An Updated Perspective of Silk Fibroin-Nanoparticle as a Carrier for Controlled Drug Delivery

Authors

Abstract

This article illustrates a comprehensive review of the use of silk fibroin nanoparticles as a carrier for controlled drug delivery. The article begins by introducing the idea of controlled drug delivery and its importance in modern medicine. The technique, process, and drug-loading capabilities of silk fibroin nanoparticles are then discussed in detail, along with their advantages over other drug delivery systems. The review also examines the potential applications of silk fibroin nanoparticles in various biomedical fields, including cancer therapy, wound healing, and tissue engineering. The paper concludes by highlighting the current challenges and prospects for the development of silk fibroin nanoparticles as an efficient drug delivery system. However, this paper provides valuable insights into the potential of silk fibroin nanoparticles for targeted and controlled drug delivery, making it a useful resource for researchers in the field of drug delivery and biomaterials.

Keywords: Silk fibroin, Biomaterials, Nano-particles, Drug delivery, Controlled release.

Keywords:

Silk fibroin, Biomaterials, Nano-particles, Drug delivery, Controlled release

DOI

https://doi.org/10.22270/jddt.v15i4.7116

Author Biographies

Tomal Chandro Roy , Department of Chemistry, Rajshahi University, Rajshahi, Bangladesh

Department of Chemistry, Rajshahi University, Rajshahi, Bangladesh

Md. Ekhlass Uddin , Department of Chemistry, Rajshahi University, Rajshahi, Bangladesh

Department of Chemistry, Rajshahi University, Rajshahi, Bangladesh

Arpa Kar , Department of Chemistry, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh

Department of Chemistry, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh

References

1. Wang S, Xu T, Yang Y, Shao Z. Colloidal Stability of Silk Fibroin Nanoparticles Coated with Cationic Polymer for Effective Drug Delivery. ACS Appl Mater Interfaces. Published online 2015. https://doi.org/10.1021/acsami.5b05335 PMid:26331584

2. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6(10):1612-1631. https://doi.org/10.1038/nprot.2011.379 PMid:21959241 PMCid:PMC3808976

3. Xu Z, Shi L, Yang M, Zhu L. Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties - A review. Mater Sci Eng C. Published online 2019. https://doi.org/10.1016/j.msec.2018.11.010 PMid:30573254

4. Matthew SAL, Totten JD, Phuagkhaopong S, et al. Silk Nanoparticle Manufacture in Semi-Batch Format. ACS Biomater Sci Eng. Published online 2020. https://doi.org/10.1021/acsbiomaterials.0c01028 PMid:33320640

5. Lee OJ, Kim JH, Moon BM, et al. Fabrication and characterization of hydrocolloid dressing with silk fibroin nanoparticles for wound healing. Tissue Eng Regen Med. Published online 2016. https://doi.org/10.1007/s13770-016-9058-5 PMid:30603402 PMCid:PMC6170831

6. Hasanzadeh S, Farokhi M, Habibi M, et al. Silk Fibroin Nanoadjuvant as a Promising Vaccine Carrier to Deliver the FimH-IutA Antigen for Urinary Tract Infection. ACS Biomater Sci Eng. Published online 2020. https://doi.org/10.1021/acsbiomaterials.0c00736 PMid:33455198

7. Wang Q, Han G, Yan S, Zhang Q. 3D printing of silk fibroin for biomedical applications. Materials (Basel). Published online 2019. https://doi.org/10.3390/ma12030504 PMid:30736388 PMCid:PMC6384667

8. Roy TC. Journal of Drug Delivery and Therapeutics Silk Fibroin Hydrogel - Assisted Controlled Release of Antifungal Drug Ketoconazole. 2023;13(3):125-130. https://doi.org/10.22270/jddt.v13i3.5775

9. Bruder V, Ludwig T, Opitz S, Christoffels R, Fischer T, Maleki H. Hierarchical Assembly of Surface Modified Silk Fibroin Biomass into Micro-, and Milli-Metric Hybrid Aerogels with Core-Shell, Janus, and Composite Configurations for Rapid Removal of Water Pollutants. Adv Mater Interfaces. Published online 2021. https://doi.org/10.1002/admi.202001892

