Artificial Intelligence in Pharmaceutical Research
Abstract
Artificial intelligence (AI) is transforming the pharmaceutical industry by accelerating medication development and discovery. AI technologies, including machine learning and deep learning, are being applied in various areas, such as drug design, target discovery, preclinical research, and personalized medicine. AI can analyze vast amounts of data, identify patterns, and make predictions, thereby improving the efficiency and effectiveness of the drug development process. This review highlights the applications of AI in pharmaceutical research, including drug discovery, target identification, and preclinical research. We also discuss the challenges associated with AI in pharmaceutical research, such as data quality and integration, regulatory frameworks, and the need for skilled professionals. Also, the future directions of AI in pharmaceuticals, including the potential for AI to revolutionize personalized medicine and improve patient outcomes. Overall, AI has the potential to revolutionize the pharmaceutical industry by streamlining the drug development process, improving patient outcomes, and reducing costs.
Keywords: Artificial Intelligence, Machine Learning, Drug Discovery, Personalized Medicine, Target Discovery.
Keywords:
Artificial Intelligence, Machine Learning, Drug Discovery, Personalized Medicine, Target DiscoveryDOI
https://doi.org/10.22270/jddt.v15i6.7234References
1. Kaplan A, Cao H, FitzGerald JM, Iannotti N, Yang E, Kocks JWH, Kostikas K, Price D, Reddel HK, Tsiligianni I, Vogelmeier CF, Pfister P, Mastoridis P. Artificial Intelligence/Machine Learning in Respiratory Medicine and Potential Role in Asthma and COPD Diagnosis. J Allergy Clin Immunol Pract. 2021; 9(6):2255-2261. https://doi.org/10.1016/j.jaip.2021.02.014 PMid:33618053
2. Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discov. 2024; 19(1):33-42. https://doi.org/10.1080/17460441.2023.2273839 PMid:37887266
3. Kolluri S, Lin J, Liu R, Zhang Y, Zhang W. Machine Learning and Artificial Intelligence in Pharmaceutical Research and Development: a Review. AAPS J. 2022; 24(1):19. https://doi.org/10.1208/s12248-021-00644-3 PMid:34984579 PMCid:PMC8726514
4. Mitchell JB. Artificial intelligence in pharmaceutical research and development. Future Med Chem. 2018; 10(13):1529-1531. https://doi.org/10.4155/fmc-2018-0158 PMid:29966438
5. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021; 26(1):80-93. https://doi.org/10.1016/j.drudis.2020.10.010 PMid:33099022 PMCid:PMC7577280
6. Mullowney MW, Duncan KR, Elsayed SS, Garg N, van der Hooft JJJ, Martin NI, Meijer D, Terlouw BR, Biermann F, Blin K, Durairaj J, Gorostiola González M, Helfrich EJN, Huber F, Leopold-Messer S, Rajan K, de Rond T, van Santen JA, Sorokina M, Balunas MJ, Beniddir MA, van Bergeijk DA, Carroll LM, Clark CM, Clevert DA, Dejong CA, Du C, Ferrinho S, Grisoni F, Hofstetter A, Jespers W, Kalinina OV, Kautsar SA, Kim H, Leao TF, Masschelein J, Rees ER, Reher R, Reker D, Schwaller P, Segler M, Skinnider MA, Walker AS, Willighagen EL, Zdrazil B, Ziemert N, Goss RJM, Guyomard P, Volkamer A, Gerwick WH, Kim HU, Müller R, van Wezel GP, van Westen GJP, Hirsch AKH, Linington RG, Robinson SL, Medema MH. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov. 2023; 22(11):895-916. https://doi.org/10.1038/s41573-023-00774-7 PMid:37697042
7. Gupta R, Srivastava D, Sahu M. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers, 2021; 25: 1315-1360. https://doi.org/10.1007/s11030-021-10217-3 PMid:33844136 PMCid:PMC8040371
8. Kumar M, Nguyen TPN, Kaur J, Singh TG, Soni D, Singh R, Kumar P. Opportunities and challenges in application of artificial intelligence in pharmacology. Pharmacol Rep. 2023; 75(1):3-18. https://doi.org/10.1007/s43440-022-00445-1 PMid:36624355 PMCid:PMC9838466
