An Updated Perspective of Silk Fibroin-Nanoparticle as a Carrier for Controlled Drug Delivery
Abstract
This article illustrates a comprehensive review of the use of silk fibroin nanoparticles as a carrier for controlled drug delivery. The article begins by introducing the idea of controlled drug delivery and its importance in modern medicine. The technique, process, and drug-loading capabilities of silk fibroin nanoparticles are then discussed in detail, along with their advantages over other drug delivery systems. The review also examines the potential applications of silk fibroin nanoparticles in various biomedical fields, including cancer therapy, wound healing, and tissue engineering. The paper concludes by highlighting the current challenges and prospects for the development of silk fibroin nanoparticles as an efficient drug delivery system. However, this paper provides valuable insights into the potential of silk fibroin nanoparticles for targeted and controlled drug delivery, making it a useful resource for researchers in the field of drug delivery and biomaterials.
Keywords: Silk fibroin, Biomaterials, Nano-particles, Drug delivery, Controlled release.
Keywords:
Silk fibroin, Biomaterials, Nano-particles, Drug delivery, Controlled releaseDOI
https://doi.org/10.22270/jddt.v15i4.7116References
1. Wang S, Xu T, Yang Y, Shao Z. Colloidal Stability of Silk Fibroin Nanoparticles Coated with Cationic Polymer for Effective Drug Delivery. ACS Appl Mater Interfaces. Published online 2015. https://doi.org/10.1021/acsami.5b05335 PMid:26331584
2. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6(10):1612-1631. https://doi.org/10.1038/nprot.2011.379 PMid:21959241 PMCid:PMC3808976
3. Xu Z, Shi L, Yang M, Zhu L. Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties - A review. Mater Sci Eng C. Published online 2019. https://doi.org/10.1016/j.msec.2018.11.010 PMid:30573254
4. Matthew SAL, Totten JD, Phuagkhaopong S, et al. Silk Nanoparticle Manufacture in Semi-Batch Format. ACS Biomater Sci Eng. Published online 2020. https://doi.org/10.1021/acsbiomaterials.0c01028 PMid:33320640
5. Lee OJ, Kim JH, Moon BM, et al. Fabrication and characterization of hydrocolloid dressing with silk fibroin nanoparticles for wound healing. Tissue Eng Regen Med. Published online 2016. https://doi.org/10.1007/s13770-016-9058-5 PMid:30603402 PMCid:PMC6170831
6. Hasanzadeh S, Farokhi M, Habibi M, et al. Silk Fibroin Nanoadjuvant as a Promising Vaccine Carrier to Deliver the FimH-IutA Antigen for Urinary Tract Infection. ACS Biomater Sci Eng. Published online 2020. https://doi.org/10.1021/acsbiomaterials.0c00736 PMid:33455198
7. Wang Q, Han G, Yan S, Zhang Q. 3D printing of silk fibroin for biomedical applications. Materials (Basel). Published online 2019. https://doi.org/10.3390/ma12030504 PMid:30736388 PMCid:PMC6384667
8. Roy TC. Journal of Drug Delivery and Therapeutics Silk Fibroin Hydrogel - Assisted Controlled Release of Antifungal Drug Ketoconazole. 2023;13(3):125-130. https://doi.org/10.22270/jddt.v13i3.5775
9. Bruder V, Ludwig T, Opitz S, Christoffels R, Fischer T, Maleki H. Hierarchical Assembly of Surface Modified Silk Fibroin Biomass into Micro-, and Milli-Metric Hybrid Aerogels with Core-Shell, Janus, and Composite Configurations for Rapid Removal of Water Pollutants. Adv Mater Interfaces. Published online 2021. https://doi.org/10.1002/admi.202001892
10. Haque Ansary R, Roy T, Asraf A, Easmin S. Preparation, Characterization and Antifungal Activity Studies of AgNPs Loaded Silk Fibroin Hydrogels. Am J Nano Res Appl. 2020;8(2):28. https://doi.org/10.11648/j.nano.20200802.13
11. Feng Y, Lin J, Niu L, et al. High molecular weight silk fibroin prepared by papain degumming. Polymers (Basel). Published online 2020. https://doi.org/10.3390/polym12092105 PMid:32947834 PMCid:PMC7570354
12. Roy T, Ansary RH. International Journal for Asian Contemporary Research ( IJACR ) Fabrication , Characterization and Antifungal Activity Studies of Silk Fibroin Hydrogel as a Potential Controlled Release of Fluconazole. 2021;1(I):31-38.
