Chrono-Colonic Delivery in Engineering Time-Responsive Systems for Site-Specific Therapy

Authors

Abstract

Background: Chrono-colonic drug delivery represents a novel pharmaceutical engineering strategy that combines the principles of circadian rhythm-based chronotherapy with colon-targeted the drug delivery. This approach seeks to optimize therapeutic efficacy by synchronizing drug release with the body’s biological clock while ensuring precise site-specific delivery.

Objective: The primary aim of chrono-colonic delivery is to achieve controlled drug release after a predetermined lag time, ensuring that the therapeutic effect coincides with peak disease activity and that the drug reaches the colon for localized or systemic action.

Methods: This strategy integrates time-dependent and site-specific technologies, employing pH-sensitive polymers, biodegradable coatings, osmotic systems, and microbially triggered release platforms. These delivery systems are designed to withstand the upper gastrointestinal tract environment and to release the active agent in the colon, where favorable physiological conditions such as near-neutral pH, slower motility, and microbial activity can be exploited.

Results: Chrono-colonic delivery systems offer significant therapeutic benefits, including improved precision of drug action, reduced systemic side effects, and enhanced patient compliance. They are particularly beneficial in managing diseases with circadian variability, such as asthma, hypertension, arthritis, ulcerative colitis, and inflammatory bowel disease.

Conclusion: By integrating chrono-therapeutic principles with colon-targeted technologies, chrono-colonic drug delivery holds promise as a next-generation approach for achieving site- and time-specific therapy. It represents a forward-looking strategy for addressing both local and systemic diseases with enhanced safety and efficacy.

Keywords: Chrono-Colonic Delivery, Circadian Rhythm, Colon-Targeted Drug Delivery, Time-Responsive Systems, Site-Specific Therapy, Chronotherapy

Keywords:

Chrono-Colonic Delivery, Circadian Rhythm, Colon-Targeted Drug Delivery, Time-Responsive Systems, Site-Specific Therapy, Chronotherapy

DOI

https://doi.org/10.22270/jddt.v15i10.7398

Author Biographies

Raktim Sarkar, Bengal School of Technology

Bengal School of Technology 

Pinki Biswas, Department of Pharmaceutics, JRSET College of Pharmacy, Panchpota, Chakdaha, Nadia, PIN- 741222(WB

Department of Pharmaceutics, JRSET College of Pharmacy, Panchpota, Chakdaha, Nadia, PIN- 741222(WB

Deepannita Roy Mukherjee, Department of Pharmacology, JRSET College of Pharmacy, Panchpota, Chakdaha, Nadia, PIN- 741222(WB).

Department of Pharmacology, JRSET College of Pharmacy, Panchpota, Chakdaha, Nadia, PIN- 741222(WB).

Sayak Tanbir , Department of Pharmacology, Maulana Abul Kalam Azad University of technology (WB) Haringhata Farm, West Bengal 741249,

Department of Pharmacology, Maulana Abul Kalam Azad University of technology (WB) Haringhata Farm, West Bengal 741249, 

Bimaneshwar Biswas, Department of Pharmacology, Maulana Abul Kalam Azad University of Technology (WB) Haringhata Farm West Bengal

Department of Pharmacology, Maulana Abul Kalam Azad University of Technology (WB) Haringhata Farm West Bengal 

Md Mostafijur Rahaman, Department of Pharmacology, Maulana Abul Kalam Azad University of Technology (WB) Haringhata Farm, West Bengal

Department of Pharmacology, Maulana Abul Kalam Azad University of Technology (WB) Haringhata Farm, West Bengal

Saikat Santra, Department of Pharmaceutics, JRSET College of Pharmacy, Panchpota, Chakdaha, Nadia, PIN-741222(WB).

Department of Pharmaceutics, JRSET College of Pharmacy, Panchpota, Chakdaha, Nadia, PIN-741222(WB).