9. Koçak M, Akçalı Z. The published role of artificial intelligence in drug discovery and development: a bibliometric and social network analysis from 1990 to 2023. J Cheminform, 2025; 17:71.1-24. https://doi.org/10.1186/s13321-025-00988-4 PMid:40341055 PMCid:PMC12063294
10. Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics. 2023 Jul 10; 15(7):1916. https://doi.org/10.3390/pharmaceutics15071916 PMid:37514102 PMCid:PMC10385763
11. Patne AY, Dhulipala SM, Lawless W, Prakash S, Mohapatra SS, Mohapatra S. Drug Discovery in the Age of Artificial Intelligence: Transformative Target-Based Approaches. Int. J. Mol. Sci. 2024; 25, 12233. https://doi.org/10.3390/ijms252212233 PMid:39596300 PMCid:PMC11594879
12. Deng J, Yang Z, Ojima I, Samaras D, Wang F. Artificial intelligence in drug discovery: applications and techniques. Brief Bioinform. 2022; 23(1): bbab430. https://doi.org/10.1093/bib/bbab430 PMid:34734228
13. Decheng Huang, Mingxuan Yang, Wenxuan Zheng. Integrating AI and Deep Learning for Efficient Drug Discovery and Target Identification. Journal of AI-Powered Medical Innovations, 2024; 2(1): 44-63. https://doi.org/10.60087/vol2.issue1.p005
14. Morishita EC, Nakamura S. Recent applications of artificial intelligence in RNA-targeted small molecule drug discovery. Expert Opin Drug Discov. 2024; 19(4):415-431. https://doi.org/10.1080/17460441.2024.2313455 PMid:38321848
15. Jarab AS, Abu Heshmeh SR, Al Meslamani AZ. Artificial intelligence (AI) in pharmacy: an overview of innovations. J Med Econ. 2023; 26(1):1261-1265. https://doi.org/10.1080/13696998.2023.2265245 PMid:37772743
16. Zheng Wang, Wei Zhao, Ge-Fei Hao, Bao-An Song. Automated synthesis: current platforms and further needs. Drug Discovery Today. 2020; 25(11):20062011. https://doi.org/10.1016/j.drudis.2020.09.009 PMid:32949527
17. Al Meslamani AZ. Applications of AI in pharmacy practice: a look at hospital and community settings. J Med Econ. 2023; 26(1):1081-1084. https://doi.org/10.1080/13696998.2023.2249758 PMid:37594444
18. Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, Ramirez BI, Sánchez Guirales SA, Simon JA, Tomietto G. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics 2024; 16, 1328. https://doi.org/10.3390/pharmaceutics16101328 PMid:39458657 PMCid:PMC11510778
19. Belge Bilgin G, Bilgin C, Burkett BJ, Orme JJ, Childs DS, Thorpe MP, Halfdanarson TR, Johnson GB, Kendi AT, Sartor O. Theranostics and artificial intelligence: new frontiers in personalized medicine. Theranostics. 2024; 14(6):2367-2378. https://doi.org/10.7150/thno.94788 PMid:38646652 PMCid:PMC11024845
20. Parekh AE, Shaikh OA, Simran, Manan S, Hasibuzzaman MA. Artificial intelligence (AI) in personalized medicine: AI-generated personalized therapy regimens based on genetic and medical history: short communication. Ann Med Surg (Lond). 2023; 85(11):5831-5833. https://doi.org/10.1097/MS9.0000000000001320 PMid:37915639 PMCid:PMC10617817
21. Bellando-Randone S, Russo E, Venerito V, Matucci-Cerinic M, Iannone F, Tangaro S, Amedei A. Exploring the Oral Microbiome in Rheumatic Diseases, State of Art and Future Prospective in Personalized Medicine with an AI Approach. J Pers Med. 2021; 11(7):625. https://doi.org/10.3390/jpm11070625 PMid:34209167 PMCid:PMC8306274
22. Hung KF, Yeung AWK, Bornstein MM, Schwendicke F. Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging. Dentomaxillofac Radiol. 2023; 52(1):20220335. https://doi.org/10.1259/dmfr.20220335 PMid:36472627 PMCid:PMC9793453
23. Rezayi S, R Niakan Kalhori S, Saeedi S. Effectiveness of Artificial Intelligence for Personalized Medicine in Neoplasms: A Systematic Review. Biomed Res Int. 2022; 7842566. https://doi.org/10.1155/2022/7842566 PMid:35434134 PMCid:PMC9010213
