/article/modulation-of-gut-microbiota-by-diet-and-probiotics-potential-approaches-to-prevent-gestational-diabetes-mellitus/CC0C855C73C28EA1A65CE0F13094F260

20. Menafra D, Proganò M, Tecce N, Pivonello R, Colao A. Diet and gut microbiome: Impact of each factor and mutual interactions on prevention and treatment of type 1, type 2, and gestational diabetes mellitus. Hum Nutr Metab. 2024;38:200286. Available from: https://www.sciencedirect.com/science/article/pii/S2666149724000483

21. Luvhengo T, Mabasa S, Molepo E, Taunyane I, Palweni ST. Paneth Cell, Gut Microbiota Dysbiosis and Diabetes Mellitus. Appl Sci 2023, Vol 13, Page 6605 [Internet]. 2023 May 29;13(11):6605. Available from: https://www.mdpi.com/2076-3417/13/11/6605/htm

22. Ye J, Wu Z, Zhao Y, Zhang S, Liu W, Su Y. Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: Advanced research-based review. Front Microbiol. 2022 Oct 19;13:1029890.

23. Tsai YC, Tai WC, Liang CM, Wu CK, Tsai MC, Hu WH, et al. Alternations of the gut microbiota and the Firmicutes/Bacteroidetes ratio after biologic treatment in inflammatory bowel disease. J Microbiol Immunol Infect. 2025;58(1):62–9. Available from: https://www.sciencedirect.com/science/article/pii/S1684118224001841

24. Wang M, Zhang Z, Liu Y, Jian E, Ye P, Jiang H, et al. Research trends between childhood obesity and gut microbiota: a bibliometric analysis (2002–2023). Front Microbiol. 2024 Sep 27;15:1461306. Available from: https://bibliometric.com/

25. Baars DP, Fondevila MF, Meijnikman AS, Nieuwdorp M. The central role of the gut microbiota in the pathophysiology and management of type 2 diabetes. Cell Host Microbe .202;32(8):1280–300. https://www.sciencedirect.com/science/article/pii/S1931312824002762

26. Młynarska E, Wasiak J, Gajewska A, Steć G, Jasińska J, Rysz J, et al. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management—A Narrative Review. Nutr. 2024;16(12):1938. Available from: https://www.mdpi.com/2072-6643/16/12/1938/htm

27. Bielka W, Przezak A, Pawlik A. The Role of the Gut Microbiota in the Pathogenesis of Diabetes. Int J Mol Sci. 2022;23(1):480. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8745411/

28. Wang HJ, Battousse O, Ramadas A. Modulation of gut microbiota by dietary macronutrients in type 2 diabetes: a review. Prog Microbes Mol Biol. 2021;4(1). Available from: https://journals.hh-publisher.com/index.php/pmmb/article/view/362

29. Sharma BR, Jaiswal S, Ravindra P V. Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes. Biomed Pharmacother 2022;152:113148. Available from: https://www.sciencedirect.com/science/article/pii/S0753332222005376

30. Farahbod K, Slouha E, Gerts A, Rezazadah A, Clunes LA, Kollias TF. The Effects of Diet Intervention on the Gut Microbiota in Type 2 Diabetes Mellitus: A Systematic Review. Cureus. 2024;16(3):e56737. https://pmc.ncbi.nlm.nih.gov/articles/PMC11033091/

31. Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P, et al. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutr. 2024;16(22):3951. Available from: https://www.mdpi.com/2072-6643/16/22/3951/htm

32. Kuziel GA, Rakoff-Nahoum S. The gut microbiome. Curr Biol. 2025;32(6):R257–64. Available from: https://www.cell.com/action/showFullText?pii=S0960982222002457

33. Bidell MR, Hobbs ALV, Lodise TP. Gut microbiome health and dysbiosis: A clinical primer. Pharmacother J Hum Pharmacol Drug Ther. 2022;42(11):849–57. Available from: /doi/pdf/10.1002/phar.2731

34. Fontaine SS, Kohl KD. Optimal integration between host physiology and functions of the gut microbiome. Philos Trans R Soc B. 2020;375(1808).