10. Haque Ansary R, Roy T, Asraf A, Easmin S. Preparation, Characterization and Antifungal Activity Studies of AgNPs Loaded Silk Fibroin Hydrogels. Am J Nano Res Appl. 2020;8(2):28. https://doi.org/10.11648/j.nano.20200802.13

11. Feng Y, Lin J, Niu L, et al. High molecular weight silk fibroin prepared by papain degumming. Polymers (Basel). Published online 2020. https://doi.org/10.3390/polym12092105 PMid:32947834 PMCid:PMC7570354

12. Roy T, Ansary RH. International Journal for Asian Contemporary Research ( IJACR ) Fabrication , Characterization and Antifungal Activity Studies of Silk Fibroin Hydrogel as a Potential Controlled Release of Fluconazole. 2021;1(I):31-38.

13. Lee MS, Hung CS, Phillips DA, Buck CC, Gupta MK, Lux MW. Silk fibroin as an additive for cell-free protein synthesis. Synth Syst Biotechnol. Published online 2020. https://doi.org/10.1016/j.synbio.2020.06.004 PMid:32637668 PMCid:PMC7320238

14. Jiang Y, Xu M, Yadavalli VK. Silk fibroin-sheathed conducting polymer wires as organic connectors for biosensors. Biosensors. Published online 2019. https://doi.org/10.3390/bios9030103 PMid:31466277 PMCid:PMC6784353

15. Zhang YQ, Shen W De, Xiang RL, Zhuge LJ, Gao WJ, Wang WB. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanoparticle Res. 2007;9(5):885-900. https://doi.org/10.1007/s11051-006-9162-x

16. Wen DL, Sun DH, Huang P, et al. Recent progress in silk fibroin-based flexible electronics. Microsystems Nanoeng. Published online 2021. https://doi.org/10.1038/s41378-021-00261-2 PMid:34567749 PMCid:PMC8433308

17. Crivelli B, Bari E, Perteghella S, et al. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm. Published online 2019. https://doi.org/10.1016/j.ejpb.2019.02.008 PMid:30772432

18. De Moraes MA, Mahl CRA, Silva MF, Beppu MM. Formation of silk fibroin hydrogel and evaluation of its drug release profile. J Appl Polym Sci. 2015;132(15):1-6. https://doi.org/10.1002/app.41802

19. Calamak S, Aksoy EA, Ertas N, Erdogdu C, Sagiroglu M, Ulubayram K. Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity. Eur Polym J. Published online 2015. https://doi.org/10.1016/j.eurpolymj.2015.03.068

20. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Doolaanea AA. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres. Drug Deliv Transl Res. Published online 2016. https://doi.org/10.1007/s13346-016-0278-y PMid:26817478

21. Koh LD, Cheng Y, Teng CP, et al. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci. Published online 2015. https://doi.org/10.1016/j.progpolymsci.2015.02.001

22. Feng K, Li X, Bai Y, Zhang D, Tian L. Mechanisms of cancer cell death induction by triptolide: A comprehensive overview. Heliyon. 2024;10(2):e24335. https://doi.org/10.1016/j.heliyon.2024.e24335 PMid:38293343 PMCid:PMC10826740

23. Zheng D, Chen T, Han L, et al. Synergetic integrations of bone marrow stem cells and transforming growth factor-β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue. Int Wound J. Published online 2022. https://doi.org/10.1111/iwj.13699 PMid:35266304 PMCid:PMC9284642

24. Cheng G, Davoudi Z, Xing X, et al. Advanced Silk Fibroin Biomaterials for Cartilage Regeneration. ACS Biomater Sci Eng. Published online 2018. https://doi.org/10.1021/acsbiomaterials.8b00150 PMid:33434996

25. Wu R, Li H, Yang Y, Zheng Q, Li S, Chen Y. Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives. ACS Appl Bio Mater. Published online 2021. https://doi.org/10.1021/acsabm.1c00654 PMid:35006966