24. Haq IU, Haq I, Xu B. Artificial intelligence in personalized cardiovascular medicine and cardiovascular imaging. Cardiovasc Diagn Ther. 2021; 11(3):911-923. https://doi.org/10.21037/cdt.2020.03.09 PMid:34295713 PMCid:PMC8261749
25. Cè M, Irmici G, Foschini C, Danesini GM, Falsitta LV, Serio ML, Fontana A, Martinenghi C, Oliva G, Cellina M. Artificial Intelligence in Brain Tumor Imaging: A Step toward Personalized Medicine. Curr Oncol. 2023; 30(3):2673-2701. https://doi.org/10.3390/curroncol30030203 PMid:36975416 PMCid:PMC10047107
26. Bignami E, Panizzi M, Bellini V. Artificial Intelligence for Personalized Perioperative Medicine. Cureus. 2024; 16(1): e53270. https://doi.org/10.7759/cureus.53270 PMid:38435870 PMCid:PMC10905205
27. Zhang K, Qi Y, Wang W, Tian X, Wang J, Xu L and Zhai X. Future horizons in diabetes: integrating AI and personalized care. Front. Endocrinol. 2025; 16:1583227. https://doi.org/10.3389/fendo.2025.1583227 PMid:40213102 PMCid:PMC11983400
28. Schork NJ. Artificial Intelligence and Personalized Medicine. Cancer Treat Res. 2019; 178:265-283. https://doi.org/10.1007/978-3-030-16391-4_11 PMid:31209850 PMCid:PMC7580505
29. Ang Li, Yunxin Wang, Hongxu Chen. AI driven cardiovascular risk prediction using NLP and Large Language Models for personalized medicine in athletes. SLAS Technology, 2025; 32:1-10. https://doi.org/10.1016/j.slast.2025.100286 PMid:40216258
30. Temsah MH, Jamal A, Aljamaan F, Al-Tawfiq JA, Al-Eyadhy A. ChatGPT-4 and the Global Burden of Disease Study: Advancing Personalized Healthcare Through Artificial Intelligence in Clinical and Translational Medicine. Cureus. 2023; 15(5):e39384. https://doi.org/10.7759/cureus.39384
31. Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, Zhao J, Snowdon JL. Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci. 2021; 14(1):86-93. https://doi.org/10.1111/cts.12884 PMid:32961010 PMCid:PMC7877825
32. Shah N, Arshad A, Mazer MB, Carroll CL, Shein SL, Remy KE. The use of machine learning and artificial intelligence within pediatric critical care. Pediatr Res. 2023; 93(2):405-412. https://doi.org/10.1038/s41390-022-02380-6 PMid:36376506 PMCid:PMC9660024
33. Flores AM, Demsas F, Leeper NJ, Ross EG. Leveraging Machine Learning and Artificial Intelligence to Improve Peripheral Artery Disease Detection, Treatment, and Outcomes. Circ Res. 2021; 128(12):1833-1850. https://doi.org/10.1161/CIRCRESAHA.121.318224 PMid:34110911 PMCid:PMC8285054
34. Lee MS, Guo LN, Nambudiri VE. Towards gender equity in artificial intelligence and machine learning applications in dermatology. J Am Med Inform Assoc. 2022; 29(2):400-403. https://doi.org/10.1093/jamia/ocab113 PMid:34151976 PMCid:PMC8757299
35. Hageman JR, Alcocer Alkureishi L. The Clinical Use of Artificial Intelligence and Machine Learning in Pediatrics. Pediatr Ann. 2024; 53(2): e37-e38. https://doi.org/10.3928/19382359-20240116-01 36. Williams KS. Evaluations of artificial intelligence and machine learning algorithms in neurodiagnostics. J Neurophysiol. 2024; 131(5):825-831. https://doi.org/10.1152/jn.00404.2023 PMid:38533950
37. Dindorf C, Bartaguiz E, Gassmann F, Fröhlich M. Conceptual Structure and Current Trends in Artificial Intelligence, Machine Learning, and Deep Learning Research in Sports: A Bibliometric Review. Int J Environ Res Public Health. 2022; 20(1):173. https://doi.org/10.3390/ijerph20010173 PMid:36612493 PMCid:PMC9819320
38. Pantanowitz L, Pearce T, Abukhiran I, Hanna M, Wheeler S, Soong TR, Tafti AP, Pantanowitz J, Lu MY, Mahmood F, Gu Q, Rashidi HH. Nongenerative Artificial Intelligence in Medicine: Advancements and Applications in Supervised and Unsupervised Machine Learning. Mod Pathol. 2025; 38(3):100680. https://doi.org/10.1016/j.modpat.2024.100680 PMid:39675426