References

1. Gandhi BR, Mundada AS, Gandhi PP. Chronopharmaceutics: As a clinically relevant drug delivery system. Drug Deliv. 2011;18(1):1-18. https://doi.org/10.3109/10717544.2010.509358 PMid:21138394

2. Sewlall S, Pillay V, Danckwerts MP, Choonara YE, Ndesendo MK, du Toit LC. A timely review of state-of-the-art chronopharmaceuticals synchronized with biological rhythms. Curr Drug Deliv. 2010;7(5):370-88. https://doi.org/10.2174/156720110793566236 PMid:20950265

3. Patel MM. Colon: A gateway for chronotherapeutic drug delivery systems. Expert Opin Drug Deliv. 2015;12(9):1389-95. https://doi.org/10.1517/17425247.2015.1060217 PMid:26153223

4. Jensen BAH, Heyndrickx M, Jonkers D, et al. Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration. Cell Rep Med. 2023;4(9):101190. https://doi.org/10.1016/j.xcrm.2023.101190 PMid:37683651 PMCid:PMC10518632

5. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605-16. https://doi.org/10.1038/s41575-019-0173-3 PMid:31296969

6. Jaswal K, Todd OA, Behnsen J. Neglected gut microbiome: Interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes. 2023;15(1):2226916. https://doi.org/10.1080/19490976.2023.2226916 PMid:37365731 PMCid:PMC10305517

7. Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602-9. https://doi.org/10.1126/science.abb5920 PMid:33303685

8. Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract: Influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol. 2020;11:524. https://doi.org/10.3389/fphar.2020.00524 PMid:32425781 PMCid:PMC7212533

9. Al-Gousous J, Tsume Y, Fu M, Salem II, Langguth P. Unpredictable performance of pH-dependent coatings accentuates the need for improved predictive in vitro test systems. Mol Pharm. 2017;14(12):4209-19. https://doi.org/10.1021/acs.molpharmaceut.6b00877 PMid:28199791

10. Ali H, Weigmann B, Neurath MF, Collnot EM, Windbergs M, Lehr CM. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release. 2014;183(1):167-77. https://doi.org/10.1016/j.jconrel.2014.03.039 PMid:24685705

11. Albenberg LG, Wu GD. Diet and the intestinal microbiome: Associations, functions, and implications for health and disease. Gastroenterology. 2014;146(6):1564-72. https://doi.org/10.1053/j.gastro.2014.01.058 PMid:24503132 PMCid:PMC4216184

12. Cebra C. Disorders of the digestive system. In: Cebra C, Anderson DE, Tibary A, Van Saun RJ, Johnson LW, editors. Llama and alpaca care. 1st ed. St. Louis: Elsevier; 2013. p.477. https://doi.org/10.1016/B978-1-4377-2352-6.00040-7 PMCid:PMC7152368

13. Mitra A, Kesisoglou F. Impaired drug absorption due to high stomach pH: A review of strategies for mitigation of such effect to enable pharmaceutical product development. Mol Pharm. 2013;10(11):3970-9. https://doi.org/10.1021/mp400256h PMid:23844623

14. Dunaevsky YE, Tereshchenkova VF, Belozersky MA, Filippova IY, Oppert B, Elpidina EN. Effective degradation of gluten and its fragments by gluten-specific peptidases: A review on application for the treatment of patients with gluten sensitivity. Pharmaceutics. 2021;13(10):1603. https://doi.org/10.3390/pharmaceutics13101603 PMid:34683896 PMCid:PMC8541236

15. Ursini F, De Giorgi A, D'onghia M, De Giorgio R, Fabbian F, Manfredini R. Chronobiology and chronotherapy in inflammatory joint diseases. Pharmaceutics. 2021;13(11):1832. https://doi.org/10.3390/pharmaceutics13111832 PMid:34834246 PMCid:PMC8621834

16. Dallmann R, Brown SA, Gachon F. Chronopharmacology: New insights and therapeutic implications. Annu Rev Pharmacol Toxicol. 2014;54:339-61. https://doi.org/10.1146/annurev-pharmtox-011613-135923 PMid:24160700 PMCid:PMC3885389

17. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418(6901):935-41. https://doi.org/10.1038/nature00965 PMid:12198538

18. Finger AM, Dibner C, Kramer A. Coupled network of the circadian clocks: A driving force of rhythmic physiology. FEBS Lett. 2020;594(17):2734-49. https://doi.org/10.1002/1873-3468.13898 PMid:32750151