26. Zahedi P, Hassani Besheli N, Farokhi M, Mottaghitalab F, Sohrabi A, Ghorbanian SA. Silk Fibroin Nanoparticles Functionalized with Fibronectin for Release of Vascular Endothelial Growth Factor to Enhance Angiogenesis. J Nat Fibers. Published online 2022. https://doi.org/10.1080/15440478.2021.1982814

27. Grabska‐zielińska S, Sionkowska A. How to improve physico‐chemical properties of silk fibroin materials for biomedical applications?-blending and cross‐linking of silk fibroin-a review. Materials (Basel). Published online 2021. https://doi.org/10.3390/ma14061510 PMid:33808809 PMCid:PMC8003607

28. Abu Elella MH, Mohamed F, Abdel Gawad OF, Abdallah HM. Polymer nanocomposite films and coatings in the textile industry. Polym Nanocomposite Film Coatings. 2024;(January):631-662. https://doi.org/10.1016/B978-0-443-19139-8.00008-5

29. Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. Published online 2016. https://doi.org/10.1016/j.actbio.2015.09.005 PMid:26360593

30. Montalbán MG, Coburn JM, Lozano-Pérez AA, Cenis JL, Víllora G, Kaplan DL. Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials. Published online 2018. https://doi.org/10.3390/nano8020126 PMid:29495296 PMCid:PMC5853757

31. Ruiz MAA, Fuster MG, Martínez TM, et al. The Effect of Sterilization on the Characteristics of Silk Fibroin Nanoparticles. Polymers (Basel). Published online 2022. https://doi.org/10.3390/polym14030498 PMid:35160487 PMCid:PMC8840090

32. Ansary RH, Awang MB, Rahman MM. Biodegradable poly(D,L-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs - A review. Trop J Pharm Res. Published online 2014. https://doi.org/10.4314/tjpr.v13i7.24

33. Wang Y, Kim BJ, Peng B, et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proc Natl Acad Sci U S A. Published online 2019. https://doi.org/10.1073/pnas.1911563116 PMid:31591247 PMCid:PMC6815133

34. Pandey V, Haider T, Chandak AR, Chakraborty A, Banerjee S, Soni V. Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin: Development, characterization, in-vitro studies. Int J Biol Macromol. Published online 2020. https://doi.org/10.1016/j.ijbiomac.2020.07.326 PMid:32758604

35. Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis RL, Kaplan DL, Kundu SC. Silk fibroin for skin injury repair: Where do things stand? Adv Drug Deliv Rev. Published online 2020. https://doi.org/10.1016/j.addr.2019.09.003 PMid:31678360

36. Tanaka K, Kajiyama N, Ishikura K, et al. Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta - Protein Struct Mol Enzymol. Published online 1999. https://doi.org/10.1016/S0167-4838(99)00088-6

37. Eisoldt L, Thamm C, Scheibel T. Review: The role of terminal domains during storage and assembly of spider silk proteins. Biopolymers. Published online 2012. https://doi.org/10.1002/bip.22006 PMid:22057429

38. Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. React Funct Polym. Published online 2020. https://doi.org/10.1016/j.reactfunctpolym.2020.104501

39. Florczak A, Grzechowiak I, Deptuch T, Kucharczyk K, Kaminska A, Dams-Kozlowska H. Silk particles as carriers of therapeutic molecules for cancer treatment. Materials (Basel). Published online 2020. https://doi.org/10.3390/ma13214946 PMid:33158060 PMCid:PMC7663281

40. Passi M, Kumar V, Packirisamy G. Theranostic nanozyme: Silk fibroin based multifunctional nanocomposites to combat oxidative stress. Mater Sci Eng C. Published online 2020. https://doi.org/10.1016/j.msec.2019.110255 PMid:31761203

41. Pham DT, Saelim N, Tiyaboonchai W. Design of experiments model for the optimization of silk fibroin based nanoparticles. Int J Appl Pharm. Published online 2018. https://doi.org/10.22159/ijap.2018v10i5.28139

42. Kolev A, Vassileva V, Radev L. Antibacterial fibroin / alginate blended biomaterials containing Silver and Ciprofloxacin. 2016;(December):1965-1971.