13. Lee MS, Hung CS, Phillips DA, Buck CC, Gupta MK, Lux MW. Silk fibroin as an additive for cell-free protein synthesis. Synth Syst Biotechnol. Published online 2020. https://doi.org/10.1016/j.synbio.2020.06.004 PMid:32637668 PMCid:PMC7320238
14. Jiang Y, Xu M, Yadavalli VK. Silk fibroin-sheathed conducting polymer wires as organic connectors for biosensors. Biosensors. Published online 2019. https://doi.org/10.3390/bios9030103 PMid:31466277 PMCid:PMC6784353
15. Zhang YQ, Shen W De, Xiang RL, Zhuge LJ, Gao WJ, Wang WB. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanoparticle Res. 2007;9(5):885-900. https://doi.org/10.1007/s11051-006-9162-x
16. Wen DL, Sun DH, Huang P, et al. Recent progress in silk fibroin-based flexible electronics. Microsystems Nanoeng. Published online 2021. https://doi.org/10.1038/s41378-021-00261-2 PMid:34567749 PMCid:PMC8433308
17. Crivelli B, Bari E, Perteghella S, et al. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm. Published online 2019. https://doi.org/10.1016/j.ejpb.2019.02.008 PMid:30772432
18. De Moraes MA, Mahl CRA, Silva MF, Beppu MM. Formation of silk fibroin hydrogel and evaluation of its drug release profile. J Appl Polym Sci. 2015;132(15):1-6. https://doi.org/10.1002/app.41802
19. Calamak S, Aksoy EA, Ertas N, Erdogdu C, Sagiroglu M, Ulubayram K. Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity. Eur Polym J. Published online 2015. https://doi.org/10.1016/j.eurpolymj.2015.03.068
20. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Doolaanea AA. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres. Drug Deliv Transl Res. Published online 2016. https://doi.org/10.1007/s13346-016-0278-y PMid:26817478
21. Koh LD, Cheng Y, Teng CP, et al. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci. Published online 2015. https://doi.org/10.1016/j.progpolymsci.2015.02.001
22. Feng K, Li X, Bai Y, Zhang D, Tian L. Mechanisms of cancer cell death induction by triptolide: A comprehensive overview. Heliyon. 2024;10(2):e24335. https://doi.org/10.1016/j.heliyon.2024.e24335 PMid:38293343 PMCid:PMC10826740
23. Zheng D, Chen T, Han L, et al. Synergetic integrations of bone marrow stem cells and transforming growth factor-β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue. Int Wound J. Published online 2022. https://doi.org/10.1111/iwj.13699 PMid:35266304 PMCid:PMC9284642
24. Cheng G, Davoudi Z, Xing X, et al. Advanced Silk Fibroin Biomaterials for Cartilage Regeneration. ACS Biomater Sci Eng. Published online 2018. https://doi.org/10.1021/acsbiomaterials.8b00150 PMid:33434996
25. Wu R, Li H, Yang Y, Zheng Q, Li S, Chen Y. Bioactive Silk Fibroin-Based Hybrid Biomaterials for Musculoskeletal Engineering: Recent Progress and Perspectives. ACS Appl Bio Mater. Published online 2021. https://doi.org/10.1021/acsabm.1c00654 PMid:35006966
26. Zahedi P, Hassani Besheli N, Farokhi M, Mottaghitalab F, Sohrabi A, Ghorbanian SA. Silk Fibroin Nanoparticles Functionalized with Fibronectin for Release of Vascular Endothelial Growth Factor to Enhance Angiogenesis. J Nat Fibers. Published online 2022. https://doi.org/10.1080/15440478.2021.1982814
27. Grabska‐zielińska S, Sionkowska A. How to improve physico‐chemical properties of silk fibroin materials for biomedical applications?-blending and cross‐linking of silk fibroin-a review. Materials (Basel). Published online 2021. https://doi.org/10.3390/ma14061510 PMid:33808809 PMCid:PMC8003607