19. Philip AK, Philip B. Colon targeted drug delivery systems: A review on primary and novel approaches. Oman Med J. 2010;25(2):79-87. https://doi.org/10.5001/omj.2010.24 PMid:22125706 PMCid:PMC3215502

20. Stillhart C, Vučićević K, Augustijns P, et al. Impact of gastrointestinal physiology on drug absorption in special populations: An UNGAP review. Eur J Pharm Sci. 2020;147:105280. https://doi.org/10.1016/j.ejps.2020.105280 PMid:32109493

21. McCoubrey LE, Favaron A, Awad A, Orlu M, Gaisford S, Basit AW. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J Control Release. 2023;353:1107-26. https://doi.org/10.1016/j.jconrel.2022.12.029 PMid:36528195

22. Mukherjee DR, Tanbir S, Mondal S, et al. Exploring the gut microbiome's influence on peptic ulcer disease: Mechanistic insights, pharmacological implications, and emerging therapeutic strategies. J Drug Deliv Ther. 2025;15(4):209-18. https://doi.org/10.22270/jddt.v15i4.7088

23. Teruel AH, Gonzalez-Alvarez I, Bermejo M, et al. New insights of oral colonic drug delivery systems for inflammatory bowel disease therapy. Int J Mol Sci. 2020;21(18):6502. https://doi.org/10.3390/ijms21186502 PMid:32899548 PMCid:PMC7555849

24. Lautenschläger C, Schmidt C, Fischer D, Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev. 2014;71:58-76. https://doi.org/10.1016/j.addr.2013.10.001 PMid:24157534

25. Costa A, Scholer-Dahirel A, Mechta-Grigoriou F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin Cancer Biol. 2014;25:23-32. https://doi.org/10.1016/j.semcancer.2013.12.007 PMid:24406211

26. Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678-95. https://doi.org/10.1038/s41580-020-0270-8 PMid:32873928

27. Emon B, Bauer J, Jain Y, Jung B, Saif T. Biophysics of tumor microenvironment and cancer metastasis: A mini review. Comput Struct Biotechnol J. 2018;16:279-87. https://doi.org/10.1016/j.csbj.2018.07.003 PMid:30128085 PMCid:PMC6097544

28. Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm Sin B. 2021;11(8):2416-38. https://doi.org/10.1016/j.apsb.2021.04.001 PMid:34522593 PMCid:PMC8424290

29. Maslov MY, Edelman ER, Wei AE, Pezone MJ, Lovich MA. High concentrations of drug in target tissues following local controlled release are utilized for both drug distribution and biologic effect: An example with epicardial inotropic drug delivery. J Control Release. 2013;171(2):201-7. https://doi.org/10.1016/j.jconrel.2013.06.038 PMid:23872515 PMCid:PMC4646071

30. Ezike TC, Okpala US, Onoja UL, et al. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023;9(6):e17488. https://doi.org/10.1016/j.heliyon.2023.e17488 PMid:37416680 PMCid:PMC10320272

31. Lee Y, Field JM, Sehgal A. Circadian rhythms, disease and chronotherapy. J Biol Rhythms. 2021;36(6):503-14. https://doi.org/10.1177/07487304211044301 PMid:34547953 PMCid:PMC9197224

32. Mehrotra S, Kalyan PBG, Nayak PG, Joseph A, Manikkath J. Recent progress in the oral delivery of therapeutic peptides and proteins: Overview of pharmaceutical strategies to overcome absorption hurdles. Adv Pharm Bull. 2023;14(1):11-23. https://doi.org/10.34172/apb.2024.009 PMid:38585454 PMCid:PMC10997937

33. Pond SM, Tozer TN. First-pass elimination: Basic concepts and clinical consequences. Clin Pharmacokinet. 1984;9(1):1-25. https://doi.org/10.2165/00003088-198409010-00001 PMid:6362950

34. Joseph SK, Sabitha M, Nair SC. Stimuli-responsive polymeric nanosystem for colon specific drug delivery. Adv Pharm Bull. 2019;10(1):1-12. https://doi.org/10.15171/apb.2020.001 PMid:32002356 PMCid:PMC6983990