Available from: /doi/pdf/10.1098/rstb.2019.0594

35. Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 2020;113(12):2019–40. Available from: https://link.springer.com/article/10.1007/s10482-020-01474-7

36. Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, et al. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorg. 2024;12(11):2333. Available from: https://www.mdpi.com/2076-2607/12/11/2333/htm

37. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71. Available from: https://www.nature.com/articles/s41579-020-0433-9

38. Cani P, Delzenne N. The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease. Curr Pharm Des.2009;15(13):1546–58. Available from: https://www.benthamdirect.com/content/journals/cpd/10.2174/138161209788168164

39. Sun J, Chen S, Zang D, Sun H, Sun Y, Chen J. Butyrate as a promising therapeutic target in cancer: From pathogenesis to clinic (Review). Int J Oncol. 2024;64(4):44. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10919761/

40. Hodgkinson K, El Abbar F, Dobranowski P, Manoogian J, Butcher J, Figeys D, et al. Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clin Nutr. 2023;42(2):61–75. Available from: https://www.sciencedirect.com/science/article/pii/S0261561422003843

41. Oncel S, Safratowich BD, Lindlauf JE, Liu Z, Palmer DG, Briske-Anderson M, et al. Efficacy of Butyrate to Inhibit Colonic Cancer Cell Growth Is Cell Type-Specific and Apoptosis-Dependent. Nutrients. 2024;16(4):529. Available from: https://www.mdpi.com/2072-6643/16/4/529/htm

42. Wang GY, Qin SL, Zheng YN, Geng HJ, Chen L, Yao JH, et al. Propionate promotes gluconeogenesis by regulating mechanistic target of rapamycin (mTOR) pathway in calf hepatocytes. Anim Nutr. 2023;15:88.

Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10568569/

43. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2017;57(1):1. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5847071/

44. Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, et al. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int J Mol Sci. 2022;23(3):1105. Available from: https://www.mdpi.com/1422-0067/23/3/1105/htm

45. Guzior D V., Quinn RA. Review: microbial transformations of human bile acids. Microbiome. 2021;9(1):1–13. Available from: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-021-01101-1

46. Marco R Di, Cortés M, Olate P, Rodriguez R, Diaz R, Martínez A, et al. Human Microbiome as an Immunoregulatory Axis: Mechanisms, Dysbiosis, and Therapeutic Modulation. Microorg. 2025;13(9):2147. Available from: https://www.mdpi.com/2076-2607/13/9/2147/htm

47. Anjana, Tiwari SK. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front Cell Infect Microbiol. 2022;12:851140. Available from: www.frontiersin.org

48. Dogan S, Koc TY, Karadayi M. Effect of Bacteriocins on the Intestinal Microbiota. Eurasian J Med. 2023;55:S165. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11074934/

49. Hossain MI, Mizan MFR, Toushik SH, Ashrafudoulla M, et al. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Res Int. 2021;148:110595. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0963996921004944

50. Liang Q, Zhou W, Peng S, Liang Z, Liu Z, Zhu C, et al. Current status and potential of bacteriocin-producing lactic acid bacteria applied in the food industry. Curr Res Food Sci. 2025;10:100997. https://www.sciencedirect.com/science/article/pii/S2665927125000280

51. Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LMJ. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutr. 2021;13(3):886. Available from: https://www.mdpi.com/2072-6643/13/3/886/htm

52. Kaur H, Ali SA. Probiotics and gut microbiota: mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct. 2022;13(14):7423–47. Available from: https://pubs.rsc.org/en/content/articlehtml/2022/fo/d2fo00911k

53. Ghasemi H. Microbial metabolites and immune modulation. J Prev Complement Med. 2024;3(4):209–11. Available from: https://www.jpcmed.com/article_212403.html

54. Pantazi AC, Mihai CM, Balasa AL, Chisnoiu T, Lupu A, Frecus CE, et al. Relationship between Gut Microbiota and Allergies in Children: A Literature Review. Nutrients. 2023;15(11):2529. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10255222/

55. Ke H, Yao H, Wei P. Advances in research on gut microbiota and allergic diseases in children. Curr Res Microb Sci. 2025;8:100362. Available from: https://www.sciencedirect.com/science/article/pii/S2666517425000240

56. Wu Y, Zhang G, Wang Y, Wei X, Liu H, Zhang L, et al. A Review on Maternal and Infant Microbiota and Their Implications for the Prevention and Treatment of Allergic Diseases. Nutrients. 2023;15(11):2483. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10255369/