28. Abu Elella MH, Mohamed F, Abdel Gawad OF, Abdallah HM. Polymer nanocomposite films and coatings in the textile industry. Polym Nanocomposite Film Coatings. 2024;(January):631-662. https://doi.org/10.1016/B978-0-443-19139-8.00008-5
29. Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. Published online 2016. https://doi.org/10.1016/j.actbio.2015.09.005 PMid:26360593
30. Montalbán MG, Coburn JM, Lozano-Pérez AA, Cenis JL, Víllora G, Kaplan DL. Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials. Published online 2018. https://doi.org/10.3390/nano8020126 PMid:29495296 PMCid:PMC5853757
31. Ruiz MAA, Fuster MG, Martínez TM, et al. The Effect of Sterilization on the Characteristics of Silk Fibroin Nanoparticles. Polymers (Basel). Published online 2022. https://doi.org/10.3390/polym14030498 PMid:35160487 PMCid:PMC8840090
32. Ansary RH, Awang MB, Rahman MM. Biodegradable poly(D,L-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs - A review. Trop J Pharm Res. Published online 2014. https://doi.org/10.4314/tjpr.v13i7.24
33. Wang Y, Kim BJ, Peng B, et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proc Natl Acad Sci U S A. Published online 2019. https://doi.org/10.1073/pnas.1911563116 PMid:31591247 PMCid:PMC6815133
34. Pandey V, Haider T, Chandak AR, Chakraborty A, Banerjee S, Soni V. Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin: Development, characterization, in-vitro studies. Int J Biol Macromol. Published online 2020. https://doi.org/10.1016/j.ijbiomac.2020.07.326 PMid:32758604
35. Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, Reis RL, Kaplan DL, Kundu SC. Silk fibroin for skin injury repair: Where do things stand? Adv Drug Deliv Rev. Published online 2020. https://doi.org/10.1016/j.addr.2019.09.003 PMid:31678360
36. Tanaka K, Kajiyama N, Ishikura K, et al. Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta - Protein Struct Mol Enzymol. Published online 1999. https://doi.org/10.1016/S0167-4838(99)00088-6
37. Eisoldt L, Thamm C, Scheibel T. Review: The role of terminal domains during storage and assembly of spider silk proteins. Biopolymers. Published online 2012. https://doi.org/10.1002/bip.22006 PMid:22057429
38. Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. React Funct Polym. Published online 2020. https://doi.org/10.1016/j.reactfunctpolym.2020.104501
39. Florczak A, Grzechowiak I, Deptuch T, Kucharczyk K, Kaminska A, Dams-Kozlowska H. Silk particles as carriers of therapeutic molecules for cancer treatment. Materials (Basel). Published online 2020. https://doi.org/10.3390/ma13214946 PMid:33158060 PMCid:PMC7663281
40. Passi M, Kumar V, Packirisamy G. Theranostic nanozyme: Silk fibroin based multifunctional nanocomposites to combat oxidative stress. Mater Sci Eng C. Published online 2020. https://doi.org/10.1016/j.msec.2019.110255 PMid:31761203
41. Pham DT, Saelim N, Tiyaboonchai W. Design of experiments model for the optimization of silk fibroin based nanoparticles. Int J Appl Pharm. Published online 2018. https://doi.org/10.22159/ijap.2018v10i5.28139
42. Kolev A, Vassileva V, Radev L. Antibacterial fibroin / alginate blended biomaterials containing Silver and Ciprofloxacin. 2016;(December):1965-1971.