35. Hrubý M, Filippov SK, Štěpánek P. Smart polymers in drug delivery systems on crossroads: Which way deserves following? Eur Polym J. 2015;65:82-97. https://doi.org/10.1016/j.eurpolymj.2015.01.016

36. Majumder J, Taratula O, Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev. 2019;144:57-77. https://doi.org/10.1016/j.addr.2019.07.010 PMid:31400350 PMCid:PMC6748653

37. Yoshida T, Lai TC, Kwon GS, Sako K. pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv. 2013;10(11):1497-508. https://doi.org/10.1517/17425247.2013.821978 PMid:23930949 PMCid:PMC3912992

38. Nikam A, Sahoo PR, Musale S, Pagar RR, Paiva-Santos AC, Giram PS. A systematic overview of Eudragit® based copolymer for smart healthcare. Pharmaceutics. 2023;15(2):587. https://doi.org/10.3390/pharmaceutics15020587 PMid:36839910 PMCid:PMC9962897

39. Vlad RA, Pintea A, Pintea C, et al. Hydroxypropyl methylcellulose: A key excipient in pharmaceutical drug delivery systems. Pharmaceutics. 2025;17(6):784. https://doi.org/10.3390/pharmaceutics17060784 PMid:40574096 PMCid:PMC12196896

40. Maderuelo C, Lanao JM, Zarzuelo A. Enteric coating of oral solid dosage forms as a tool to improve drug bioavailability. Eur J Pharm Sci. 2019;138:105019. https://doi.org/10.1016/j.ejps.2019.105019 PMid:31374253

41. Jain D, Raturi R, Jain V, Bansal P, Singh R. Recent technologies in pulsatile drug delivery systems. Biomatter. 2011;1(1):57-65. https://doi.org/10.4161/biom.1.1.17717 PMid:23507727 PMCid:PMC3548250

42. Pandit V, Kumar A, Ashawat MS, Verma CP, Kumar P. Recent advancement and technological aspects of pulsatile drug delivery system: A laconic review. Curr Drug Targets. 2016;18(10). https://doi.org/10.2174/1389450117666160208144343 PMid:26853323

43. Ali J, Saigal N, Qureshi MJ, Baboota S, Ahuja A. Chronopharmaceutics: A promising drug delivery finding of the last two decades. Recent Pat Drug Deliv Formul. 2010;4(2):129-44. https://doi.org/10.2174/187221110791184962 PMid:20156177

44. Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5(9):951-67. https://doi.org/10.1038/s41551-021-00698-w PMid:33795852

45. Xu P, Nguyen HT, Huang S, Tran H. Development of 3D-printed two-compartment capsular devices for pulsatile release of peptide and permeation enhancer. Pharm Res. 2024;41(11):2259-70. https://doi.org/10.1007/s11095-024-03785-0 PMid:39487384

46. Salawi A. Pharmaceutical coating and its different approaches: A review. Polymers (Basel). 2022;14(16):3318. https://doi.org/10.3390/polym14163318 PMid:36015575 PMCid:PMC9415771

47. Salehi M, Rashidinejad A. Multifaceted roles of plant-derived bioactive polysaccharides: A review of their biological functions, delivery, bioavailability, and applications within the food and pharmaceutical sectors. Int J Biol Macromol. 2025;290. https://doi.org/10.1016/j.ijbiomac.2024.138855 PMid:39701227

48. Azehaf H, Benzine Y, Tagzirt M, Skiba M, Karrout Y. Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting. Drug Discov Today. 2023;28(7):103606. https://doi.org/10.1016/j.drudis.2023.103606 PMid:37146964

49. Kumar D, Pandey S, Shivhare B, et al. Natural polysaccharide-based nanodrug delivery systems for targeted treatment of rheumatoid arthritis: A review. Int J Biol Macromol. 2025;310. https://doi.org/10.1016/j.ijbiomac.2025.143408 PMid:40274161

50. Chourasia MK, Jain SK. Polysaccharides for colon targeted drug delivery. Drug Deliv. 2004;11(2):129-48. https://doi.org/10.1080/10717540490280778 PMid:15200012

51. Dahan A, Beig A, Lindley D, Miller JM. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one. Adv Drug Deliv Rev. 2016;101:99-107. https://doi.org/10.1016/j.addr.2016.04.018 PMid:27129443

