Nanoparticles (NPs) Based Drug Delivery System: An Inspiring Therapeutic Strategy for Cancer Therapy and Their Future Prospects
Abstract
Nanoparticles (NPs)-based drug delivery systems (DDs) have emerged as a promising strategy for cancer therapy, offering targeted, controlled, and efficient drug delivery while minimizing systemic toxicity. Their unique physicochemical properties, including high surface area, tunable size, and enhanced permeability, enable precise tumor targeting through passive, active, and stimuli-responsive mechanisms. The various nanocarriers such as liposomes, polymeric NPs, dendrimers, and metallic NPs have been extensively explored for chemotherapy, gene therapy, immunotherapy, and theranostic applications. The ability of NPs to overcome multidrug resistance (MDR), enhance drug bioavailability, and facilitate combination therapies has significantly improved treatment outcomes. Despite the remarkable advancements, challenges such as biocompatibility, large-scale production, and regulatory approval remain critical hurdles. Future research will focus on personalized nanomedicine, smart and multifunctional nanocarriers, gene-editing nanoparticle systems, and green nanotechnology for safer and more effective cancer treatments. The continuous evolution of NPs in cancer therapy holds immense potential to transform oncology, paving the way for patient-specific, minimally invasive, and highly efficient treatment modalities. This review article focuses on nanocarriers such as lipid-based, polymeric, and inorganic nanoparticles as a drug delivery system and their applications in cancer therapy. The current limitations and future perspectives of various nanoparticle-based DDS in cancer therapy are also discussed.
Keywords: Drug delivery, Nanocarriers, NDDS, Sustained, Targeted
Keywords:
Drug delivery, Nanocarriers, NDDS, Sustained, TargetedDOI
https://doi.org/10.22270/jddt.v15i4.7040References
1. Afzal O, Altamimi AS, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials, 2022; 12(24):4494. https://doi.org/10.3390/nano12244494 PMid:36558344 PMCid:PMC9781272
2. Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Frontiers in bioengineering and biotechnology, 2023; 11:1177151. https://doi.org/10.3389/fbioe.2023.1177151 PMid:37122851 PMCid:PMC10133513
3. Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart materials in medicine, 2020; 1:10-9. https://doi.org/10.1016/j.smaim.2020.04.001 PMid:34553138 PMCid:PMC8455119
4. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale research letters, 2021; 16(1):173. https://doi.org/10.1186/s11671-021-03628-6 PMid:34866166 PMCid:PMC8645667
5. Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-based nanoparticles as drug delivery systems. Pharmaceutics, 2020; 12(7):604. https://doi.org/10.3390/pharmaceutics12070604 PMid:32610448 PMCid:PMC7407889
6. Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-drug delivery systems based on natural products. International Journal of Nanomedicine, 2024; 541-69. https://doi.org/10.2147/IJN.S443692 PMid:38260243 PMCid:PMC10802180
7. Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 2018; 16:1-33. https://doi.org/10.1186/s12951-018-0392-8 PMid:30231877 PMCid:PMC6145203
8. Sell M, Lopes AR, Escudeiro M, Esteves B, Monteiro AR, Trindade T, Cruz-Lopes L. Application of nanoparticles in cancer treatment: a concise review. Nanomaterials, 2023; 13(21):2887. https://doi.org/10.3390/nano13212887 PMid:37947732 PMCid:PMC10650201
9. Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Medicine in Drug Discovery, 2022; 15:100134. https://doi.org/10.1016/j.medidd.2022.100134
10. Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal transduction and targeted therapy, 2023; 8(1):418. https://doi.org/10.1038/s41392-023-01642-x PMid:37919282 PMCid:PMC10622502
11. Rahul Pal, Prachi Pandey, Himmat Singh Chawra, Zuber Khan, Nano Drug Delivery Carriers (Nanocarriers): A Promising Targeted Strategy in Tuberculosis and Pain Treatment, Pharmaceutical Nanotechnology; Volume 13, Issue, Year 2025, e22117385367493. https://doi.org/10.2174/0122117385367493250224103839 PMid:40059418
12. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in molecular biosciences, 2020; 7:193. https://doi.org/10.3389/fmolb.2020.00193 PMid:32974385 PMCid:PMC7468194
13. Yusuf A, Almotairy AR, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles' physicochemical properties on responses in biological systems. Polymers, 2023; 15(7):1596. https://doi.org/10.3390/polym15071596 PMid:37050210 PMCid:PMC10096782
14. Cai, R. T. (2023). Role of Nanoparticles in the Drug Delivery Systems. https://doi.org/10.4172/DD.7.1.004
15. Cotta MA. Quantum dots and their applications: what lies ahead?. ACS applied nano materials, 2020; 3(6):4920-4. https://doi.org/10.1021/acsanm.0c01386
16. Duan L, Li X, Ji R, Hao Z, Kong M, Wen X, Guan F, Ma S. Nanoparticle-based drug delivery systems: an inspiring therapeutic strategy for neurodegenerative diseases. Polymers, 2023; 15(9):2196. https://doi.org/10.3390/polym15092196 PMid:37177342 PMCid:PMC10181407
17. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale research letters, 2021; 16(1):173. https://doi.org/10.1186/s11671-021-03628-6 PMid:34866166 PMCid:PMC8645667
18. Hami Z. A brief review on advantages of nano-based drug delivery systems. Annals of Military and Health Sciences Research, 2021; 19(1). https://doi.org/10.5812/amh.112274
19. Pal R, Pandey P, Nogai L, Anand A, Suthar P, SahdevKeskar M, Kumar V. The future perspectives and novel approach on gastro retentive drug delivery system (GRDDS) with currrent state. Journal of Population Therapeutics and Clinical Pharmacology, 2023; 30(17):594-613. https://doi.org/10.53555/jptcp.v30i17.2852
20. Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. International journal of nanomedicine, 2019; 1937-52. https://doi.org/10.2147/IJN.S198353 PMid:30936695 PMCid:PMC6430183
21. Singh S, Pandey VK, Tewari RP, Agarwal V. Nanoparticle based drug delivery system: advantages and applications. Indian J Sci Technol, 2011; 4(3):177-180. https://doi.org/10.17485/ijst/2011/v4i3.16
22. Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Experimental and molecular pathology, 2009; 86(3):215-223. https://doi.org/10.1016/j.yexmp.2008.12.004 PMid:19186176 PMCid:PMC3249419
23. Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Experimental and molecular pathology, 2009; 86(3):215-223. https://doi.org/10.1016/j.yexmp.2008.12.004 PMid:19186176 PMCid:PMC3249419
24. Yang J, Jia C, Yang J. Designing nanoparticle-based drug delivery systems for precision medicine. International journal of medical sciences, 2021; 18(13):2943. https://doi.org/10.7150/ijms.60874 PMid:34220321 PMCid:PMC8241788
25. Kumar V. The Advanced Approach in The Development of Targeted Drug Delivery (TDD) With Their Bio-Medical Applications: A Descriptive Review. International Neurourology Journal, 2023; 27(4).
26. Carreiró F, Oliveira AM, Neves A, Pires B, Nagasamy Venkatesh D, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020; 25(3731). https://doi.org/10.3390/molecules25163731 PMid:32824172 PMCid:PMC7464532
27. Girdhar V, Patil S, Banerjee S, Singhvi G. Nanocarriers for drug delivery: mini review. Current Nanomedicine (Formerly: Recent Patents on Nanomedicine), 2018; 8(2):88-99. https://doi.org/10.2174/2468187308666180501092519
28. Jafari SM. An overview of nanoencapsulation techniques and their classification. Nanoencapsulation technologies for the food and nutraceutical industries, 2017; 1-34. https://doi.org/10.1016/B978-0-12-809436-5.00001-X
29. Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Advances in Colloid and Interface Science, 2023; 314:102871. https://doi.org/10.1016/j.cis.2023.102871 PMid:36958181
30. Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics, 2022; 14(4):883. https://doi.org/10.3390/pharmaceutics14040883 PMid:35456717 PMCid:PMC9026217
31. Patidar A, Thakur DS, Kumar P, Verma J. A review on novel lipid based nanocarriers. Int J Pharm Pharm Sci, 2010; 2(4):30-35.
32. Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. Nanomedicine: Nanotechnology, Biology and Medicine, 2018; 14(7):2023-2050. https://doi.org/10.1016/j.nano.2018.05.021 PMid:29944981
33. Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. Journal of liposome research, 2020; 30(4):336-365. https://doi.org/10.1080/08982104.2019.1668010 PMid:31558079
34. Pal R, Pandey P, Rizwan M, Koli M, Thakur SK, Malakar RK, Gupta H, Khadam VK, Chawra HS. the utilization of response surface methodology (RSM) in the optimization of diclofenac sodium (DS) liposomes formulate through the thin film hydration (TFH) technique with involving computational method. Journal of Advances in Medicine and Medical Research, 2023; 35(22):287-300. https://doi.org/10.9734/jammr/2023/v35i225268
35. Jesorka A, Orwar O. Liposomes: technologies and analytical applications. Annu. Rev. Anal. Chem., 2008; 1(1):801-832. https://doi.org/10.1146/annurev.anchem.1.031207.112747 PMid:20636098
36. Shailesh S, Neelam S, Sandeep K, Gupta GD. Liposomes: a review. Journal of pharmacy research, 2009; 2(7):1163-1167.
37. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon, 2022; 8(5). https://doi.org/10.1016/j.heliyon.2022.e09394 PMid:35600452 PMCid:PMC9118483
38. Pal R, Pandey P, Maurya VK, Saxena A, Rizwan M, Koli M, Shakya S, Pinki K. Optimization and formulation of doxorubicin (DOX) loaded liposome well-used in chemotherapy involving quality by design (QbD): a transitory research. European Chemical Bulletin, 2023; 12:4491-4510. https://doi.org/10.22271/phyto.2023.v12.i6b.14779
39. Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: a review. Nanosci. Nanotechnol. Res, 2017; 4(2):67-72.
40. Pal R, Pandey P, Anand A, Saxena A, Thakur SK, Malakar RK, Kumar V. The Pharmaceutical Polymer's; A current status in drug delivery: A Comprehensive Review. Journal of Survey in Fisheries Sciences, 2023; 10(1):3682-92.