43. Liu Q, Liu H, Fan Y. Preparation of silk fibroin carriers for controlled release. Microsc Res Tech. Published online 2017. https://doi.org/10.1002/jemt.22606 PMid:26638113

44. Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H. Silk fibroin nanoparticle as a novel drug delivery system. J Control Release. Published online 2015. https://doi.org/10.1016/j.jconrel.2015.03.020 PMid:25797561

45. Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng. Published online 2018. https://doi.org/10.1021/acsbiomaterials.8b01098 PMid:33418796

46. Fan C, Chen P, Liu X, et al. Use of the freeze salting-out method for reducing dosage of salting-out agent and salinity in wastewater from carmine production. Desalination. Published online 2020. https://doi.org/10.1016/j.desal.2020.114475

47. Hammad SF, Abdallah IA, Bedair A, Mansour FR. Salting-out induced liquid-liquid microextraction for alogliptin benzoate determination in human plasma by HPLC/UV. BMC Chem. Published online 2021. https://doi.org/10.1186/s13065-020-00729-8 PMid:33451337 PMCid:PMC7809805

48. Fu C, Li Z, Sun Z, Xie S. A review of salting-out effect and sugaring-out effect: driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Front Chem Sci Eng. Published online 2021. https://doi.org/10.1007/s11705-020-1980-3

49. Nguyen TP, Nguyen QV, Nguyen VH, et al. Silk fibroin-based biomaterials for biomedical applications: A review. Polymers (Basel). Published online 2019. https://doi.org/10.3390/polym11121933 PMid:31771251 PMCid:PMC6960760

50. Pritchard EM, Kaplan DL. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv. 2011;8(6):797-811. https://doi.org/10.1517/17425247.2011.568936 PMid:21453189

51. Burke KA, Roberts DC, Kaplan DL. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins. Biomacromolecules. Published online 2016. https://doi.org/10.1021/acs.biomac.5b01330 PMid:26674175 PMCid:PMC5765759

52. Pang L, Ming J, Pan F, Ning X. Fabrication of silk fibroin fluorescent nanofibers via electrospinning. Polymers (Basel). Published online 2019. https://doi.org/10.3390/polym11060986 PMid:31167377 PMCid:PMC6631164

53. Fuster MG, Carissimi G, Montalbán MG, Víllora G. Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles. Nanomaterials. Published online 2020. https://doi.org/10.3390/nano10040718 PMid:32290154 PMCid:PMC7221656

54. Yadav R, Purwar R. Influence of metal oxide nanoparticles on morphological, structural, rheological and conductive properties of mulberry silk fibroin nanocomposite solutions. Polym Test. Published online 2021. https://doi.org/10.1016/j.polymertesting.2020.106916

55. Carissimi G, Lozano-Pérez AA, Montalbán MG, Aznar-Cervantes SD, Cenis JL, Víllora G. Revealing the influence of the degumming process in the properties of silk fibroin nanoparticles. Polymers (Basel). Published online 2019. https://doi.org/10.3390/polym11122045 PMid:31835438 PMCid:PMC6960545

56. Prakash NJ, Mane PP, George SM, Kandasubramanian B. Silk Fibroin As an Immobilization Matrix for Sensing Applications. ACS Biomater Sci Eng. Published online 2021. https://doi.org/10.1021/acsbiomaterials.1c00080 PMid:33861079

57. Lv S. Silk Fibroin-Based Materials for Catalyst Immobilization. Molecules. Published online 2020. https://doi.org/10.3390/molecules25214929 PMid:33114465 PMCid:PMC7663501

58. Hcini K, Lozano-Pérez AA, Cenis JL, Quílez M, Jordán MJ. Extraction and encapsulation of phenolic compounds of tunisian rosemary (Rosmarinus officinalis l.) extracts in silk fibroin nanoparticles. Plants. Published online 2021. https://doi.org/10.3390/plants10112312 PMid:34834676 PMCid:PMC8618009