52. Stella VJ. Prodrugs as therapeutics. Expert Opin Ther Pat. 2004;14(3):277-80. https://doi.org/10.1517/13543776.14.3.277

53. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3-26. https://doi.org/10.1016/S0169-409X(00)00129-0 PMid:11259830

54. Majumdar S, Mitra AK. Chemical modification and formulation approaches to elevated drug transport across cell membranes. Expert Opin Drug Deliv. 2006;3(4):511-27. https://doi.org/10.1517/17425247.3.4.511 PMid:16822226

55. Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: Design and clinical applications. Nat Rev Drug Discov. 2008;7(3):255-70. https://doi.org/10.1038/nrd2468 PMid:18219308

56. Majumdar S, Duvvuri S, Mitra AK. Membrane transporter/receptor-targeted prodrug design: Strategies for human and veterinary drug development. Adv Drug Deliv Rev. 2004;56(10):1437-52. https://doi.org/10.1016/j.addr.2004.02.006 PMid:15191791

57. Anderson P, Dalziel K, Davies E, et al. Survey of digestive health across Europe: Final report. Part 2: The economic impact and burden of digestive disorders. United Eur Gastroenterol J. 2014;2(6):544-6. https://doi.org/10.1177/2050640614554155 PMid:25436111 PMCid:PMC4245305

58. Wang WX, Yan GZ, Sun F, Jiang PP, Zhang WQ, Zhang GF. A non-invasive method for gastrointestinal parameter monitoring. World J Gastroenterol. 2005;11(4):521-4. https://doi.org/10.3748/wjg.v11.i4.521 PMid:15641138 PMCid:PMC4250803

59. Mazzone A, Farrugia G. Evolving concepts in the cellular control of gastrointestinal motility: Neurogastroenterology and enteric sciences. Gastroenterol Clin North Am. 2007;36(3):499-513. https://doi.org/10.1016/j.gtc.2007.07.003 PMid:17950435

60. Mitrakos V, Cummins G, Tauber FJ, et al. PressureCap: An endoscopic sensor capsule for real-time gastrointestinal pressure monitoring. Device. 2024;2(5):100325. https://doi.org/10.1016/j.device.2024.100325

61. Gupta BP, Thakur N, Jain NP, Banweer J, Jain S. Osmotically controlled drug delivery system with associated drugs. J Pharm Pharm Sci. 2010;13(4):571-88. https://doi.org/10.18433/J38W25 PMid:21486532

62. Verma RK, Krishna DM, Garg S. Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release. 2002;79(1-3):7-27. https://doi.org/10.1016/S0168-3659(01)00550-8 PMid:11853915

63. Watts PJ, Illum L. Colonic drug delivery. Drug Dev Ind Pharm. 1997;23(9):893-913. https://doi.org/10.3109/03639049709148695

64. Antonin KH, Rak R, Bieck PR, et al. The absorption of human calcitonin from the transverse colon of man. Int J Pharm. 1996;130(1):33-9. https://doi.org/10.1016/0378-5173(95)04248-2

65. Philip AK, Dabas S, Pathak K. Optimized prodrug approach: A means for achieving enhanced anti-inflammatory potential in experimentally induced colitis. J Drug Target. 2009;17(3):235-41. https://doi.org/10.1080/10611860902718656 PMid:19558362

66. Philip AK, Philip B. Colon targeted drug delivery systems: A review on primary and novel approaches. Oman Med J. 2010;25(2):79. https://doi.org/10.5001/omj.2010.24 PMid:22125706 PMCid:PMC3215502

67. Friend DR, Chang GW. A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J Med Chem. 1984;27(3):261-6. https://doi.org/10.1021/jm00369a005 PMid:6699871

68. Pagar PS, Savkare AD. Formulation and evaluation of omeprazole microspheres by different techniques. Indo Am J Pharm Res. 2017;2017(8):7.

69. Laxmi MV, Vijaya M. Formulation and evaluation of aceclofenac matrix tablets using ethyl cellulose and cellulose acetate phthalate. J Glob Trends Pharm Sci. 2014;5(3):1804-10.

