Synergistic Developmental Toxicity of Cisplatin and Carboplatin in the Gallus gallus domesticus Embryonic Model
Abstract
Cisplatin and carboplatin, two frontline platinum-based chemotherapeutics, are limited by toxicity and the emergence of resistance during monotherapy. Combination regimens are increasingly considered, yet their developmental safety profiles remain unclear. Here, we assess the individual and combined developmental effects of these drugs using the Gallus gallus domesticus embryonic model, a sensitive system for teratogenic evaluation. A multiparametric strategy was applied, including morphological assessment, Yolk Sac Membrane (YSM) vasculature analysis, and biochemical profiling of total protein, acetylcholinesterase (AChE), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP).
Both drugs individually impaired development, but their combination produced a striking synergistic toxicity. Embryos displayed severe craniofacial malformations, somite loss, and neural tube closure failure. YSM analysis revealed marked degeneration in vessel density, network length, branching, and segment number. Biochemically, combination treatment yielded maximal protein accumulation, sharp suppression of AChE and ALP, and a drastic reduction in LDH activity.
These findings demonstrate that cisplatin–carboplatin co-exposure disrupts embryonic viability, angiogenesis, differentiation, and neurodevelopment more severely than either drug alone. The results highlight a paradox: while combination therapy may overcome resistance in tumors, it substantially amplifies developmental toxicity. This underscores the need to balance therapeutic gain with embryotoxic risk when designing platinum-based drug regimens.
Keywords: Cisplatin, Carboplatin, Synergistic effects, Angiogenesis, Chicken Embryo, Developmental Toxicity
Keywords:
Cisplatin, Carboplatin, Synergistic effects, Angiogenesis, Chicken embryo, Developmental ToxicityDOI
https://doi.org/10.22270/jddt.v15i10.7409References
1. Rjiba-Touati K, Ayed-Boussema I, Soualeh N, Achour A, Bacha H, Abid S. Antioxidant and antigenotoxic role of recombinant human erythropoeitin against alkylating agents: cisplatin and mitomycin C in cultured Vero cells. Exp Biol Med (Maywood). 2013 Aug 1;238(8):943-50. https://doi.org/10.1177/1535370213494643 PMid:23970409
2. de Castria TB, da Silva EMK, Gois AFT, Riera R. Cisplatin versus carboplatin in combination with third-generation drugs for advanced non-small cell lung cancer. Cochrane Database Syst Rev. 2013 Aug 16;(8):CD009256. https://doi.org/10.1002/14651858.CD009256.pub2 PMid:23949842
3. Aguiar PN, Tadokoro H, da Silva GF, Landgraf MM, Noia Barreto CM, Filardi BA, et al. Definitive chemoradiotherapy for squamous head and neck cancer: cisplatin versus carboplatin? A meta-analysis. Future Oncol. 2016 Dec;12(23):2755-64. https://doi.org/10.2217/fon-2016-0068 PMid:27549331
4. Castrellon AB, Pidhorecky I, Valero V, Raez LE. The Role of Carboplatin in the Neoadjuvant Chemotherapy Treatment of Triple Negative Breast Cancer. Oncol Rev. 2017 Mar 3;11(1):324. https://doi.org/10.4081/oncol.2017.324
5. Brüning A, Mylonas I. New emerging drugs targeting the genomic integrity and replication machinery in ovarian cancer. Arch Gynecol Obstet. 2011 May;283(5):1087-96. https://doi.org/10.1007/s00404-010-1757-x PMid:21082186
6. Kralovánszky J, Prajda N, Kerpel-Fronius S, Gál F, Kiss F. Comparison of intestinal toxic effects of platinum complexes: cisplatin (CDDP), carboplatin (CBDCA), and iproplatin (CHIP). Cancer Chemother Pharmacol. 1988;21(1):40-4. https://doi.org/10.1007/BF00262736 PMid:3277733
7. Duffull SB, Robinson BA. Clinical pharmacokinetics and dose optimisation of carboplatin. Clin Pharmacokinet. 1997 Sept;33(3):161-83. https://doi.org/10.2165/00003088-199733030-00002 PMid:9314610
8. Duan X, He C, Kron SJ, Lin W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 Sept;8(5):776-91. https://doi.org/10.1002/wnan.1390 PMid:26848041 PMCid:PMC4975677
9. 11. Fennell DA, Summers Y, Cadranel J, Benepal T, Christoph DC, Lal R, et al. Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev. 2016 Mar;44:42-50. https://doi.org/10.1016/j.ctrv.2016.01.003 PMid:26866673
10. Agarwala AK, Perkins SM, Abonour R, Brames MJ, Einhorn LH. Salvage chemotherapy with high-dose carboplatin and etoposide with peripheral blood stem cell transplant in patients with relapsed pure seminoma. Am J Clin Oncol. 2011 June;34(3):286-8. https://doi.org/10.1097/COC.0b013e3181d6b518 PMid:20523207
11. Cruet-Hennequart S, Villalan S, Kaczmarczyk A, O'Meara E, Sokol AM, Carty MP. Characterization of the effects of cisplatin and carboplatin on cell cycle progression and DNA damage response activation in DNA polymerase eta-deficient human cells. Cell Cycle. 2009 Sept 15;8(18):3039-50. https://doi.org/10.4161/cc.8.18.9624
12. The Chicken as Model Organism | Request PDF. Available from: https://www.researchgate.net/publication/226522012_The_Chicken_as_Model_Organism
13. Researchers Compare Chicken, Human Genomes.. Available from: https://www.genome.gov/12514316/2004-release-researchers-compare-chicken-human-genomes
14. Datar S, Bhonde RR. Shell-less chick embryo culture as an alternative in vitro model to investigate glucose-induced malformations in mammalian embryos. Rev Diabet Stud. 2005;2(4):221-7. https://doi.org/10.1900/RDS.2005.2.221 PMid:17491698 PMCid:PMC1783564
15. Ribatti D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev. 2016 Aug;141:70-7. https://doi.org/10.1016/j.mod.2016.05.003 PMid:27178379
16. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018 Aug;21(3):425-532.
