Phytochemical Characterization, In-Vitro Antioxidant Activity, and Molecular Docking of Quercetin, Rutin and Apigenin
Abstract
This study investigates the phytochemical characterization, in-vitro antioxidant activity, and molecular docking of natural flavonoids like Quercetin, Rutin, and Apigenin. FTIR analysis showed that each component possesses hydroxyl and carbonyl groups through the identification of specific functional groups that confirmed their structural nature. The results from phytochemical screening confirmed the presence of tannins and phenolics but also confirmed both flavonoids and flavanol glycosides and these findings were validated by fluorescence analysis. The total phenolic content analysis showed Quercetin possessed the greatest chemical content while Apigenin and Rutin followed with lower contents.
The strongest antioxidant performance detected in the in-vitro assays using DPPH and nitric oxide radical scavenging (NORSA) and reducing power tests showed Quercetin to have IC50 values of 9.64 µg/ml and 6.71 µg/ml respectively. The antioxidant functions of both Rutin and Apigenin proved to be robust in the assessments.
The binding ability of these flavonoids with Inducible Nitric Oxide Synthase (INOS) and xanthine oxidase proteins underwent molecular docking assessment to determine their binding affinity levels. The multiple hydroxyl groups in Quercetin enabled strong binding with proteins while Rutin and Apigenin followed behind.
Keywords: Quercetin, Rutin, Apigenin, Antioxidant Activity, Molecular Docking
Keywords:
Quercetin, Rutin, Apigenin, in vivo-antioxidant activity, Molecular DockingDOI
https://doi.org/10.22270/jddt.v15i4.7082References
1. Moure A, Cruz JM, Franco D, Manuel Domínguez J, Sineiro J, Domínguez H, et al. Natural antioxidants from residual sources. Food Chem. 2001 Feb 1;72(2):145-171. https://doi.org/10.1016/S0308-8146(00)00223-5
2. Gülçin I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006 Jan 18;78(8):803-811. https://doi.org/10.1016/j.lfs.2005.05.103 PMid:16253281
3. Ignat I, Volf I, Popa VI. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011 Jun 15;126(4):1821-1835. https://doi.org/10.1016/j.foodchem.2010.12.026 PMid:25213963
4. Sies H, Belousov V V., Chandel NS, Davies MJ, Jones DP, Mann GE, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology 2022 23:7 [Internet]. 2022;23(7):499-515. https://doi.org/10.1038/s41580-022-00456-z PMid:35190722
5. Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021 Sep 1;20(9):689-709. https://doi.org/10.1038/s41573-021-00233-1 PMid:34194012 PMCid:PMC8243062
6. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020 Jul 1;21(7):363-383. https://doi.org/10.1038/s41580-020-0230-3 PMid:32231263
7. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020 Aug 10;38(2):167-197. https://doi.org/10.1016/j.ccell.2020.06.001 PMid:32649885 PMCid:PMC7439808
8. Rice-Evans C. Flavonoid Antioxidants. Curr Med Chem. 2012 Oct 30;8(7):797-807. https://doi.org/10.2174/0929867013373011 PMid:11375750
9. Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med. 2021 Oct 1;137:104851. https://doi.org/10.1016/j.compbiomed.2021.104851 PMid:34520990
10. Singh R, Mendhulkar VD. Available online www. jocpr.com Journal of Chemical and Pharmaceutical Research. 2015;7(6):205-211. Available from: www.jocpr.com
11. Noh CHC, Azmin NFM, Amid A. Principal component analysis application on flavonoids characterization. Advances in Science, Technology and Engineering Systems. 2017;2(3):435-440. https://doi.org/10.25046/aj020356