70. Monschke M, Kayser K, Wagner KG. Processing of polyvinyl acetate phthalate in hot-melt extrusion: Preparation of amorphous solid dispersions. Pharmaceutics. 2020;12(4):337. https://doi.org/10.3390/pharmaceutics12040337 PMid:32283725 PMCid:PMC7238276

71. Shi SC. Hydroxypropyl methylcellulose phthalate biopolymer as an anticorrosion coating. Int J Electrochem Sci. 2021;16:1-10. https://doi.org/10.20964/2021.09.44

72. Shao H, Liu M, Jiang H, Zhang Y. Polysaccharide-based drug delivery targeted approach for colon cancer treatment: A comprehensive review. Int J Biol Macromol. 2025;302. https://doi.org/10.1016/j.ijbiomac.2024.139177 PMid:39798740

73. Wasilewska K, Winnicka K. Ethylcellulose: A pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials (Basel). 2019;12(20). https://doi.org/10.3390/ma12203386 PMid:31627271 PMCid:PMC6829386

74. Nejström M, Andreasson B, Sjölund J, et al. On structural and molecular order in cellulose acetate butyrate films. Polymers (Basel). 2023;15(9):2205. https://doi.org/10.3390/polym15092205 PMid:37177351 PMCid:PMC10181278

75. Novak M, Ormsby B. Poly(vinyl acetate) paints: A literature review of material properties, ageing characteristics, and conservation challenges. Polymers (Basel). 2023;15(22):4348. https://doi.org/10.3390/polym15224348 PMid:38006073 PMCid:PMC10675057

76. Apicella A, Cappello B, Del Nobile MA, La Rotonda MI, Mensitieri G, Nicolais L. Poly(ethylene oxide) (PEO) and different molecular weight PEO blends monolithic devices for drug release. Biomaterials. 1993;14(2):83-90. https://doi.org/10.1016/0142-9612(93)90215-N PMid:8435462

77. Siepmann F, Siepmann J, Walther M, MacRae RJ, Bodmeier R. Polymer blends for controlled release coatings. J Control Release. 2008;125(1):1-15. https://doi.org/10.1016/j.jconrel.2007.09.012 PMid:18022722

78. Siepmann J, Siepmann F. Stability of aqueous polymeric controlled release film coatings. Int J Pharm. 2013;457(2):437-45. https://doi.org/10.1016/j.ijpharm.2013.10.010 PMid:24126037

79. Lecomte F, Siepmann J, Walther M, MacRae RJ, Bodmeier R. Polymer blends used for the aqueous coating of solid dosage forms: Importance of the type of plasticizer. J Control Release. 2004;99(1):1-13. https://doi.org/10.1016/j.jconrel.2004.05.011 PMid:15342176

80. Fahier J, Vukosavljevic B, De Kinder L, et al. Towards a better understanding of verapamil release from Kollicoat SR:IR coated pellets using non-invasive analytical tools. Pharmaceutics. 2021;13(10). https://doi.org/10.3390/pharmaceutics13101723 PMid:34684015 PMCid:PMC8541620

81. Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech. 2015;16(4):731. https://doi.org/10.1208/s12249-015-0350-9 PMid:26070545 PMCid:PMC4508299

82. Das S, Deshmukh R, Jha AK. Role of natural polymers in the development of multiparticulate systems for colon drug targeting. Syst Rev Pharm. 2010;1(1):79-85. https://doi.org/10.4103/0975-8453.59516

83. Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J. 2010;25(2):70-8. https://doi.org/10.5001/omj.2010.24 PMid:22125706 PMCid:PMC3215502

84. Yang E, Yu KS, Lee SH. Prediction of gastric pH-mediated drug exposure using physiologically based pharmacokinetic modeling: a case study of itraconazole. CPT Pharmacometrics Syst Pharmacol. 2023;12(6):865. https://doi.org/10.1002/psp4.12959 PMid:36967484 PMCid:PMC10272297

85. Boyd BJ, Bergström CAS, Vinarov Z, et al. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci. 2019;137:104967. https://doi.org/10.1016/j.ejps.2019.104967 PMid:31252052