39. Ren, Z., Hu, Y. & Xu, L. Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms. Respir Res 20, 220 (2019). https://doi.org/10.1186/s12931-019-1197-5 PMid:31619240 PMCid:PMC6796452
40. Ting Sim JZ, Fong QW, Huang W, Tan CH. Machine learning in medicine: what clinicians should know. Singapore Med J. 2023; 64(2):91-97. https://doi.org/10.11622/smedj.2021054 PMid:34005847 PMCid:PMC10071847
41. Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, Zhu Y, Liu J, Zhang B, Wei GW. Machine Learning Methods for Small Data Challenges in Molecular Science. Chem Rev. 2023; 123(13):8736-8780. https://doi.org/10.1021/acs.chemrev.3c00189 PMid:37384816 PMCid:PMC10999174
42. M Vázquez-Marrufo, E Sarrias-Arrabal, M García-Torres, R Martín-Clemente, G Izquierdo. A systematic review of the application of machine-learning algorithms in multiple sclerosis. Neurología, 2023; 38(8): 577-590. https://doi.org/10.1016/j.nrleng.2020.10.013 PMid:35843587
43. Frewing A, Gibson AB, Robertson R, Urie PM, Corte DD. Don't Fear the Artificial Intelligence: A Systematic Review of Machine Learning for Prostate Cancer Detection in Pathology. Arch Pathol Lab Med. 2024; 148(5):603-612. https://doi.org/10.5858/arpa.2022-0460-RA PMid:37594900
44. Talpur S, Azim F, Rashid M, Syed SA, Talpur BA, Khan SJ. Uses of Different Machine Learning Algorithms for Diagnosis of Dental Caries. J Healthc Eng. 2022; 2022:5032435. https://doi.org/10.1155/2022/5032435 PMid:35399834 PMCid:PMC8989613
45. Jayatilake SMDAC, Ganegoda GU. Involvement of Machine Learning Tools in Healthcare Decision Making. J Healthc Eng. 2021; 2021:6679512. https://doi.org/10.1155/2021/6679512 PMid:33575021 PMCid:PMC7857908
46. Khan ZF, Alotaibi SR. Applications of Artificial Intelligence and Big Data Analytics in m-Health: A Healthcare System Perspective. J Healthc Eng. 2020; 2020:8894694. https://doi.org/10.1155/2020/8894694 PMid:32952992 PMCid:PMC7481991
47. Tedeschi LO. ASAS-NANP symposium: mathematical modeling in animal nutrition: the progression of data analytics and artificial intelligence in support of sustainable development in animal science. J Anim Sci. 2022; 100(6): skac111. https://doi.org/10.1093/jas/skac111 PMid:35412610 PMCid:PMC9171329
48. Chen, Y., Wu, C., Zhang, Q. et al. Review of visual analytics methods for food safety risks. npj Sci Food. 2023; 7:49. https://doi.org/10.1038/s41538-023-00226-x PMid:37699926 PMCid:PMC10497676
49. Gota Morota, Ricardo V Ventura, Fabyano F Silva, Masanori Koyama, Samodha C Fernando. Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. Journal of Animal Science. 2018; 96(4):1540-1550, https://doi.org/10.1093/jas/sky014 PMid:29385611 PMCid:PMC6140937
50. Blanco-González A, Cabezón A, Seco-González A, Conde-Torres D, Antelo-Riveiro P, Piñeiro Á, Garcia-Fandino R. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals. 2023; 16(6):891. https://doi.org/10.3390/ph16060891 PMid:37375838 PMCid:PMC10302890
51. Wang F, Preininger A. AI in Health: State of the Art, Challenges, and Future Directions. Yearb Med Inform. 2019; 28(1):16-26. https://doi.org/10.1055/s-0039-1677908 PMid:31419814 PMCid:PMC6697503
52. Bhhatarai B, Walters WP, Hop CECA, Lanza G, Ekins S. Opportunities and challenges using artificial intelligence in ADME/Tox. Nat Mater. 2019; 18(5):418-422. https://doi.org/10.1038/s41563-019-0332-5 PMid:31000801 PMCid:PMC6594826
53. Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Mol Divers. 2022; 26(3):1893-1913. https://doi.org/10.1007/s11030-021-10326-z PMid:34686947 PMCid:PMC8536481
54. Parankush Koul, Dr. Indu B. Koul, Advancements in Machine Learning Applications for The Pharmaceutical, Biomedical, And Healthcare Industries, Int. J. of Pharm. Sci., 2025; 3(4): 1548-1580. https://doi.org/10.5281/zenodo.15204262 .