59. Darshan GH, Kong D, Gautrot J, Vootla SK. Fabrication and Characterization of Conductive Conjugated Polymer-Coated Antheraea mylitta Silk Fibroin Fibers for Biomedical Applications. Macromol Biosci. Published online 2017. https://doi.org/10.1002/mabi.201600443 PMid:28240813

60. Das S, Ghosh B, Sarkar K. Nanocellulose as sustainable biomaterials for drug delivery. Sensors Int. Published online 2022. https://doi.org/10.1016/j.sintl.2021.100135

61. Fei X, Jia M, Du X, et al. Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromolecules. 2013;14(12):4483-4488. https://doi.org/10.1021/bm4014149 PMid:24171643

62. Mann JE, Gao R, London SS, Swift JA. Desolvation Processes in Channel Solvates of Niclosamide. Mol Pharm. Published online 2023. https://doi.org/10.1021/acs.molpharmaceut.3c00481 PMid:37850910 PMCid:PMC10630950

63. Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm. Published online 2000. https://doi.org/10.1016/S0378-5173(99)00370-1 PMid:10601688

64. Wang A, Wang L, Wu Y, et al. Uncovering the Effect of Solid Electrolyte Interphase on Ion Desolvation for Rational Interface Design in Li-Ion Batteries. Adv Energy Mater. Published online 2023. https://doi.org/10.1002/aenm.202300626

65. Xu S, Chen S, Zhang F, et al. Preparation and controlled coating of hydroxyl-modified silver nanoparticles on silk fibers through intermolecular interaction-induced self-assembly. Mater Des. 2016;95:107-118. https://doi.org/10.1016/j.matdes.2016.01.104

66. Yang Z, Peng H, Wang W, Liu T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci. 2010;116(5):2658-2667. https://doi.org/10.1002/app.31787

67. Simončič B, Klemenčič D. Preparation and performance of silver as an antimicrobial agent for textiles: A review. Text Res J. 2016;86(2):210-223. https://doi.org/10.1177/0040517515586157

68. Pandiarajan J, Krishnan M. Properties, synthesis and toxicity of silver nanoparticles. Environ Chem Lett. 2017;15(3):387-397. https://doi.org/10.1007/s10311-017-0624-4

69. Calamak S, Aksoy EA, Erdogdu C, Sagıroglu M, Ulubayram K. Silver nanoparticle containing silk fibroin bionanotextiles. J Nanoparticle Res. 2015;17(2). https://doi.org/10.1007/s11051-015-2895-7

70. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22). https://doi.org/10.1088/0957-4484/18/22/225103 PMid:37016550

71. Pei Z, Sun Q, Sun X, Wang Y, Zhao P. Preparation and characterization of silver nanoparticles on silk fibroin/carboxymethy lchitosan composite sponge as anti-bacterial wound dressing. Biomed Mater Eng. 2015;26:S111-S118. https://doi.org/10.3233/BME-151296 PMid:26405868

72. Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR. Controlling silk fibroin particle features for drug delivery. Biomaterials. 2010;31(16):4583-4591. https://doi.org/10.1016/j.biomaterials.2010.02.024 PMid:20219241 PMCid:PMC2846964

73. Xu S, Song J, Morikawa H, Chen Y, Lin H. Fabrication of hierarchical structured Fe3O4 and Ag nanoparticles dual-coated silk fibers through electrostatic self-assembly. Mater Lett. 2015;164(October):274-277. https://doi.org/10.1016/j.matlet.2015.08.051

74. Jaworek A, Sobczyk AT. Electrospraying route to nanotechnology: An overview. J Electrostat. Published online 2008. https://doi.org/10.1016/j.elstat.2007.10.001

75. Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013;3(3):37-41. https://doi.org/10.4161/biom.24281 PMid:23512013 PMCid:PMC3749275

76. Aseh A, Ríos CN. . Published online 2009:115-122.

77. Dhas SP, Anbarasan S, Mukherjee A, Chandrasekaran N. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections. Int J Nanomedicine. 2015;10:159-170. https://doi.org/10.2147/IJN.S82211 PMid:26491317 PMCid:PMC4599606

78. Bhat PN, Nivedita S, Roy S. Use of sericin of Bombyx mori in the synthesis of silver nanoparticles, their characterization and application. Indian J Fibre Text Res. 2011;36(2):167-171.