43. Liu Q, Liu H, Fan Y. Preparation of silk fibroin carriers for controlled release. Microsc Res Tech. Published online 2017. https://doi.org/10.1002/jemt.22606 PMid:26638113
44. Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H. Silk fibroin nanoparticle as a novel drug delivery system. J Control Release. Published online 2015. https://doi.org/10.1016/j.jconrel.2015.03.020 PMid:25797561
45. Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng. Published online 2018. https://doi.org/10.1021/acsbiomaterials.8b01098 PMid:33418796
46. Fan C, Chen P, Liu X, et al. Use of the freeze salting-out method for reducing dosage of salting-out agent and salinity in wastewater from carmine production. Desalination. Published online 2020. https://doi.org/10.1016/j.desal.2020.114475
47. Hammad SF, Abdallah IA, Bedair A, Mansour FR. Salting-out induced liquid-liquid microextraction for alogliptin benzoate determination in human plasma by HPLC/UV. BMC Chem. Published online 2021. https://doi.org/10.1186/s13065-020-00729-8 PMid:33451337 PMCid:PMC7809805
48. Fu C, Li Z, Sun Z, Xie S. A review of salting-out effect and sugaring-out effect: driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Front Chem Sci Eng. Published online 2021. https://doi.org/10.1007/s11705-020-1980-3
49. Nguyen TP, Nguyen QV, Nguyen VH, et al. Silk fibroin-based biomaterials for biomedical applications: A review. Polymers (Basel). Published online 2019. https://doi.org/10.3390/polym11121933 PMid:31771251 PMCid:PMC6960760
50. Pritchard EM, Kaplan DL. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv. 2011;8(6):797-811. https://doi.org/10.1517/17425247.2011.568936 PMid:21453189
51. Burke KA, Roberts DC, Kaplan DL. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins. Biomacromolecules. Published online 2016. https://doi.org/10.1021/acs.biomac.5b01330 PMid:26674175 PMCid:PMC5765759
52. Pang L, Ming J, Pan F, Ning X. Fabrication of silk fibroin fluorescent nanofibers via electrospinning. Polymers (Basel). Published online 2019. https://doi.org/10.3390/polym11060986 PMid:31167377 PMCid:PMC6631164
53. Fuster MG, Carissimi G, Montalbán MG, Víllora G. Improving anticancer therapy with naringenin-loaded silk fibroin nanoparticles. Nanomaterials. Published online 2020. https://doi.org/10.3390/nano10040718 PMid:32290154 PMCid:PMC7221656
54. Yadav R, Purwar R. Influence of metal oxide nanoparticles on morphological, structural, rheological and conductive properties of mulberry silk fibroin nanocomposite solutions. Polym Test. Published online 2021. https://doi.org/10.1016/j.polymertesting.2020.106916
55. Carissimi G, Lozano-Pérez AA, Montalbán MG, Aznar-Cervantes SD, Cenis JL, Víllora G. Revealing the influence of the degumming process in the properties of silk fibroin nanoparticles. Polymers (Basel). Published online 2019. https://doi.org/10.3390/polym11122045 PMid:31835438 PMCid:PMC6960545
56. Prakash NJ, Mane PP, George SM, Kandasubramanian B. Silk Fibroin As an Immobilization Matrix for Sensing Applications. ACS Biomater Sci Eng. Published online 2021. https://doi.org/10.1021/acsbiomaterials.1c00080 PMid:33861079
57. Lv S. Silk Fibroin-Based Materials for Catalyst Immobilization. Molecules. Published online 2020. https://doi.org/10.3390/molecules25214929 PMid:33114465 PMCid:PMC7663501
58. Hcini K, Lozano-Pérez AA, Cenis JL, Quílez M, Jordán MJ. Extraction and encapsulation of phenolic compounds of tunisian rosemary (Rosmarinus officinalis l.) extracts in silk fibroin nanoparticles. Plants. Published online 2021. https://doi.org/10.3390/plants10112312 PMid:34834676 PMCid:PMC8618009