17. Wroblewski F, Ladue JS. Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med. 1955 Oct;90(1):210-3. https://doi.org/10.3181/00379727-90-21985 PMid:13273400
18. Lowe D, Sanvictores T, Zubair M, John S. Alkaline Phosphatase. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Sept 6]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK459201/
19. Silman I, Sussman JL. Acetylcholinesterase: "classical" and "non-classical" functions and pharmacology. Curr Opin Pharmacol. 2005 June;5(3):293-302. https://doi.org/10.1016/j.coph.2005.01.014 PMid:15907917
20. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. 1951. Dev Dyn. 1992 Dec;195(4):231-72. https://doi.org/10.1002/dvdy.1001950404 PMid:1304821
21. Wimasis - CAM AI Image Analysis Free Trials [Internet]. [cited 2025 Sept 13]. Available from: https://www.wimasis.com/cam-assay
22. Szulc P, Bauer DC, Eastell R. Chapter 65 - Biochemical markers of bone turnover in osteoporosis. In: Dempster DW, Cauley JA, Bouxsein ML, Cosman F, editors. Marcus and Feldman's Osteoporosis (Fifth Edition) [Internet]. Academic Press; 2021 [cited 2025 Sept 16]. p. 1545-88. Available from: https://www.sciencedirect.com/science/article/pii/B9780128130735000654 https://doi.org/10.1016/B978-0-12-813073-5.00065-4
23. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014 Oct 5; 740:364-78. https://doi.org/10.1016/j.ejphar.2014.07.025 PMid:25058905 PMCid:PMC4146684
24. Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol. 2021; 13:303-28. https://doi.org/10.2147/JEP.S267383 PMid:33776489 PMCid:PMC7987268
25. Kato R, Sato T, Iwamoto A, Yamazaki T, Nakashiro S, Yoshikai S, et al. Interaction of platinum agents, cisplatin, carboplatin and oxaliplatin against albumin in vivo rats and in vitro study using inductively coupled plasma-mass spectrometory. Biopharm Drug Dispos. 2019 July;40(7):242-9. https://doi.org/10.1002/bdd.2197 PMid:31219617
26. Wild R, Dings RPM, Subramanian I, Ramakrishnan S. Carboplatin selectively induces the VEGF stress response in endothelial cells: Potentiation of antitumor activity by combination treatment with antibody to VEGF. International Journal of Cancer. 2004;110(3):343-51. https://doi.org/10.1002/ijc.20100 PMid:15095298
27. Abd Rashid N, Abd Halim SAS, Teoh SL, Budin SB, Hussan F, Adib Ridzuan NR, et al. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed Pharmacother. 2021 Dec;144:112328. https://doi.org/10.1016/j.biopha.2021.112328 PMid:34653753
28. Fathy M, Darwish MA, Abdelhamid ASM, Alrashedy GM, Othman OA, Naseem M, et al. Kinetin Ameliorates Cisplatin-Induced Hepatotoxicity and Lymphotoxicity via Attenuating Oxidative Damage, Cell Apoptosis and Inflammation in Rats. Biomedicines. 2022 July 6;10(7):1620. https://doi.org/10.3390/biomedicines10071620 PMid:35884925 PMCid:PMC9312964
29. McErlean S, King C. Does an abnormally elevated maternal alkaline phosphatase pose problems for the fetus? BMJ Case Rep. 2019 Apr 30;12(4):e229109. https://doi.org/10.1136/bcr-2018-229109 PMid:31040142 PMCid:PMC6506124
30. Van Wilpe S, Koornstra R, Den Brok M, De Groot JW, Blank C, De Vries J, et al. Lactate dehydrogenase: a marker of diminished antitumor immunity. Oncoimmunology. 2020;9(1):1731942. https://doi.org/10.1080/2162402X.2020.1731942 PMid:32158624 PMCid:PMC7051189
31. Villeda-González JD, Gómez-Olivares JL, Baiza-Gutman LA. New paradigms in the study of the cholinergic system and metabolic diseases: Acetyl-and-butyrylcholinesterase. J Cell Physiol. 2024 Aug;239(8):e31274. https://doi.org/10.1002/jcp.31274 PMid:38605655
32. Jin Z, Zhao-Xia L, Fan-Ke P, Wen-Juan Z, Min-Li W, Han-Yi Z. Progress in the study of reproductive toxicity of platinum-based antitumor drugs and their means of prevention. Front Pharmacol [Internet]. 2024 Feb 13 [cited 2025 Sept 6];15. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1327502/full https://doi.org/10.3389/fphar.2024.1327502 PMid:38414732 PMCid:PMC10896984
33. Bonham JR, Dale G, Atack JR. Neural tube defect-specific acetylcholinesterase: its properties and quantitation in the detection of anencephaly and spina bifida. Clin Chim Acta. 1987 Nov 30;170(1):69-77. https://doi.org/10.1016/0009-8981(87)90384-6 PMid:2449304
Published
Abstract Display: 125
PDF Downloads: 106
PDF Downloads: 21 How to Cite
Issue
Section
Copyright (c) 2025 Atharva Milan Mulye , Pinakin Shrikant Wagh , Vivaan Sameer Kelkar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.