55. Hendrix N, Veenstra DL, Cheng M, Anderson NC, Verguet S. Assessing the Economic Value of Clinical Artificial Intelligence: Challenges and Opportunities. Value Health. 2022; 25(3):331-339. https://doi.org/10.1016/j.jval.2021.08.015 PMid:35227443
56. Tran TTV, Tayara H, Chong KT. Artificial Intelligence in Drug Metabolism and Excretion Prediction: Recent Advances, Challenges, and Future Perspectives. Pharmaceutics. 2023; 15(4):1260. https://doi.org/10.3390/pharmaceutics15041260 PMid:37111744 PMCid:PMC10143484
57. Desai MK. Artificial intelligence in pharmacovigilance - Opportunities and challenges. Perspect Clin Res. 2024; 15(3):116-121. https://doi.org/10.4103/picr.picr_290_23 PMid:39140015 PMCid:PMC11318788
58. Mao, Y., Shangguan, D., Huang, Q. et al. Emerging artificial intelligence-driven precision therapies in tumor drug resistance: recent advances, opportunities, and challenges. Mol Cancer. 2025; 24, 123. https://doi.org/10.1186/s12943-025-02321-x PMid:40269930 PMCid:PMC12016295
59. Farris AB, Alexander MP, Balis UGJ, Barisoni L, Boor P, Bülow RD, Cornell LD, Demetris AJ, Farkash E, Hermsen M, Hogan J, Kain R, Kers J, Kong J, Levenson RM, Loupy A, Naesens M, Sarder P, Tomaszewski JE, van der Laak J, van Midden D, Yagi Y, Solez K. Banff Digital Pathology Working Group: Image Bank, Artificial Intelligence Algorithm, and Challenge Trial Developments. Transpl Int. 2023; 36:11783. https://doi.org/10.3389/ti.2023.11783 PMid:37908675 PMCid:PMC10614670
60. Vrudhula A, Kwan AC, Ouyang D, Cheng S. Machine Learning and Bias in Medical Imaging: Opportunities and Challenges. Circ Cardiovasc Imaging. 2024; 17(2):e015495. https://doi.org/10.1161/CIRCIMAGING.123.015495 PMid:38377237 PMCid:PMC10883605
61. Qi X, Zhao Y, Qi Z, Hou S, Chen J. Machine Learning Empowering Drug Discovery: Applications, Opportunities and Challenges. Molecules. 2024; 29(4):903. https://doi.org/10.3390/molecules29040903 PMid:38398653 PMCid:PMC10892089
62. Zhou X, Cai F, Li S, Li G, Zhang C, Xie J, Yang Y. Machine learning techniques for prediction in pregnancy complicated by autoimmune rheumatic diseases: Applications and challenges. Int Immunopharmacol. 2024; 134:112238. https://doi.org/10.1016/j.intimp.2024.112238 PMid:38735259
Published
Abstract Display: 1106
PDF Downloads: 669
PDF Downloads: 62 How to Cite
Issue
Section
Copyright (c) 2025 Sanvidha A. Mane , Ravindra L. Bakal , Pooja R. Hatwar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.