86. Jin L, Ding YC, Zhang Y, Xu XQ, Cao Q. A novel pH-enzyme-dependent mesalamine colon-specific delivery system. Drug Des Devel Ther. 2016;10:2021. https://doi.org/10.2147/DDDT.S107283 PMid:27382255 PMCid:PMC4920224

87. Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res. 2022;38(1):18. https://doi.org/10.1186/s42826-022-00128-1 PMid:35778730 PMCid:PMC9247923

88. Koziolek M, Grimm M, Bollmann T, et al. Characterization of the GI transit conditions in Beagle dogs with a telemetric motility capsule. Eur J Pharm Biopharm. 2019;136:221-30. https://doi.org/10.1016/j.ejpb.2019.01.026 PMid:30703546

89. Dressman JB. Comparison of canine and human gastrointestinal physiology. Pharm Res. 1986;3(3):123-31. https://doi.org/10.1023/A:1016353705970 PMid:24271517

90. Davis SS, Hardy JG, Newman SP, Wilding IR. Gamma scintigraphy in the evaluation of pharmaceutical dosage forms. Eur J Nucl Med. 1992;19(11):971-86. https://doi.org/10.1007/BF00175865 PMid:1425786

91. Brown J, Haines S, Wilding IR. Colonic spread of three rectally administered mesalazine (Pentasa) dosage forms in healthy volunteers as assessed by gamma scintigraphy. Aliment Pharmacol Ther. 1997;11(4):685-91. https://doi.org/10.1046/j.1365-2036.1997.00193.x PMid:9305476

92. Meseguer G, Gurny R, Buri P. In vivo evaluation of dosage forms: application of gamma scintigraphy to non-enteral routes of administration. J Drug Target. 1994;2(4):269-88. https://doi.org/10.3109/10611869409015908 PMid:7858953

93. Allcock BW, Lavin PA. Novel composite coating technology in primary and conversion industry applications. Surf Coatings Technol. 2003;163(164):62-6. https://doi.org/10.1016/S0257-8972(02)00586-8

94. Harris S. Powder coatings meet all industrial coating requirements! Focus Powder Coatings. 2012;2012(9):1-2. https://doi.org/10.1016/S1364-5439(12)70219-8

95. Zargarnezhad H, Asselin E, Wong D, Lam CNC. A critical review of the time-dependent performance of polymeric pipeline coatings: focus on hydration of epoxy-based coatings. Polymers (Basel). 2021;13(9):1517. https://doi.org/10.3390/polym13091517 PMid:34065062 PMCid:PMC8125940

96. Klang V, Valenta C, Matsko NB. Electron microscopy of pharmaceutical systems. Micron. 2013;44(1):45-74. https://doi.org/10.1016/j.micron.2012.07.008 PMid:22921788

97. Deissler H, Krammer H, Gillessen A. pH-dependent vs constant release of mesalazine in the treatment of ulcerative colitis: do drug delivery concepts determine therapeutic efficacy? (Review). Biomed Rep. 2021;15(5):96. https://doi.org/10.3892/br.2021.1472 PMid:34631051 PMCid:PMC8493545

98. Ham M, Moss AC. Mesalamine in the treatment and maintenance of remission of ulcerative colitis. Expert Rev Clin Pharmacol. 2012;5(2):113. https://doi.org/10.1586/ecp.12.2 PMid:22390554 PMCid:PMC3314328

99. Naeem M, Choi M, Cao J, et al. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Des Devel Ther. 2015;9:3789. https://doi.org/10.2147/DDDT.S88672 PMid:26229440 PMCid:PMC4516197

100. McKeage K, Goa KL. Budesonide (Entocort EC capsules): a review of its therapeutic use in the management of active Crohn's disease in adults. Drugs. 2002;62(15):2263-82. https://doi.org/10.2165/00003495-200262150-00015 PMid:12381231

101. Levine DS, Riff DS, Pruitt R, et al. A randomized, double-blind, dose-response comparison of balsalazide (6.75 g), balsalazide (2.25 g), and mesalamine (2.4 g) in the treatment of active, mild-to-moderate ulcerative colitis. Am J Gastroenterol. 2002;97(6):1398-407. https://doi.org/10.1111/j.1572-0241.2002.05781.x PMid:12094857

