Formulation and evaluation of Niosomal cream from moringa leaf extract for enhanced Antifungal Activity
Abstract
Niosomal drug delivery systems have gained attention for enhancing the bioavailability and efficacy of pharmaceutical formulations. This study explores the formulation and evaluation of a niosomal antifungal cream incorporating Moringa oleifera leaf extract. Moringa leaves contain bioactive compounds with antifungal properties, making them a potential alternative to synthetic antifungal agents. Niosomes, as vesicular carriers, improve drug stability, penetration, and controlled release, enhancing therapeutic effects. The formulated cream was characterized for particle size, entrapment efficiency, pH, spreadability, and in vitro antifungal activity against common fungal strains. The results demonstrated that the niosomal formulation improved drug retention and prolonged antifungal activity compared to conventional creams. The study suggests that a niosomal antifungal cream containing Moringa leaf extract could be an effective natural treatment for fungal infections, offering a promising alternative to conventional antifungal therapies.
Keywords: Moringa oleifera, niosomal cream, antifungal activity, drug delivery, dermatophytosis, Candida albicans, vesicular drug
Keywords:
Moringa oleifera, niosomes, drug deliveryDOI
https://doi.org/10.22270/jddt.v15i4.7097References
1. World Health Organization. Global fungal infection forum: Emerging challenges in mycology. Geneva, Switzerland: WHO; 2022.
2. Wisplinghoff H, Bischoff T. Epidemiology of invasive fungal infections in immunocompromised patients. Clin Microbiol Rev. 2021;34(3):e00210-20.
3. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2018;51(Suppl 4):2-15. https://doi.org/10.1111/j.1439-0507.2008.01606.x PMid:18783559
4. Revathi G, Srikanta D. Emerging antifungal resistance: A global health challenge. J Med Microbiol. 2020;69(10):1434-1448.
5. Walsh TJ, Groll AH. Therapeutic drug monitoring of antifungal agents: Pharmacokinetic and pharmacodynamic considerations. Ther Drug Monit. 2019;41(2):123-40.
6. Warrilow AG, Kerridge D. Azole antifungal resistance: A structural perspective. Drug Resist Updat. 2020;52:100695.
7. Ghannoum MA, Rice LB. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 2021;34(4):e00055-21.
8. Vincent LG, Rodriguez-Tudela JL. Fluconazole resistance in Candida species: Global trends and local implications. Emerg Infect Dis. 2022;28(6):1175-1183.
9. Bouwstra JA, Gooris GS. The lipid organization in human stratum corneum: Basis for the barrier function of skin. Matrix Biol. 2019;84:55-71.
10. Perfect JR. Fungal therapeutics: Where do we stand? Future Microbiol. 2020;15(9):787-790.
11. Denning DW, Bromley MJ. Therapeutic potential of strategic antimicrobial agent discovery. J Antimicrob Chemother. 2021;76(Suppl 3):iii30-8.
12. Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Hum Wellness. 2016;5(2):49-56. https://doi.org/10.1016/j.fshw.2016.04.001
13. Vongsak B, Sithisarn P, Gritsanapan W. Bioactive contents and antioxidant activity of Moringa oleifera leaf extract. Med Aromat Plant Sci Biotechnol. 2013;7(1):37-41. https://doi.org/10.1155/2013/917609 PMid:23533530 PMCid:PMC3596951
14. Midekessa G, Godana W, Tulu B. Antifungal mechanisms of Moringa oleifera phytochemicals. J Ethnopharmacol. 2021;278:114260.
15. Ferreira PMP, Farias DF, Oliveira JTA. Moringa oleifera: Medicinal and biological potential. Rev Bras Farmacogn. 2019;29(4):493-500.
16. Mahajan SG, Chopda MZ. Therapeutic potential of Moringa oleifera in various diseases. J Pharm Pharmacogn Res. 2018;6(5):365-376.
17. Anwar F, Rashid U. Physicochemical properties of Moringa oleifera seed oil and its potential as biofuel. Biomass Bioenergy. 2007;31(7):496-501.
18. Abdulbaqi IM, Darwis Y, Khan NAK. Niosomes: A review of their structure, properties, methods of preparation, and drug loading. Int J Nanomedicine. 2016;11:4529-4542.
19. Manosroi A, Jantrawut P, Manosroi J. Vesicles containing herbal oils: Development and characterization. J Microencapsul. 2008;25(8):525-35.
20. Gregoriadis G. Liposome technology: Targeted drug delivery. Boca Raton: CRC Press; 2020.
21. Mokhtar SF, Sammour OA. Preparation and characterization of niosomal gels containing tretinoin. AAPS PharmSciTech. 2019;20(7):1-11.
22. Agarwal R, Iqbal S, Khar RK. Niosomes: A comprehensive review of their potential in drug delivery. J Pharm Investig. 2021;51(3):248-66.
23. El-Hammadi MM, Abdulbaqi IM. Niosomes as a drug delivery system: Recent advances. Drug Deliv. 2017;24(1):1345-1355.
24. Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Hum Wellness. 2016;5(2):49-56. https://doi.org/10.1016/j.fshw.2016.04.001
25. Vongsak B, Sithisarn P, Gritsanapan W. Bioactive contents and antioxidant activity of Moringa oleifera leaf extract. Med Aromat Plant Sci Biotechnol. 2013;7(1):37-41. https://doi.org/10.1155/2013/917609 PMid:23533530 PMCid:PMC3596951
26. Makkar HPS, Becker K. Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J Agric Sci. 1997;128(3):311-322. https://doi.org/10.1017/S0021859697004292
27. Anwar F, Rashid U. Physicochemical properties of Moringa oleifera seed oil and its potential as biofuel. Biomass Bioenergy. 2007;31(7):496-501.