59. Darshan GH, Kong D, Gautrot J, Vootla SK. Fabrication and Characterization of Conductive Conjugated Polymer-Coated Antheraea mylitta Silk Fibroin Fibers for Biomedical Applications. Macromol Biosci. Published online 2017. https://doi.org/10.1002/mabi.201600443 PMid:28240813
60. Das S, Ghosh B, Sarkar K. Nanocellulose as sustainable biomaterials for drug delivery. Sensors Int. Published online 2022. https://doi.org/10.1016/j.sintl.2021.100135
61. Fei X, Jia M, Du X, et al. Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromolecules. 2013;14(12):4483-4488. https://doi.org/10.1021/bm4014149 PMid:24171643
62. Mann JE, Gao R, London SS, Swift JA. Desolvation Processes in Channel Solvates of Niclosamide. Mol Pharm. Published online 2023. https://doi.org/10.1021/acs.molpharmaceut.3c00481 PMid:37850910 PMCid:PMC10630950
63. Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm. Published online 2000. https://doi.org/10.1016/S0378-5173(99)00370-1 PMid:10601688
64. Wang A, Wang L, Wu Y, et al. Uncovering the Effect of Solid Electrolyte Interphase on Ion Desolvation for Rational Interface Design in Li-Ion Batteries. Adv Energy Mater. Published online 2023. https://doi.org/10.1002/aenm.202300626
65. Xu S, Chen S, Zhang F, et al. Preparation and controlled coating of hydroxyl-modified silver nanoparticles on silk fibers through intermolecular interaction-induced self-assembly. Mater Des. 2016;95:107-118. https://doi.org/10.1016/j.matdes.2016.01.104
66. Yang Z, Peng H, Wang W, Liu T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci. 2010;116(5):2658-2667. https://doi.org/10.1002/app.31787
67. Simončič B, Klemenčič D. Preparation and performance of silver as an antimicrobial agent for textiles: A review. Text Res J. 2016;86(2):210-223. https://doi.org/10.1177/0040517515586157
68. Pandiarajan J, Krishnan M. Properties, synthesis and toxicity of silver nanoparticles. Environ Chem Lett. 2017;15(3):387-397. https://doi.org/10.1007/s10311-017-0624-4
69. Calamak S, Aksoy EA, Erdogdu C, Sagıroglu M, Ulubayram K. Silver nanoparticle containing silk fibroin bionanotextiles. J Nanoparticle Res. 2015;17(2). https://doi.org/10.1007/s11051-015-2895-7
70. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22). https://doi.org/10.1088/0957-4484/18/22/225103 PMid:37016550
71. Pei Z, Sun Q, Sun X, Wang Y, Zhao P. Preparation and characterization of silver nanoparticles on silk fibroin/carboxymethy lchitosan composite sponge as anti-bacterial wound dressing. Biomed Mater Eng. 2015;26:S111-S118. https://doi.org/10.3233/BME-151296 PMid:26405868
72. Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR. Controlling silk fibroin particle features for drug delivery. Biomaterials. 2010;31(16):4583-4591. https://doi.org/10.1016/j.biomaterials.2010.02.024 PMid:20219241 PMCid:PMC2846964
73. Xu S, Song J, Morikawa H, Chen Y, Lin H. Fabrication of hierarchical structured Fe3O4 and Ag nanoparticles dual-coated silk fibers through electrostatic self-assembly. Mater Lett. 2015;164(October):274-277. https://doi.org/10.1016/j.matlet.2015.08.051
74. Jaworek A, Sobczyk AT. Electrospraying route to nanotechnology: An overview. J Electrostat. Published online 2008. https://doi.org/10.1016/j.elstat.2007.10.001
75. Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013;3(3):37-41. https://doi.org/10.4161/biom.24281 PMid:23512013 PMCid:PMC3749275
76. Aseh A, Ríos CN. . Published online 2009:115-122.
77. Dhas SP, Anbarasan S, Mukherjee A, Chandrasekaran N. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections. Int J Nanomedicine. 2015;10:159-170. https://doi.org/10.2147/IJN.S82211 PMid:26491317 PMCid:PMC4599606
78. Bhat PN, Nivedita S, Roy S. Use of sericin of Bombyx mori in the synthesis of silver nanoparticles, their characterization and application. Indian J Fibre Text Res. 2011;36(2):167-171.