12. Hossain MA, AL-Raqmi KAS, AL-Mijizy ZH, Weli AM, Al-Riyami Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac J Trop Biomed. 2013 Sep 1;3(9):705-710. https://doi.org/10.1016/S2221-1691(13)60142-2 PMid:23998010
13. Nguyen VT, Le VM, Vo TS, Bui LM, Anh HLT, Danh VT. Preliminary phytochemical screening and determination of total polyphenols and flavonoids content in the leaves of Houttuynia cordata Thunb. IOP Conf Ser Mater Sci Eng. 2020;736(6):062013. https://doi.org/10.1088/1757-899X/736/6/062013
14. Talla E, Tamfu AN, Biyanzi P, Sakava P, Asoboe FP, Mbafor JT, et al. Phytochemical screening, antioxidant activity, total polyphenols and flavonoids content of different extracts of propolis from Tekel (Ngaoundal, Adamawa region, Cameroon). The Journal of Phytopharmacology. 2014;3(5):321-9. https://doi.org/10.31254/phyto.2014.3504
15. Article O, Gurung R. PRELIMINARY PHYTOCHEMICAL SCREENING, TOTAL PHENOL AND FLAVONOID CONTENT OF MIMOSA RUBICAULIS AND REINWARDITA INDICA. 2020 [cited 2025 Feb 9]; Available from: http://creativecommons.org/licenses/by/4.0/
16. Jastrzȩbska A, Brudka B, Szymański T, Szłyk E. Determination of phosphorus in food samples by X-ray fluorescence spectrometry and standard spectrophotometric method. Food Chem. 2003;83(3):463-467. https://doi.org/10.1016/S0308-8146(03)00225-5
17. Reidinger S, Ramsey MH, Hartley SE. Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytologist. 2012 Aug 1 [cited 2025 Feb 9];195(3):699-706. https://doi.org/10.1111/j.1469-8137.2012.04179.x PMid:22671981
18. Li G, Fan S. Direct determination of 25 elements in dry powdered plant materials by X-ray fluorescence spectrometry. J Geochem Explor. 1995 Dec 1;55(1-3):75-80. https://doi.org/10.1016/0375-6742(95)00030-5
19. Vázquez CV, Rojas MGV, Ramírez CA, Chávez-Servín JL, García-Gasca T, Ferriz Martínez RA, et al. Total phenolic compounds in milk from different species. Design of an extraction technique for quantification using the Folin-Ciocalteu method. Food Chem. 2015 Jun 1;176:480-486. https://doi.org/10.1016/j.foodchem.2014.12.050 PMid:25624259
20. Lawag IL, Nolden ES, Schaper AAM, Lim LY, Locher C. A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Applied Sciences. 2023;13(4):2135. https://doi.org/10.3390/app13042135
21. Jamal P, Zuhanis I. TROPICAL AGRICULTURAL SCIENCE Quantification of Total Phenolic compounds in Papaya fruit peel. Pertanika J Trop Agric Sci. 2017;40(1):87-98. Available from: http://www.pertanika.upm.edu.my/
22. Wong-Paz JE, Muñiz-Márquez DB, Aguilar-Zárate P, Rodríguez-Herrera R, Aguilar CN. Microplate Quantification of Total Phenolic Content from Plant Extracts Obtained by Conventional and Ultrasound Methods. Phytochemical Analysis. 2014;25(5):439-444. https://doi.org/10.1002/pca.2512 PMid:24692153
23. Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med. 2012;12(1):1-12. https://doi.org/10.1186/1472-6882-12-221 PMid:23153304 PMCid:PMC3524761
24. Da Silva LAL, Pezzini BR, Soares L. Spectrophotometric determination of the total flavonoid content in Ocimum basilicum L. (Lamiaceae) leaves. Pharmacogn Mag. 2015;11(41):96. https://doi.org/10.4103/0973-1296.149721 PMid:25709217 PMCid:PMC4329640
25. Shraim AM, Ahmed TA, Rahman MM, Hijji YM. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT. 2021 Oct 1;150:111932. https://doi.org/10.1016/j.lwt.2021.111932
26. Gulcin İ, Alwasel SH. DPPH Radical Scavenging Assay. Processes 2023;11(8):2248. https://doi.org/10.3390/pr11082248
27. Ionita P. The chemistry of dpph∙ free radical and congeners. Int J Mol Sci. 2021 Feb 2;22(4):1-15. https://doi.org/10.3390/ijms22041545 PMid:33546504 PMCid:PMC7913707