28. Mahajan SG, Chopda MZ. Therapeutic potential of Moringa oleifera in various diseases. J Pharm Pharmacogn Res. 2018;6(5):365-376.
29. Ramachandran C, Peter KV, Gopalakrishnan PK. Drumstick (Moringa oleifera): A multipurpose potential species in tropical horticulture. Econ Bot. 1980;34(3):276-285. https://doi.org/10.1007/BF02858648
30. Abdulbaqi IM, Darwis Y, Khan NAK. Niosomes: A review of their structure, properties, methods of preparation, and drug loading. Int J Nanomedicine. 2016;11:4529-4542.
31. Manosroi A, Jantrawut P, Manosroi J. Vesicles containing herbal oils: Development and characterization. J Microencapsul. 2008;25(8):525-535.
32. Gregoriadis G. Liposome technology: Targeted drug delivery. Boca Raton: CRC Press; 2020.
33. Mokhtar SF, Sammour OA. Preparation and characterization of niosomal gels containing tretinoin. AAPS PharmSciTech. 2019;20(7):1-11.
34. Agarwal R, Iqbal S, Khar RK. Niosomes: A comprehensive review of their potential in drug delivery. J Pharm Investig. 2021;51(3):248-266.
35. El-Hammadi MM, Abdulbaqi IM. Niosomes as a drug delivery system: Recent advances. Drug Deliv. 2017;24(1):1345-1355.
36. Barry BW. Lipid-Surfactant-Water Systems: Structure and Pharmaceutical Applications. In: Pharmaceutical Formulation Development of Peptides and Proteins. London: Taylor & Francis; 1983. p. 87-178.
37. Florence AT, Attwood D. Physicochemical Principles of Pharmacy. London: Pharmaceutical Press; 2015.
38. Walton RC, Kligman AM. An improved method for the in vitro assessment of topical vehicles. J Pharm Sci. 1968;57(6):964-967.
39. Verma P, Pathak K. Nanosized ethanolic vesicles loaded with berberine for penetration enhancement: Physico-mechanical characterization, in vitro permeation and antimicrobial studies. Nanomedicine. 2012;8(4):489-496. https://doi.org/10.1016/j.nano.2011.07.004 PMid:21839053
40. Choudhary RK, Das M. Recent advances in novel drug delivery systems for herbal drugs. J Pharm Investig. 2011;41(3):103-14.
41. Lee VHL. Targeted Delivery of Drugs. New York: Springer Science & Business Media; 1994.
42. Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. London: Chapman & Hall; 1998.
43. Evans WC. Trease and Evans' Pharmacognosy. Amsterdam: Elsevier Health Sciences; 2009.
44. Wagner H, Bladt S. Plant Drug Analysis: A Thin Layer Chromatography Atlas. Berlin: Springer Science & Business Media; 2001.
45. Trease GE, Evans WC. Pharmacognosy. London: Bailiere Tindall; 1989.
46. Stahl E. Thin-Layer Chromatography: A Laboratory Handbook. Berlin: Springer; 1969. https://doi.org/10.1007/978-3-642-88488-7
47. Kokate CK. Practical Pharmacognosy. New Delhi: Vallabh Prakashan; 2007.
48. Malvern Instruments. Dynamic Light Scattering: Common Terms Defined. Malvern: Malvern Instruments Ltd; 2015.
49. Lasic DD. Liposomes: From Physics to Applications. Amsterdam: Elsevier; 1993.
50. Torchilin VP. Nanoparticulates as Drug Carriers. London: Imperial College Press; 2006. https://doi.org/10.1142/9781860949074
51. Hunter RJ. Zeta Potential in Colloid Science: Principles and Applications. London: Academic Press; 1981.
52. Ananthapadmanabhan KP, Lips A. Skin Interactions with Surfactants. In: Surfactant Science and Technology. Boca Raton: CRC Press; 2007.
53. Barnes HA. Rheology Principles. London: Taylor & Francis; 1997.
54. Martin A, Swarbrick J, Cammarata A. Physical Pharmacy. Philadelphia: Lea & Febiger; 1993.
55. Banker GS, Rhodes CT. Modern Pharmaceutics. New York: Marcel Dekker; 2002. https://doi.org/10.1201/9780824744694 PMCid:PMC6758410
56. Jones DS, Wooley D. Artificial Membranes: Methods, Modifications, and Applications. Hoboken: John Wiley & Sons; 2001.
57. Franz TJ. Percutaneous Absorption: On the Relevance of In Vitro Data. J Invest Dermatol. 1975;64(3):190-195. https://doi.org/10.1111/1523-1747.ep12533356 PMid:123263
58. World Health Organization. Stability Testing of Active Pharmaceutical Ingredients and Finished Pharmaceutical Products. WHO Technical Report Series; 2003.
59. National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard M27-A2. Wayne, PA: NCCLS; 2002
Published



How to Cite
Issue
Section
Copyright (c) 2025 Pratiksha K. Hajare , Mahesh R. Reddy , Yogesh D. Somawanshi , Vedashree A. Dhumekekar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).