79. Lu Z, Meng M, Jiang Y, Xie J. UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids Surfaces A Physicochem Eng Asp. 2014;447:1-7. https://doi.org/10.1016/j.colsurfa.2014.01.064
80. Seib FP, Jones GT, Rnjak-Kovacina J, Lin Y, Kaplan DL. pH-Dependent Anticancer Drug Release from Silk Nanoparticles. Adv Healthc Mater. 2013;2(12):1606-1611. https://doi.org/10.1002/adhm.201300034 PMid:23625825 PMCid:PMC3808531
81. Choi YJ, Cho DW, Lee H. Development of Silk Fibroin Scaffolds by Using Indirect 3D-Bioprinting Technology. Micromachines. Published online 2022. https://doi.org/10.3390/mi13010043 PMid:35056208 PMCid:PMC8779165
82. Carullo D, Carpentieri S, Ferrari G, Pataro G. Influence of mechanical comminution of raw materials and PEF treatment on the aqueous extraction of phenolic compounds from artichoke wastes. J Food Eng. Published online 2024. https://doi.org/10.1016/j.jfoodeng.2024.111939
83. Patil RA, Deshannavar UB. To study the effect of mechanical comminution on lignin percentage and calorific value of dry sugar cane leaves. In: Materials Today: Proceedings. ; 2018. https://doi.org/10.1016/j.matpr.2018.06.149
84. Subia B, Chandra S, Talukdar S, Kundu SC. Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr Biol (United Kingdom). Published online 2014. https://doi.org/10.1039/C3IB40184G PMid:24345855
85. Gianak O, Pavlidou E, Sarafidis C, Karageorgiou V, Deliyanni E. Silk fibroin nanoparticles for drug delivery: Effect of bovine serum albumin and magnetic nanoparticles addition on drug encapsulation and release. Separations. Published online 2018. https://doi.org/10.3390/separations5020025
86. Srisuwan Y, Srihanam P, Baimark Y. Preparation of silk fibroin microspheres and its application to protein adsorption. J Macromol Sci Part A Pure Appl Chem. 2009;46(5):521-525. https://doi.org/10.1080/10601320902797780
87. Reddy A H, B V. Synthesis of Silk Silver Nanoparticles form Silkworm Cocoons and Their Antibacterial Activity on Methicillin Resistant Staphylococcus aureus (MRSA) and Escherichia coli. J Nanomed Nanotechnol. 2017;08(04):8-10. https://doi.org/10.4172/2157-7439.1000453
88. Marin M. Tuning and Optimization of Silk Fibroin Gels for Biomedical Applications. T Virginia Commonw Univ. 2014;Ms(2014-4):55.
89. Bailey K. Potential Applications of Silk Fibroin as a Biomaterial. Published online 2013:137. https://uwspace.uwaterloo.ca/bitstream/handle/10012/7621/Bailey_Kevin.pdf?sequence=1
90. Crescent R, Tower B, Road AEG, Name P, Mustafa M. Non-Government Teachers ' Registration & Certification Authority ( NTRCA ) 17th Teachers ' Registration Exam 2020 Candidate ' s Information Form ( CIF ) User ID : TZEYKS Exam Centre : Academic Qua. Published online 2020:17-18.