28. Gülçin I, Mshvildadze V, Gepdiremen A, Elias R. Screening of antiradical and antioxidant activity of monodesmosides and crude extract from Leontice smirnowii tuber. Phytomedicine. 2006 May 9;13(5):343-351. https://doi.org/10.1016/j.phymed.2005.03.009 PMid:16635742
29. Altay A, Tohma H, Durmaz L, Taslimi P, Korkmaz M, Gulcin I, et al. Preliminary phytochemical analysis and evaluation of in vitro antioxidant, antiproliferative, antidiabetic, and anticholinergics effects of endemic Gypsophila taxa from Turkey. J Food Biochem. 2019 Jul 1;43(7). https://doi.org/10.1111/jfbc.12908 PMid:31353687
30. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci. 2021 Apr 1;22(7). https://doi.org/10.3390/ijms22073380 PMid:33806141 PMCid:PMC8037236
31. Sreejayan, Rao MNA. Nitric Oxide Scavenging by Curcuminoids. Journal of Pharmacy and Pharmacology. 1997;49(1):105-7. https://doi.org/10.1111/j.2042-7158.1997.tb06761.x PMid:9120760
32. Ebrahimzadeh MA, Nabavi SF, Nabavi SM, Pourmorad F. Nitric oxide radical scavenging potential of some Elburz medicinal plants. Afr J Biotechnol. 2010;9(32):5212-7. Available from: https://www.ajol.info/index.php/ajb/article/view/92153
33. Rajesh P, Natvar P. In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods. Journal of Advanced Pharmacy Education and Research. 2011;1(1-2011):52-68. Available from: https://japer.in/article/in-vitro-antioxidant-activity-of-coumarin-compounds-by-dpph-super-oxide-and-nitric-oxide-free-radical-scavenging-methods?html
34. Kumaran A, Karunakaran RJ. Nitric oxide radical scavenging active components from Phyllanthus emblica L. Plant Foods for Human Nutrition. 2006;61(1):1-5. https://doi.org/10.1007/s11130-006-0001-0 PMid:16688481
35. Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, et al. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir. 2008;24(14):7354-64. https://doi.org/10.1021/la704046f PMid:18553993
36. Xue Y, Luan Q, Yang D, Yao X, Zhou K. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. Journal of Physical Chemistry C. 2011;115(11):4433-8. https://doi.org/10.1021/jp109819u
37. Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 1989 Jan 1;28(4):1057-1060. https://doi.org/10.1016/0031-9422(89)80182-7
38. Rafat Husain S, Cillard J, Cillard P. Hydroxyl radical scavenging activity of flavonoids. Phytochemistry. 1987 Jan 1;26(9):2489-2491. https://doi.org/10.1016/S0031-9422(00)83860-1
39. Langley-Evans SC. Antioxidant potential of green and black tea determined using the ferric reducing power (FRAP) assay. Int J Food Sci Nutr [Internet]. 2000 [cited 2025 Feb 9];51(3):181-188. https://doi.org/10.1080/09637480050029683 PMid:10945114
40. Singhal M, Paul A, Singh HP. Synthesis and reducing power assay of methyl semicarbazone derivatives. Journal of Saudi Chemical Society. 2014 Apr 1;18(2):121-127. https://doi.org/10.1016/j.jscs.2011.06.004
41. Pulido R, Bravo L, Saura-Calixto F. Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. J Agric Food Chem. 2000;48(8):3396-402. https://doi.org/10.1021/jf9913458 PMid:10956123
42. Fan J, Fu A, Zhang L. Progress in molecular docking. Quantitative Biology. 2019;7(2):83-9. https://doi.org/10.1007/s40484-019-0172-y
43. Yuriev E, Ramsland PA. Latest developments in molecular docking: 2010-2011 in review. Journal of Molecular Recognition. 2013 May 1 [cited 2025 Feb 9];26(5):215-39. https://doi.org/10.1002/jmr.2266 PMid:23526775
44. Jakhar R, Dangi M, Khichi A, Chhillar AK. Relevance of Molecular Docking Studies in Drug Designing. Curr Bioinform. 2020;15(4):270-278. https://doi.org/10.2174/1574893615666191219094216
Published



How to Cite
Issue
Section
Copyright (c) 2025 Vijaykumar Yelwantge , Vivek Chauhan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).