57. Rey-Mariño A, Francino MP. Nutrition, Gut Microbiota, and Allergy Development in Infants. Nutr. 2022;14(20):4316. Available from: https://www.mdpi.com/2072-6643/14/20/4316/htm

58. Liu M, Lu Y, Xue G, Han L, Jia H, Wang Z, et al. Role of short‐chain fatty acids in host physiology. Anim Model Exp Med. 2024;7(5):641. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11528394/

59. Akhtar M, Chen Y, Ma Z, Zhang X, Shi D, Khan JA, et al. Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. Anim Nutr. 2022;8:350–60. Available from: https://www.sciencedirect.com/science/article/pii/S2405654521002201

60. Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutr. 2023;15(9):2211. Available from: https://www.mdpi.com/2072-6643/15/9/2211/htm

61. Fukuda S, Toh H, Taylor TD, Ohno H, Hattori M. Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes. 2012;3(5):449–54. Available from: https://pubmed.ncbi.nlm.nih.gov/22825494/

62. Sabatino ADI, Era RMOR, Cioppo RC, Cazzola P, Tinozzi FP, Tinozzi S, et al. Oral butyrate for mildly to moderately active Crohn ’ s disease. 2005;789–94.

63. Alarifi SN, Alyamani EJ, Alarawi M, Alquait AA, Alolayan MA, Aldossary AM, et al. Integrative Metagenomic Analyses Reveal Gut Microbiota-Derived Multiple Hits Connected to Development of Diabetes Mellitus. Metabolites. 2024;14(12). Available from: https://pubmed.ncbi.nlm.nih.gov/39728500/

64. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, et al. Gut Microbiome Metagenomics Analysis Suggests a Functional Model for the Development of Autoimmunity for Type 1 Diabetes. PLoS One. 2011;6(10):e25792. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025792

65. Fachi JL, Felipe J de S, Pral LP, da Silva BK, Corrêa RO, de Andrade MCP, et al. Butyrate Protects Mice from Clostridium difficile-Induced Colitis through an HIF-1-Dependent Mechanism. Cell Rep. 2019;27(3):750-761.e7. Available from: https://www.sciencedirect.com/science/article/pii/S2211124719303845

66. Peng W, Huang J, Yang J, Zhang Z, Yu R, Fayyaz S, et al. Integrated 16S rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-obese Type 2 Diabetic Goto-Kakizaki Rats. Front Microbiol. 2020;10:504623. Available from: www.majorbio.com

67. Overby HB, Ferguson JF. Gut microbiota-derived short chain fatty acids facilitate microbiota:host crosstalk and modulate obesity and hypertension. Curr Hypertens Rep. 2021;23(2):8. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7992370/

68. Zhang P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int J Mol Sci. 2022;23(17):9588. Available from: https://www.mdpi.com/1422-0067/23/17/9588/htm

69. Qi Y, Wang X. The Role of Gut Microbiota in High-Fat-Diet-Induced Diabetes: Lessons from Animal Models and Humans. Nutr. 2023;15(4):922. Available from: https://www.mdpi.com/2072-6643/15/4/922/htm

70. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. Available from: https://pubmed.ncbi.nlm.nih.gov/21885731/

71. Soldán M, Argalášová Ľ, Hadvinová L, Galileo B, Babjaková J. The Effect of Dietary Types on Gut Microbiota Composition and Development of Non-Communicable Diseases: A Narrative Review. Nutr. 2024;16(18):3134. Available from: https://www.mdpi.com/2072-6643/16/18/3134/htm

72. Beam A, Clinger E, Hao L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutr. 2021;13(8):2795. Available from: https://www.mdpi.com/2072-6643/13/8/2795/htm

73. Perrone P, D’Angelo S. Gut Microbiota Modulation Through Mediterranean Diet Foods: Implications for Human Health. Nutr. 2025;17(6):948. Available from: https://www.mdpi.com/2072-6643/17/6/948/htm

74. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. Available from: https://pubmed.ncbi.nlm.nih.gov/20679230/

75. Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020;10(4):174. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7791288/

76. Abdelhalim Yameny A, Yameny AA. Diabetes Mellitus Overview 2024. J Biosci Appl Res. 2024;10(3):641–5. Available from: https://jbaar.journals.ekb.eg/article_382794.html

77. J N, M.K V, S S. A Brief Review on Diabetes Mellitus: Short Communication. J Pharma Insights Res. 2024;2(1):117–21. Available from: http://jopir.in/index.php/journals/article/view/89

78. Ojo OA, Ibrahim HS, Rotimi DE, Ogunlakin AD, Ojo AB. Diabetes mellitus: From molecular mechanism to pathophysiology and pharmacology. Med Nov Technol Devices. 2023;19:100247.