79. Lu Z, Meng M, Jiang Y, Xie J. UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids Surfaces A Physicochem Eng Asp. 2014;447:1-7. https://doi.org/10.1016/j.colsurfa.2014.01.064

80. Seib FP, Jones GT, Rnjak-Kovacina J, Lin Y, Kaplan DL. pH-Dependent Anticancer Drug Release from Silk Nanoparticles. Adv Healthc Mater. 2013;2(12):1606-1611. https://doi.org/10.1002/adhm.201300034 PMid:23625825 PMCid:PMC3808531

81. Choi YJ, Cho DW, Lee H. Development of Silk Fibroin Scaffolds by Using Indirect 3D-Bioprinting Technology. Micromachines. Published online 2022. https://doi.org/10.3390/mi13010043 PMid:35056208 PMCid:PMC8779165

82. Carullo D, Carpentieri S, Ferrari G, Pataro G. Influence of mechanical comminution of raw materials and PEF treatment on the aqueous extraction of phenolic compounds from artichoke wastes. J Food Eng. Published online 2024. https://doi.org/10.1016/j.jfoodeng.2024.111939

83. Patil RA, Deshannavar UB. To study the effect of mechanical comminution on lignin percentage and calorific value of dry sugar cane leaves. In: Materials Today: Proceedings. ; 2018. https://doi.org/10.1016/j.matpr.2018.06.149

84. Subia B, Chandra S, Talukdar S, Kundu SC. Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr Biol (United Kingdom). Published online 2014. https://doi.org/10.1039/C3IB40184G PMid:24345855

85. Gianak O, Pavlidou E, Sarafidis C, Karageorgiou V, Deliyanni E. Silk fibroin nanoparticles for drug delivery: Effect of bovine serum albumin and magnetic nanoparticles addition on drug encapsulation and release. Separations. Published online 2018. https://doi.org/10.3390/separations5020025

86. Srisuwan Y, Srihanam P, Baimark Y. Preparation of silk fibroin microspheres and its application to protein adsorption. J Macromol Sci Part A Pure Appl Chem. 2009;46(5):521-525. https://doi.org/10.1080/10601320902797780

87. Reddy A H, B V. Synthesis of Silk Silver Nanoparticles form Silkworm Cocoons and Their Antibacterial Activity on Methicillin Resistant Staphylococcus aureus (MRSA) and Escherichia coli. J Nanomed Nanotechnol. 2017;08(04):8-10. https://doi.org/10.4172/2157-7439.1000453

88. Marin M. Tuning and Optimization of Silk Fibroin Gels for Biomedical Applications. T Virginia Commonw Univ. 2014;Ms(2014-4):55.

89. Bailey K. Potential Applications of Silk Fibroin as a Biomaterial. Published online 2013:137. https://uwspace.uwaterloo.ca/bitstream/handle/10012/7621/Bailey_Kevin.pdf?sequence=1

90. Crescent R, Tower B, Road AEG, Name P, Mustafa M. Non-Government Teachers ' Registration & Certification Authority ( NTRCA ) 17th Teachers ' Registration Exam 2020 Candidate ' s Information Form ( CIF ) User ID : TZEYKS Exam Centre : Academic Qua. Published online 2020:17-18.

91. Shi P, Goh JCH. Release and cellular acceptance of multiple drugs loaded silk fibroin particles. Int J Pharm. 2011;420(2):282-289. https://doi.org/10.1016/j.ijpharm.2011.08.051 PMid:21920418

92. Yan HB, Zhang YQ, Ma YL, Zhou LX. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanoparticle Res. 2009;11(8):1937-1946. https://doi.org/10.1007/s11051-008-9549-y

93. Cao Z, Chen X, Yao J, Huang L, Shao Z. The preparation of regenerated silk fibroin microspheres. Soft Matter. 2007;3(7):910-915. https://doi.org/10.1039/b703139d PMid:32900086

94. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457-470. https://doi.org/10.1016/j.addr.2012.09.043 PMid:23137786