91. Shi P, Goh JCH. Release and cellular acceptance of multiple drugs loaded silk fibroin particles. Int J Pharm. 2011;420(2):282-289. https://doi.org/10.1016/j.ijpharm.2011.08.051 PMid:21920418
92. Yan HB, Zhang YQ, Ma YL, Zhou LX. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanoparticle Res. 2009;11(8):1937-1946. https://doi.org/10.1007/s11051-008-9549-y
93. Cao Z, Chen X, Yao J, Huang L, Shao Z. The preparation of regenerated silk fibroin microspheres. Soft Matter. 2007;3(7):910-915. https://doi.org/10.1039/b703139d PMid:32900086
94. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457-470. https://doi.org/10.1016/j.addr.2012.09.043 PMid:23137786
95. Liu B, Song Y wei, Jin L, et al. Silk structure and degradation. Colloids Surfaces B Biointerfaces. Published online 2015. https://doi.org/10.1016/j.colsurfb.2015.04.040 PMid:25982316
96. Mathur AB, Gupta V. Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine. 2010;5(5):807-820. https://doi.org/10.2217/nnm.10.51 PMid:20662650
97. Zhao M, Qi Z, Tao X, Newkirk C, Hu X, Lu S. Chemical, thermal, time, and enzymatic stability of silk materials with silk i structure. Int J Mol Sci. Published online 2021. https://doi.org/10.3390/ijms22084136 PMid:33923636 PMCid:PMC8073524
98. Bandyopadhyay A, Chowdhury SK, Dey S, Moses JC, Mandal BB. Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. J Indian Inst Sci. Published online 2019. https://doi.org/10.1007/s41745-019-00114-y
99. Hori K, Wada A STC. NII-Electronic Library Service. Chem Pharm Bull. 1970;(43):2091. http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/
100. Wang J, Yang S, Li C, et al. Nucleation and Assembly of Silica into Protein-Based Nanocomposites as Effective Anticancer Drug Carriers Using Self-Assembled Silk Protein Nanostructures as Biotemplates. ACS Appl Mater Interfaces. Published online 2017. https://doi.org/10.1021/acsami.7b05664 PMid:28665103 PMCid:PMC5759309
101. Srisuwan Y, Srihanam P, Baimark Y. Preparation of silk fibroin microspheres and its application to protein adsorption. J Macromol Sci Part A Pure Appl Chem. 2009;46(5):521-525. https://doi.org/10.1080/10601320902797780
102. Tran HA, Hoang TT, Maraldo A, et al. Emerging silk fibroin materials and their applications: New functionality arising from innovations in silk crosslinking. Mater Today. Published online 2023. https://doi.org/10.1016/j.mattod.2023.03.027
103. Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013;3(3):37-41. https://doi.org/10.4161/biom.24281 PMid:23512013 PMCid:PMC3749275
104. Li J, Li S, Huang J, et al. Spider Silk-Inspired Artificial Fibers. Adv Sci. Published online 2022. https://doi.org/10.1002/advs.202103965 PMid:34927397 PMCid:PMC8844500
105. Reddy A H, B V. Synthesis of Silk Silver Nanoparticles form Silkworm Cocoons and Their Antibacterial Activity on Methicillin Resistant Staphylococcus aureus (MRSA) and Escherichia coli. J Nanomed Nanotechnol. 2017;08(04):8-10. https://doi.org/10.4172/2157-7439.1000453
106. Bodea A, Leucuta SE. Optimization of propranolol hydrochloride sustained release pellets using a factorial design. Int J Pharm. Published online 1997. https://doi.org/10.1016/S0378-5173(97)00114-2
107. Marin M. Tuning and Optimization of Silk Fibroin Gels for Biomedical Applications. T Virginia Commonw Univ. 2014;Ms(2014-4):55.
108. Asakura T. Structure of Silk I (Bombyx mori Silk Fibroin before Spinning) -Type II β-Turn, Not α-Helix. Molecules. Published online 2021. https://doi.org/10.3390/molecules26123706 PMid:34204550 PMCid:PMC8234240
109. Bailey K. Potential Applications of Silk Fibroin as a Biomaterial. Published online 2013:137. https://uwspace.uwaterloo.ca/bitstream/handle/10012/7621/Bailey_Kevin.pdf?sequence=1
110. Whittall DR, Baker K V., Breitling R, Takano E. Host Systems for the Production of Recombinant Spider Silk. Trends Biotechnol. Published online 2021. https://doi.org/10.1016/j.tibtech.2020.09.007 PMid:33051051
111. Crescent R, Tower B, Road AEG, Name P, Mustafa M. Non-Government Teachers ' Registration & Certification Authority ( NTRCA ) 17th Teachers ' Registration Exam 2020 Candidate ' s Information Form ( CIF ) User ID : TZEYKS Exam Centre : Chattogram Mailing / Present Address : Permanent Address : Academic Qua. Published online 2020:17-18.