Available from: https://www.sciencedirect.com/science/article/pii/S2590093523000425

79. Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, et al. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther. 2024;9(1):1–25. Available from: https://www.nature.com/articles/s41392-024-01951-9

80. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci. 2020;21(17):6275. Available from: https://www.mdpi.com/1422-0067/21/17/6275/htm

81. Mostafavi Abdolmaleky H, Zhou JR. Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases. Antioxidants. 2024;13(8):985. Available from: https://www.mdpi.com/2076-3921/13/8/985/htm

82. Mart B, Castellano-castillo D, Moreno-indias I, Urda-cardona A, Tinahones FJ. Gut Microbiota Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects : A Case-Control Study. Diabetes Care. 2018;41(11):2385–95.

83. Murri M, Leiva I, Gomez-zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children : a case-control study. BMS Medicine. 2013;11(1)1–12.

84. Crudele L, Gadaleta RM, Cariello M, Moschetta A. Gut microbiota in the pathogenesis and therapeutic approaches of diabetes. eBioMedicine. 2023;97:104821. Available from: https://www.thelancet.com/action/showFullText?pii=S2352396423003870

85. Wu Z, Tian E, Chen Y, Dong Z, Peng Q. Gut microbiota and its roles in the pathogenesis and therapy of endocrine system diseases. Microbiol Res.2023;268:127291. Available from: https://www.sciencedirect.com/science/article/pii/S0944501322003317

86. Cunningham AL, Stephens JW, Harris DA. Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathog. 2021;13(1):1–13. Available from: https://gutpathogens.biomedcentral.com/articles/10.1186/s13099-021-00446-0

87. Pham NHT, Joglekar M V., Wong WKM, Nassif NT, Simpson AM, Hardikar AA. Short-chain fatty acids and insulin sensitivity: a systematic review and meta-analysis. Nutr Rev. 2023;82(2):193. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10777678/

88. Zheng J, An Y, Du Y, Song Y, Zhao Q, Lu Y. Effects of short-chain fatty acids on blood glucose and lipid levels in mouse models of diabetes mellitus: A systematic review and network meta-analysis. Pharmacol Res. 2024;199:107041. Available from: https://www.sciencedirect.com/science/article/pii/S1043661823003973

89. Xie C, Qi C, Zhang J, Wang W, Meng X, Aikepaer A, et al. When short-chain fatty acids meet type 2 diabetes mellitus: Revealing mechanisms, envisioning therapies. Biochem Pharmacol. 2025;233:116791. Available from: https://www.sciencedirect.com/science/article/pii/S000629522500053X

90. Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol. 2021;12:632335. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8060771/

91. Tariq HMA, Khan NY, Manzoor H, Kayani MUR. Exploring the impact of type 2 diabetes and glucose-lowering drugs on gut microbiome dynamics. Discov Med. 2025;2(1):1–16. Available from: https://link.springer.com/article/10.1007/s44337-025-00241-9

92. Pedersen SS, Prause M, Sørensen C, Størling J, Moritz T, Mariño E, et al. Targeted Delivery of Butyrate Improves Glucose Homeostasis, Reduces Hepatic Lipid Accumulation and Inflammation in db/db Mice. Int J Mol Sci. 2025;24(5):4533. Available from: https://www.mdpi.com/1422-0067/24/5/4533/htm

93. Arora T, Tremaroli V. Therapeutic Potential of Butyrate for Treatment of Type 2 Diabetes. Front Endocrinol. 2021;12:761834. Available from: www.frontiersin.org

94. Salgaço MK, Oliveira LGS, Costa GN, Bianchi F, Sivieri K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol. 2019;103(23–24):9229–38. Available from: https://link.springer.com/article/10.1007/s00253-019-10156-y

95. Nireeksha, Maniangat Luke A, Kumari N S, Hegde MN, Hegde NN. Metabolic interplay of SCFA’s in the gut and oral microbiome: a link to health and disease. Front Oral Heal .2025;6:1646382. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC12414996/