95. Liu B, Song Y wei, Jin L, et al. Silk structure and degradation. Colloids Surfaces B Biointerfaces. Published online 2015. https://doi.org/10.1016/j.colsurfb.2015.04.040 PMid:25982316

96. Mathur AB, Gupta V. Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine. 2010;5(5):807-820. https://doi.org/10.2217/nnm.10.51 PMid:20662650

97. Zhao M, Qi Z, Tao X, Newkirk C, Hu X, Lu S. Chemical, thermal, time, and enzymatic stability of silk materials with silk i structure. Int J Mol Sci. Published online 2021. https://doi.org/10.3390/ijms22084136 PMid:33923636 PMCid:PMC8073524

98. Bandyopadhyay A, Chowdhury SK, Dey S, Moses JC, Mandal BB. Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. J Indian Inst Sci. Published online 2019. https://doi.org/10.1007/s41745-019-00114-y

99. Hori K, Wada A STC. NII-Electronic Library Service. Chem Pharm Bull. 1970;(43):2091. http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/

100. Wang J, Yang S, Li C, et al. Nucleation and Assembly of Silica into Protein-Based Nanocomposites as Effective Anticancer Drug Carriers Using Self-Assembled Silk Protein Nanostructures as Biotemplates. ACS Appl Mater Interfaces. Published online 2017. https://doi.org/10.1021/acsami.7b05664 PMid:28665103 PMCid:PMC5759309

101. Srisuwan Y, Srihanam P, Baimark Y. Preparation of silk fibroin microspheres and its application to protein adsorption. J Macromol Sci Part A Pure Appl Chem. 2009;46(5):521-525. https://doi.org/10.1080/10601320902797780

102. Tran HA, Hoang TT, Maraldo A, et al. Emerging silk fibroin materials and their applications: New functionality arising from innovations in silk crosslinking. Mater Today. Published online 2023. https://doi.org/10.1016/j.mattod.2023.03.027

103. Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013;3(3):37-41. https://doi.org/10.4161/biom.24281 PMid:23512013 PMCid:PMC3749275

104. Li J, Li S, Huang J, et al. Spider Silk-Inspired Artificial Fibers. Adv Sci. Published online 2022. https://doi.org/10.1002/advs.202103965 PMid:34927397 PMCid:PMC8844500

105. Reddy A H, B V. Synthesis of Silk Silver Nanoparticles form Silkworm Cocoons and Their Antibacterial Activity on Methicillin Resistant Staphylococcus aureus (MRSA) and Escherichia coli. J Nanomed Nanotechnol. 2017;08(04):8-10. https://doi.org/10.4172/2157-7439.1000453

106. Bodea A, Leucuta SE. Optimization of propranolol hydrochloride sustained release pellets using a factorial design. Int J Pharm. Published online 1997. https://doi.org/10.1016/S0378-5173(97)00114-2

107. Marin M. Tuning and Optimization of Silk Fibroin Gels for Biomedical Applications. T Virginia Commonw Univ. 2014;Ms(2014-4):55.

108. Asakura T. Structure of Silk I (Bombyx mori Silk Fibroin before Spinning) -Type II β-Turn, Not α-Helix. Molecules. Published online 2021. https://doi.org/10.3390/molecules26123706 PMid:34204550 PMCid:PMC8234240

109. Bailey K. Potential Applications of Silk Fibroin as a Biomaterial. Published online 2013:137. https://uwspace.uwaterloo.ca/bitstream/handle/10012/7621/Bailey_Kevin.pdf?sequence=1

110. Whittall DR, Baker K V., Breitling R, Takano E. Host Systems for the Production of Recombinant Spider Silk. Trends Biotechnol. Published online 2021. https://doi.org/10.1016/j.tibtech.2020.09.007 PMid:33051051

111. Crescent R, Tower B, Road AEG, Name P, Mustafa M. Non-Government Teachers ' Registration & Certification Authority ( NTRCA ) 17th Teachers ' Registration Exam 2020 Candidate ' s Information Form ( CIF ) User ID : TZEYKS Exam Centre : Chattogram Mailing / Present Address : Permanent Address : Academic Qua. Published online 2020:17-18.

