Advancements in Diabetes Mellitus: Pathogenesis, Current Therapies, and Emerging Treatment Strategies
Abstract
The incidence of diabetes mellitus is sharply increasing globally, making it a serious public health concern. More than 463 million people were impacted in 2019, and estimates indicate that by 2045, that figure may rise to 700 million. Diabetes causes serious consequences, such as retinopathy, nephropathy, and cardiovascular illnesses. It is characterised by persistent hyperglycemia brought on by either inadequate insulin secretion, impaired insulin action, or both. Type 1 diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM), both with unique aetiologies and treatment needs, are part of the complicated pathophysiology of diabetes. In contrast, T2DM is primarily associated with insulin resistance and is influenced by both genetic and environmental factors, T1DM, which is often autoimmune in nature, results in total insulin insufficiency. Insulin therapy, oral hypoglycemic medications, and lifestyle changes are examples of traditional management techniques; however, they frequently fall short of providing the best possible glycaemic control. Recent developments in diabetes treatment have led to novel therapeutic approaches, including immunological therapies, novel pharmacological agents, and nanotechnology-based drug delivery systems. The goals of these new therapies are to reduce the risk of complications, enhance patient compliance, and improve glycemic management. This overview provides an overview of the development of diabetes treatments, the pathophysiology of the condition, available treatment options, and the promise of new drugs and methods for managing the condition. We can gain a better understanding of the future of diabetes care and the significance of creating individualised treatment plans to improve patient outcomes and quality of life by investigating these developments.
Keywords: Diabetes Mellitus; Hyperglycemia; Type 1 Diabetes (T1DM); Type 2 Diabetes (T2DM); Novel Therapeutic Strategies
Keywords:
Diabetes Mellitus, Hyperglycemia, Type 1 Diabetes (T1DM), Type 2 Diabetes (T2DM, Novel Therapeutic StrategiesDOI
https://doi.org/10.22270/jddt.v15i9.7361References
1. Pasquel FJ, Lansang MC, Dhatariya K, Umpierrez GE. Management of diabetes and hyperglycaemia in the hospital. Lancet Diabetes Endocrinol. 2021;9(3):174-88. https://doi.org/10.1016/S2213-8587(20)30381-8 PMid:33515493
2. Yun JS, Ko SH. Current trends in epidemiology of cardiovascular disease and cardiovascular risk management in type 2 diabetes. Metabolism. 2021;123:154838. https://doi.org/10.1016/j.metabol.2021.154838 PMid:34333002
3. Bangalore S, Fakheri R, Toklu B, Messerli FH. Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: Systematic review and meta-analysis of randomized trials. BMJ. 2016;352:i438. https://doi.org/10.1136/bmj.i438 PMid:26868137 PMCid:PMC4772784
4. Boots AW, Haenen GR, Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur J Pharmacol. 2008;585(1):325-37. https://doi.org/10.1016/j.ejphar.2008.02.034 PMid:18348887
5. Carlström M, Larsen FJ, Nyström T, Hezel M, Borniquel S, Weitzberg E, Lundberg JO. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc Natl Acad Sci USA. 2010;107(43):17716-20. https://doi.org/10.1073/pnas.1008872107 PMid:20876122 PMCid:PMC2955084
6. Coniff RF, Shapiro JA, Seaton TB, Bray GA. Multicenter, placebo-controlled trial comparing acarbose (BAY g 5421) with placebo, tolbutamide, and tolbutamide-plus-acarbose in non-insulin-dependent diabetes mellitus. Am J Med. 1995;98(5):443-51. https://doi.org/10.1016/S0002-9343(99)80343-X PMid:7733122
7. Drummond RS, Lyall M, McKnight J. Statins should be routinely prescribed in all adults with diabetes. Pract Diabetes Int. 2010;27(6):404-6. https://doi.org/10.1002/pdi.157
8. Emer JJ, Claire W. Rituximab: A review of dermatological applications. J Clin Aesthet Dermatol. 2009;2(1):29-37.
9. El-Wakf AM, Hassan HA, Mahmoud AZ, Habza MN. Fenugreek potent activity against nitrate-induced diabetes in young and adult male rats. Cytotechnology. 2014;67(3):437-47. https://doi.org/10.1007/s10616-014-9702-7 PMid:24615531 PMCid:PMC4371570
10. Goel MD, Matsagar VA, Gupta AK, Marburg S. An abridged review of blast wave parameters. Def Sci J. 2012;62(5):300-6. https://doi.org/10.14429/dsj.62.1149
11. Ghosh P, Azam S, Karim A, Hassan M, Roy K, Jonkman M. A Comparative Study of Different Machine Learning Tools in Detecting Diabetes. Procedia Comput Sci. 2021;192:467-77. https://doi.org/10.1016/j.procs.2021.07.063
12. American Diabetes Association Professional Practice Committee. Addendum. 11. Chronic Kidney Disease and Risk Management: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45(Suppl. S1):S175-S184. https://doi.org/10.2337/dc22-S011 PMid:34964873
13. Corson A. Addressing Therapeutic Inertia in Diabetes Management. Ph.D. Thesis, Oregon Health & Science University, Portland, OR, USA, 2022.