96. Sabatino A, Regolisti G, Cosola C, Gesualdo L. Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Current Diabetes. 2017;17(3)

97. Syromyatnikov M, Nesterova E, Gladkikh M, Smirnova Y, Gryaznova M, Popov V. Characteristics of the Gut Bacterial Composition in People of Different Nationalities and Religions. Microorg. 2022;10(9):1866. Available from: https://www.mdpi.com/2076-2607/10/9/1866/htm

98. Iatcu CO, Steen A, Covasa M. Gut Microbiota and Complications of Type-2 Diabetes. Nutr. 2022;14(1):166. Available from: https://www.mdpi.com/2072-6643/14/1/166/htm

99. Ji H, Su S, Chen M, Liu S, Liu S, Guo J. The role of gut microbiota in insulin resistance: recent progress. Front Microbiol. 2025 Jul 25;16:1633029.

100. Siptroth J, Moskalenko O, Krumbiegel C, Ackermann J, Koch I, Pospisil H. Variation of butyrate production in the gut microbiome in type 2 diabetes patients. Int Microbiol. 2023;26(3):601–10. Available from: https://link.springer.com/article/10.1007/s10123-023-00324-6

101. Abdalqadir N, Adeli K. GLP-1 and GLP-2 Orchestrate Intestine Integrity, Gut Microbiota, and Immune System Crosstalk. Microorg. 2022;10(10):2061. Available from: https://www.mdpi.com/2076-2607/10/10/2061/htm

102. Wang QY, Cai JP. Dietary Modulation of Glucagon-like Peptide 1 Secretion: insights and innovations. Food Heal. 2024;6(2).

103. Winiarska-Mieczan A, Tomaszewska E, Donaldson J, Jachimowicz K. The Role of Nutritional Factors in the Modulation of the Composition of the Gut Microbiota in People with Autoimmune Diabetes. Nutr. 2022;14(12):2498. Available from: https://www.mdpi.com/2072-6643/14/12/2498/htm

104. Salamone D, Rivellese AA, Vetrani C. The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre. Acta Diabetol. 2021;58(9):1131–8. Available from: https://link.springer.com/article/10.1007/s00592-021-01727-5

105. Tang R, Li L. Modulation of Short-Chain Fatty Acids as Potential Therapy Method for Type 2 Diabetes Mellitus. Can J Infect Dis Med Microbiol. 2021;2021(1):6632266. Available from: /doi/pdf/10.1155/2021/6632266

106. Gomes JMG, Costa J de A, Alfenas R de CG. Metabolic endotoxemia and diabetes mellitus: A systematic review. Metabolism. 2017;68:133–44. https://www.sciencedirect.com/science/article/abs/pii/S0026049516301871

107. Yuan X, Wang R, Han B, Sun CJ, Chen R, Wei H, et al. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes. Nat Commun. 2022;13(1):1–16. Available from: https://www.nature.com/articles/s41467-022-33656-4

108. Murugesan R, Kumar J, Leela KV, Meenakshi S, Srivijayan A, Thiruselvam S, et al. The role of gut microbiota and bacterial translocation in the pathogenesis and management of type 2 diabetes mellitus: Mechanisms, impacts, and dietary therapeutic strategies. Physiol Behav. 2025;293:114838. Available from: https://www.sciencedirect.com/science/article/abs/pii/S003193842500040X

109. Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern Emerg Med. 2024;19(2):275–93. Available from: https://link.springer.com/article/10.1007/s11739-023-03374-w

Published

2025-10-15
Statistics
Abstract Display: 127
PDF Downloads: 98
PDF Downloads: 17

How to Cite

1.
Chukwudozie KI, Chukwudozie IC, Onyeka CP. Dietary Modulation of the Gut Microbiome: A Promising Approach for Management of Diabetes. J. Drug Delivery Ther. [Internet]. 2025 Oct. 15 [cited 2025 Nov. 15];15(10):256-64. Available from: https://jddtonline.info/index.php/jddt/article/view/7423

How to Cite

1.
Chukwudozie KI, Chukwudozie IC, Onyeka CP. Dietary Modulation of the Gut Microbiome: A Promising Approach for Management of Diabetes. J. Drug Delivery Ther. [Internet]. 2025 Oct. 15 [cited 2025 Nov. 15];15(10):256-64. Available from: https://jddtonline.info/index.php/jddt/article/view/7423