112. Verma D, Gulati N, Kaul S, Mukherjee S, Nagaich U. Protein Based Nanostructures for Drug Delivery. J Pharm. 2018;2018:1-18. https://doi.org/10.1155/2018/9285854 PMid:29862118 PMCid:PMC5976961

113. Shi P, Goh JCH. Release and cellular acceptance of multiple drugs loaded silk fibroin particles. Int J Pharm. 2011;420(2):282-289. https://doi.org/10.1016/j.ijpharm.2011.08.051 PMid:21920418

114. Shivananda CS, Madhu Kumar R, Narayana B, et al. Preparation and characterisation of silk fibroin-silver nanoparticles (SF-AgNPs) composite films. Mater Res Innov. 2017;21(4):210-214. https://doi.org/10.1080/14328917.2016.1200844

115. Yan HB, Zhang YQ, Ma YL, Zhou LX. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanoparticle Res. 2009;11(8):1937-1946. https://doi.org/10.1007/s11051-008-9549-y

116. Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9(10):e435-17. https://doi.org/10.1038/am.2017.171

117. Cao Z, Chen X, Yao J, Huang L, Shao Z. The preparation of regenerated silk fibroin microspheres. Soft Matter. 2007;3(7):910-915. https://doi.org/10.1039/b703139d PMid:32900086

118. Meinel L, Kaplan DL. Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev. 2012;64(12):1111-1122. https://doi.org/10.1016/j.addr.2012.03.016 PMid:22522139 PMCid:PMC3719414

119. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457-470. https://doi.org/10.1016/j.addr.2012.09.043 PMid:23137786

120. Qi Y, Wang H, Wei K, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci. 2017;18(3). https://doi.org/10.3390/ijms18030237 PMid:28273799 PMCid:PMC5372488

121. Liu B, Song Y wei, Jin L, et al. Silk structure and degradation. Colloids Surfaces B Biointerfaces. Published online 2015. https://doi.org/10.1016/j.colsurfb.2015.04.040 PMid:25982316

122. Kundu J, Chung Y Il, Kim YH, Tae G, Kundu SC. Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm. 2010;388(1-2):242-250. https://doi.org/10.1016/j.ijpharm.2009.12.052 PMid:20060449

123. Mathur AB, Gupta V. Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine. 2010;5(5):807-820. https://doi.org/10.2217/nnm.10.51 PMid:20662650

124. Zhao M, Qi Z, Tao X, Newkirk C, Hu X, Lu S. Chemical, thermal, time, and enzymatic stability of silk materials with silk i structure. Int J Mol Sci. Published online 2021. https://doi.org/10.3390/ijms22084136 PMid:33923636 PMCid:PMC8073524

125. Mondal M, Trivedy K, Nirmal Kumar S. The silk proteins, sericin and fibroin in silkworm. Casp J Environ Sci. 2007;5(2):63-76.

126. Bandyopadhyay A, Chowdhury SK, Dey S, Moses JC, Mandal BB. Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. J Indian Inst Sci. Published online 2019. https://doi.org/10.1007/s41745-019-00114-y

127. Hori K, Wada A STC. NII-Electronic Library Service. Chem Pharm Bull. 1970;(43):2091. http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/

Published

15-04-2025
Statistics
Abstract Display: 447
PDF Downloads: 411
PDF Downloads: 3

How to Cite

1.
Roy TC, Uddin ME, Kar A. An Updated Perspective of Silk Fibroin-Nanoparticle as a Carrier for Controlled Drug Delivery. J. Drug Delivery Ther. [Internet]. 2025 Apr. 15 [cited 2025 Apr. 26];15(4):219-35. Available from: https://jddtonline.info/index.php/jddt/article/view/7116

How to Cite

1.
Roy TC, Uddin ME, Kar A. An Updated Perspective of Silk Fibroin-Nanoparticle as a Carrier for Controlled Drug Delivery. J. Drug Delivery Ther. [Internet]. 2025 Apr. 15 [cited 2025 Apr. 26];15(4):219-35. Available from: https://jddtonline.info/index.php/jddt/article/view/7116