14. Chernausek SD, Arslanian S, Caprio S, Copeland KC, El Ghormli L, Kelsey MM, Koontz MB, Orsi CM, Wilfley D. Relationship Between Parental Diabetes and Presentation of Metabolic and Glycemic Function in Youth with Type 2 Diabetes: Baseline Findings from the TODAY Trial. Diabetes Care. 2015;39(1):110-7. https://doi.org/10.2337/dc15-1557 PMid:26577415 PMCid:PMC4686846
15. Cho Y, Choe E, Lee YH, Seo JW, Choi Y, Yun Y, Wang HJ, Ahn CW, Cha BS, Lee HC. Risk of diabetes in patients treated with HMG-CoA reductase inhibitors. Metabolism. 2015;64(4):482-8. https://doi.org/10.1016/j.metabol.2014.12.002 PMid:25549908 PMCid:PMC4459594
16. Collier CA, Bruce CR, Smith AC, Lopaschuk G, Dyck DJ. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Physiol Metab. 2006;291(1):E182-9. https://doi.org/10.1152/ajpendo.00080.2006 PMid:17003244
17. Drucker DJ. Enhancing Incretin Action for the Treatment of Type 2 Diabetes. Diabetes Care. 2003;26(10):2929-40. https://doi.org/10.2337/diacare.26.10.2929 PMid:14514604
18. Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release. 2016;240:109-26. https://doi.org/10.1016/j.jconrel.2016.01.022 PMid:26774222
19. Farjadian F, Roointan A, Mohammadi-Samani S, Hosseini M. Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem Eng J. 2019;359:684-705. https://doi.org/10.1016/j.cej.2018.11.086
20. Gu Z, Dang TT, Ma M, Tang BC, Cheng H, Jiang S, Dong Y, Zhang Y, Anderson DG. Glucose-Responsive Microgels Integrated with Enzyme Nanocapsules for Closed-Loop Insulin Delivery. ACS Nano. 2013;7(6):6758-66. https://doi.org/10.1021/nn401617u PMid:23834678
21. Lebovitz HE. Diagnosis, classification, and pathogenesis of diabetes mellitus. J Clin Psychiatry. 2001;62(27):5-9.
22. Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ. 2005;172(2):213-26. https://doi.org/10.1503/cmaj.1040750 PMid:16567757 PMCid:PMC1405860
23. Chong K, Chang JK-J, Chuang L-M. Recent advances in the treatment of type 2 diabetes mellitus using new drug therapies. Kaohsiung J Med Sci. 2024;40(3):212-20. https://doi.org/10.1002/kjm2.12800 PMid:38183334 PMCid:PMC11895656
24. Karamanou M, Protogerou A, Tsoucalas G, Androutsos G, Poulakou-Rebelakou E. Milestones in the history of diabetes mellitus: The main contributors. World J Diabetes. 2016;7(1):1-7. https://doi.org/10.4239/wjd.v7.i1.1 PMid:26788261 PMCid:PMC4707300
25. Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, Dounousi E, Peschos D. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci. 2021;16(1):62-76. https://doi.org/10.1016/j.ajps.2020.08.002 PMid:33995612 PMCid:PMC8105420
26. Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: An immense hope for diabetics. Drug Deliv. 2016;23(7):2371-90. https://doi.org/10.3109/10717544.2014.991001 PMid:25544604
27. Wang JQ, Hu SQ, Mao WW, Xiang JJ, Zhou ZX, Liu XR, Tang J, Shen Y. Assemblies of peptide-cytotoxin conjugates for tumor-homing chemotherapy. Adv Funct Mater. 2019;29(18):1807446. https://doi.org/10.1002/adfm.201807446
28. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938-66. https://doi.org/10.1021/acs.chemrev.5b00046 PMid:26010257
29. Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. https://doi.org/10.1016/j.addr.2012.09.037 PMid:23036225
30. Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23(9):3319-29. https://doi.org/10.1080/10717544.2016.1177136 PMid:27145899
31. Joshi S, Hussain MT, Roces CB, Anderluzzi G, Kastner E, Salmaso S, Kirby DJ, Perrie Y. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs. Int J Pharm. 2016;514(1):160-8. https://doi.org/10.1016/j.ijpharm.2016.08.020 PMid:27521702
32. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. https://doi.org/10.3389/fphar.2015.00286 PMid:26648870 PMCid:PMC4664963
33. Yan-yu X, Yun-mei S, Zhi-peng C, Qi-neng P. Preparation of silymarin proliposome: A new way to increase oral bioavailability of silymarin in beagle dogs. Int J Pharm. 2006;319(1-2):162-8. https://doi.org/10.1016/j.ijpharm.2006.05.022 PMid:16815654
34. Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K. Niosome: A future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374-80. https://doi.org/10.4103/0110-5558.76435 PMid:22247876 PMCid:PMC3255404
35. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J Control Release. 2014;185:22-36. https://doi.org/10.1016/j.jconrel.2014.04.014 PMid:24746627 PMCid:PMC4142078
36. Hasan AA, Madkor H, Wageh S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv. 2013;20(2):120-6. https://doi.org/10.3109/10717544.2013.779332 PMid:23651102
37. Lundqvist T, Bredeberg S. Pharmaceutical development. In: Drug Discovery and Development-Technology in Transition. Edinburgh: Churchill Livingstone/Elsevier; 2012. p. 227-38. https://doi.org/10.1016/B978-0-7020-4299-7.00016-0
38. Lu Y, Yue Z, Xie J, Wang W, Zhu H, Zhang E, Cao Z. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat Biomed Eng. 2018;2(5):318-25. https://doi.org/10.1038/s41551-018-0234-x PMid:30936455 PMCid:PMC6553490
39. Liu X, Li C, Lv J, Huang F, An Y, Shi L, Ma R. Glucose and H2O2 dual-responsive polymeric micelles for the self-regulated release of insulin. ACS Appl Bio Mater. 2020;3(2):1598-606. https://doi.org/10.1021/acsabm.9b01185 PMid:35021650
40. McClements DJ. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter. 2012;8(5):1719-29. https://doi.org/10.1039/C2SM06903B
41. Xu HY, Liu CS, Huang CL, Chen L, Zheng YR, Huang SH, Long XY. Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf B Biointerfaces. 2019;181:927-34. https://doi.org/10.1016/j.colsurfb.2019.05.020 PMid:31102852
42. Santalices I, Vázquez-Vázquez C, Santander-Ortega MJ, Lozano V, Araújo F, Sarmento B, Shrestha N, Préat V, Chenlo M, Alvarez CV, et al. A nanoemulsion/micelles mixed nanosystem for the oral administration of hydrophobically modified insulin. Drug Deliv Transl Res. 2021;11(2):524-45. https://doi.org/10.1007/s13346-021-00920-x PMid:33575972 PMCid:PMC7987602
43. Djamil R, Zaidan S, Rahmat D, Pratami DK, Hakim F. Nanoemulsion of okra fruit extract as antidiabetic treatment. Int J Appl Pharm. 2020;7(1):138-42. https://doi.org/10.22159/ijap.2020v12i5.37805
44. Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J. 2011;19(3):129-41. https://doi.org/10.1016/j.jsps.2011.05.001 PMid:23960766 PMCid:PMC3744974
45. De Jong WH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomed. 2008;3(2):133-49. https://doi.org/10.2147/IJN.S596 PMid:18686775 PMCid:PMC2527668
46. Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, Silva AM, Durazzo A, Lucarini M, Izzo AA, et al. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules. 2019;24(24):4209. https://doi.org/10.3390/molecules24234209 PMid:31756981 PMCid:PMC6930606
47. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-39. https://doi.org/10.1289/ehp.7339 PMid:16002369 PMCid:PMC1257642
48. Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, Abdollahi M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int J Nanomed. 2017;12:2689-702. https://doi.org/10.2147/IJN.S131973 PMid:28435252 PMCid:PMC5388197
49. Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10(4):191. https://doi.org/10.3390/pharmaceutics10040191 PMid:30340327 PMCid:PMC6321253
50. Anchan RB, Koland M. Oral insulin delivery by chitosan coated solid lipid nanoparticles: Ex vivo and in vivo studies. J Young Pharm. 2021;13(1):43-8. https://doi.org/10.5530/jyp.2021.13.10
51. Mishra V, Yadav N, Saraogi GK, Tambuwala MM, Giri N. Dendrimer based nanoarchitectures in diabetes management: An overview. Curr Pharm Des. 2019;25(22):2569-83. https://doi.org/10.2174/1381612825666190716125332 PMid:31333099
52. Zaman S, Hussain S, Butt FK, Jianguo X, Zhu C. Functionalization of carbon nanotubes by a facile chemical method and its application in anti-diabetic activity. J Nanosci Nanotechnol. 2017;17(12):8557-61. https://doi.org/10.1166/jnn.2017.15178
53. Elkhalifa AME, Nazar M, Ali SI, Khursheed I, Taifa S, AhmadMir M, Shah IH, Malik M, Ramzan Z, Ahad S, et al. Novel Therapeutic Agents for Management of Diabetes Mellitus: A Hope for Drug Designing against Diabetes Mellitus. Life. 2024;14(1):99. https://doi.org/10.3390/life14010099 PMid:38255714 PMCid:PMC10821096
Published
Abstract Display: 681
PDF Downloads: 492
PDF Downloads: 33 How to Cite
Issue
Section
Copyright (c) 2025 Jay Narayan, Anjali Dixit , Ram Babu Sharma, Sakshi Tomer

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.