112. Verma D, Gulati N, Kaul S, Mukherjee S, Nagaich U. Protein Based Nanostructures for Drug Delivery. J Pharm. 2018;2018:1-18. https://doi.org/10.1155/2018/9285854 PMid:29862118 PMCid:PMC5976961
113. Shi P, Goh JCH. Release and cellular acceptance of multiple drugs loaded silk fibroin particles. Int J Pharm. 2011;420(2):282-289. https://doi.org/10.1016/j.ijpharm.2011.08.051 PMid:21920418
114. Shivananda CS, Madhu Kumar R, Narayana B, et al. Preparation and characterisation of silk fibroin-silver nanoparticles (SF-AgNPs) composite films. Mater Res Innov. 2017;21(4):210-214. https://doi.org/10.1080/14328917.2016.1200844
115. Yan HB, Zhang YQ, Ma YL, Zhou LX. Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanoparticle Res. 2009;11(8):1937-1946. https://doi.org/10.1007/s11051-008-9549-y
116. Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9(10):e435-17. https://doi.org/10.1038/am.2017.171
117. Cao Z, Chen X, Yao J, Huang L, Shao Z. The preparation of regenerated silk fibroin microspheres. Soft Matter. 2007;3(7):910-915. https://doi.org/10.1039/b703139d PMid:32900086
118. Meinel L, Kaplan DL. Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev. 2012;64(12):1111-1122. https://doi.org/10.1016/j.addr.2012.03.016 PMid:22522139 PMCid:PMC3719414
119. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65(4):457-470. https://doi.org/10.1016/j.addr.2012.09.043 PMid:23137786
120. Qi Y, Wang H, Wei K, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci. 2017;18(3). https://doi.org/10.3390/ijms18030237 PMid:28273799 PMCid:PMC5372488
121. Liu B, Song Y wei, Jin L, et al. Silk structure and degradation. Colloids Surfaces B Biointerfaces. Published online 2015. https://doi.org/10.1016/j.colsurfb.2015.04.040 PMid:25982316
122. Kundu J, Chung Y Il, Kim YH, Tae G, Kundu SC. Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm. 2010;388(1-2):242-250. https://doi.org/10.1016/j.ijpharm.2009.12.052 PMid:20060449
123. Mathur AB, Gupta V. Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine. 2010;5(5):807-820. https://doi.org/10.2217/nnm.10.51 PMid:20662650
124. Zhao M, Qi Z, Tao X, Newkirk C, Hu X, Lu S. Chemical, thermal, time, and enzymatic stability of silk materials with silk i structure. Int J Mol Sci. Published online 2021. https://doi.org/10.3390/ijms22084136 PMid:33923636 PMCid:PMC8073524
125. Mondal M, Trivedy K, Nirmal Kumar S. The silk proteins, sericin and fibroin in silkworm. Casp J Environ Sci. 2007;5(2):63-76.
126. Bandyopadhyay A, Chowdhury SK, Dey S, Moses JC, Mandal BB. Silk: A Promising Biomaterial Opening New Vistas Towards Affordable Healthcare Solutions. J Indian Inst Sci. Published online 2019. https://doi.org/10.1007/s41745-019-00114-y
127. Hori K, Wada A STC. NII-Electronic Library Service. Chem Pharm Bull. 1970;(43):2091. http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/
Published



How to Cite
Issue
Section
Copyright (c) 2025 Tomal Chandro Roy , Md. Ekhlass Uddin , Arpa Kar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).