102. Surendiran A, Pradhan S, Adithan C. Role of pharmacogenomics in drug discovery and development. Indian J Pharmacol. 2008;40(4):137. https://doi.org/10.4103/0253-7613.43158 PMid:20040945 PMCid:PMC2792612

103. Haferlach T, Eckardt JN, Walter W, et al. AML diagnostics in the 21st century: use of AI. Semin Hematol. 2025 Jun 16. https://doi.org/10.1053/j.seminhematol.2025.06.002 PMid:40617702

104. Al Fayez N, Nassar MS, Alshehri AA, et al. Recent advancement in mRNA vaccine development and applications. Pharmaceutics. 2023;15(7):1972. https://doi.org/10.3390/pharmaceutics15071972 PMid:37514158 PMCid:PMC10384963

105. Ashley GW, Henise J, Reid R, Santi DV. Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. Proc Natl Acad Sci U S A. 2013;110(6):2318-23. https://doi.org/10.1073/pnas.1215498110 PMid:23345437 PMCid:PMC3568318

106. Souto EB, Vasconcelos T, Ferreira DC, Saramento B. Pharmaceutical manufacturing validation principles. In: Pharmaceutics Manufacturing Handbook: Regulations and Quality. Hoboken: Wiley; 2007. p. 811-38. https://doi.org/10.1002/9780470259832.ch25

107. Baillie TA, Rettie AE. Role of biotransformation in drug-induced toxicity: influence of intra- and inter-species differences in drug metabolism. Drug Metab Pharmacokinet. 2011;26(1):15-29. https://doi.org/10.2133/dmpk.DMPK-10-RV-089 PMid:20978360 PMCid:PMC4675351

108. Rajeswari S, Swapna V. Microsponges as a neoteric cornucopia for drug delivery systems. Int J Curr Pharm Res. 2019;11(3):4-12. https://doi.org/10.22159/ijcpr.2019v11i3.34099

109. Ansari SH, Islam F, Sameem M. Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res. 2012;3(3):142. https://doi.org/10.4103/2231-4040.101006 PMid:23057000 PMCid:PMC3459443

110. Patrinos GP, Sarhangi N, Sarrami B, Khodayari N, Larijani B, Hasanzad M. Using ChatGPT to predict the future of personalized medicine. Pharmacogenomics J. 2023;23(6):178-84. https://doi.org/10.1038/s41397-023-00316-9 PMid:37726551

111. Johnson KB, Wei WQ, Weeraratne D, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2021;14(1):86-93. https://doi.org/10.1111/cts.12884 PMid:32961010 PMCid:PMC7877825

112. Yu LX, Amidon G, Khan MA, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771. https://doi.org/10.1208/s12248-014-9598-3 PMid:24854893 PMCid:PMC4070262

113. Oami T, Chihade DB, Coopersmith CM. The microbiome and nutrition in critical illness. Curr Opin Crit Care. 2019;25(2):145-9. https://doi.org/10.1097/MCC.0000000000000582 PMid:30855323 PMCid:PMC6499930

114. Subramanian M, Wojtusciszyn A, Favre L, et al. Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med. 2020;18(1):141. https://doi.org/10.1186/s12967-020-02658-5 PMid:33298113 PMCid:PMC7725219

Published

2025-10-15
Statistics
Abstract Display: 167
PDF Downloads: 112
PDF Downloads: 53

How to Cite

1.
Sarkar R, Biswas P, Mukherjee DR, Tanbir S, Biswas B, Rahaman MM, et al. Chrono-Colonic Delivery in Engineering Time-Responsive Systems for Site-Specific Therapy. J. Drug Delivery Ther. [Internet]. 2025 Oct. 15 [cited 2025 Nov. 15];15(10):148-71. Available from: https://jddtonline.info/index.php/jddt/article/view/7398

How to Cite

1.
Sarkar R, Biswas P, Mukherjee DR, Tanbir S, Biswas B, Rahaman MM, et al. Chrono-Colonic Delivery in Engineering Time-Responsive Systems for Site-Specific Therapy. J. Drug Delivery Ther. [Internet]. 2025 Oct. 15 [cited 2025 Nov. 15];15(10):148-71. Available from: https://jddtonline.info/index.php/jddt/article/view/7398

Most read articles by the same author(s)