41. Yadav N, Khatak S, Sara US. Solid lipid nanoparticles-a review. Int. J. Appl. Pharm, 2013; 5(2):8-18.
42. Sarangi MK, Padhi S. Solid lipid nanoparticles-a review. Drugs, 2016; 5(7).
43. Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 2014; 86(1):7-22. https://doi.org/10.1016/j.ejpb.2013.08.013 PMid:24007657
44. Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert opinion on therapeutic patents, 2020; 30(3):179-194. https://doi.org/10.1080/13543776.2020.1720649 PMid:32003260
45. Garud A, Singh D, Garud N. Solid lipid nanoparticles (SLN): method, characterization and applications. International Current Pharmaceutical Journal, 2012; 1(11):384-393. https://doi.org/10.3329/icpj.v1i11.12065
46. Khairnar SV, Pagare P, Thakre A, Nambiar AR, Junnuthula V, Abraham MC, Kolimi P, Nyavanandi D, Dyawanapelly S. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics, 2022; 14(9):1886. https://doi.org/10.3390/pharmaceutics14091886 PMid:36145632 PMCid:PMC9503303
47. Rahul Pal, Prachi Pandey, Himmat Singh Chawra, Ravindra Pal Singh, Niosomal as Potential Vesicular Drug Nano-carriers for the Treatment of Tuberculosis (TB), Nanoscience & Nanotechnology-Asia; Volume 15, Issue 1, Year 2025, e22106812323829. https://doi.org/10.2174/0122106812323829240919050438
48. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science & Emerging Technologies, 2013; 19:29-43. https://doi.org/10.1016/j.ifset.2013.03.002
49. Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Advanced drug delivery reviews, 2007; 59(6):522-530. https://doi.org/10.1016/j.addr.2007.04.012 PMid:17602783
50. Garcês A, Amaral MH, Lobo JS, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. European Journal of Pharmaceutical Sciences, 2018; 112:159-167. https://doi.org/10.1016/j.ejps.2017.11.023 PMid:29183800
51. Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. Journal of microbiological methods, 2019; 160:130-142. https://doi.org/10.1016/j.mimet.2019.03.017 PMid:30898602
52. Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, Wood GC. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine: Nanotechnology, Biology and Medicine, 2013; 9(4):474-941. https://doi.org/10.1016/j.nano.2012.11.010 PMid:23261500
53. Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. International journal of nanomedicine, 2019; 1937-1952. https://doi.org/10.2147/IJN.S198353 PMid:30936695 PMCid:PMC6430183
54. Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids and surfaces B: Biointerfaces, 2011; 85(2):214-220. https://doi.org/10.1016/j.colsurfb.2011.02.033 PMid:21439797
55. Persano F, Gigli G, Leporatti S. Lipid-polymer hybrid nanoparticles in cancer therapy: Current overview and future directions. Nano Express, 2021; 2(1):012006. https://doi.org/10.1088/2632-959X/abeb4b
56. Naziris N, Demetzos C. Lipid nanoparticles as platforms for theranostic purposes: recent advances in the field. Journal of Nanotheranostics, 2022; 3(2):86-101. https://doi.org/10.3390/jnt3020006
57. Mallakpour S, Behranvand VJ. Polymeric nanoparticles: Recent development in synthesis and application. Express Polymer Letters, 2016; 10(11):895. https://doi.org/10.3144/expresspolymlett.2016.84
58. Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016; 8(2):271-299. https://doi.org/10.1002/wnan.1364 PMid:26314803
59. Pal R, Pandey P, Rai B, Koli M, Chakrabarti M, Thakur P, Rizwan M, Saxena A. Chitosan: as highly potential biopolymer obtainable in several advance drug delivery systems including biomedical applications. Environmental science, 2023; 3(4).
60. Liu Q, Kim YJ, Im GB, Zhu J, Wu Y, Liu Y, Bhang SH. Inorganic nanoparticles applied as functional therapeutics. Advanced Functional Materials, 2021; 31(12):2008171. https://doi.org/10.1002/adfm.202008171
61. Kim T, Hyeon T. Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology, 2013; 25(1):012001. https://doi.org/10.1088/0957-4484/25/1/012001 PMid:24334327
62. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Analytical and bioanalytical chemistry, 2008; 391:2469-2495. https://doi.org/10.1007/s00216-008-2185-7 PMid:18548237
63. Ghaderi S, Ramesh B, Seifalian AM. Fluorescence nanoparticles "quantum dots" as drug delivery system and their toxicity: a review. Journal of drug targeting, 2011; 19(7):475-486. https://doi.org/10.3109/1061186X.2010.526227 PMid:20964619
64. Tomar A, Garg G. Short review on application of gold nanoparticles. Global Journal of Pharmacology, 2013; 7(1):34-38.
65. Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select, 2022; 3(4):792-828. https://doi.org/10.1002/nano.202100255
66. Sangaiya P, Jayaprakash R. A review on iron oxide nanoparticles and their biomedical applications. Journal of Superconductivity and Novel Magnetism, 2018; 31(11):3397-3413. https://doi.org/10.1007/s10948-018-4841-2
67. Campos EA, Pinto DV, Oliveira JI, Mattos ED, Dutra RD. Synthesis, characterization and applications of iron oxide nanoparticles-a short review. Journal of Aerospace Technology and Management, 2015; 7(3):267-276. https://doi.org/10.5028/jatm.v7i3.471
68. Aghebati‐Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, Yousefi M, Aghebati‐Maleki L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of cellular physiology, 2020; 235(3):1962-1972. https://doi.org/10.1002/jcp.29126 PMid:31441032
69. Sanati M, Afshari AR, Kesharwani P, Sukhorukov VN, Sahebkar A. Recent trends in the application of nanoparticles in cancer therapy: The involvement of oxidative stress. Journal of Controlled Release, 2022; 348:287-304. https://doi.org/10.1016/j.jconrel.2022.05.035 PMid:35644289
70. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale research letters, 2021; 16(1):173. https://doi.org/10.1186/s11671-021-03628-6 PMid:34866166 PMCid:PMC8645667
71. Almanghadim HG, Nourollahzadeh Z, Khademi NS, Tezerjani MD, Sehrig FZ, Estelami N, Shirvaliloo M, Sheervalilou R, Sargazi S. Application of nanoparticles in cancer therapy with an emphasis on cell cycle. Cell biology international, 2021; 45(10):1989-1998. https://doi.org/10.1002/cbin.11658 PMid:34233087
72. Pal R, Pandey P, Koli M, Srivastava K, Tiwari V, Gaur AK, Dutta P. The comprehensive review: Exploring future potential of nasopulmonary drug delivery systems for nasal route drug administration. Journal of Drug Delivery and Therapeutics, 2024; 14(3):126-136. https://doi.org/10.22270/jddt.v14i3.6444
73. Huang X, He T, Liang X, Xiang Z, Liu C, Zhou S, Luo R, Bai L, Kou X, Li X, Wu R. Advances and applications of nanoparticles in cancer therapy. MedComm-oncology, 2024; 3(1):e67. https://doi.org/10.1002/mog2.67
74. Zhao R, Xiang J, Wang B, Chen L, Tan S. Recent advances in the development of noble metal NPs for cancer therapy. Bioinorganic Chemistry and Applications, 2022; 2022(1):2444516. https://doi.org/10.1155/2022/2444516 PMid:35126483 PMCid:PMC8816609
75. Siddique S, Chow JC. Gold nanoparticles for drug delivery and cancer therapy. Applied Sciences, 2020; 10(11):3824. https://doi.org/10.3390/app10113824
76. Aminolroayaei F, Shahbazi‐Gahrouei D, Shahbazi‐Gahrouei S, Rasouli N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET nanobiotechnology, 2021; 15(3):247-256. https://doi.org/10.1049/nbt2.12021 PMid:34694670 PMCid:PMC8675832
77. Taha RH. Green synthesis of silver and gold nanoparticles and their potential applications as therapeutics in cancer therapy; a review. Inorganic Chemistry Communications, 2022; 143:109610. https://doi.org/10.1016/j.inoche.2022.109610
78. Aghebati‐Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, Yousefi M, Aghebati‐Maleki L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of cellular physiology, 2020; 235(3):1962-1972. https://doi.org/10.1002/jcp.29126 PMid:31441032
79. Bayford R, Rademacher T, Roitt I, Wang SX. Emerging applications of nanotechnology for diagnosis and therapy of disease: a review. Physiological measurement, 2017; 38(8):R183. https://doi.org/10.1088/1361-6579/aa7182 PMid:28480874
80. Zhao R, Xiang J, Wang B, Chen L, Tan S. Recent advances in the development of noble metal NPs for cancer therapy. Bioinorganic Chemistry and Applications, 2022; 2022(1):2444516. https://doi.org/10.1155/2022/2444516 PMid:35126483 PMCid:PMC8816609
81. Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano today, 2014; 9(2):223-243. https://doi.org/10.1016/j.nantod.2014.04.008 PMid:25132862 PMCid:PMC4129396
82. Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. Journal of microencapsulation, 2021; 38(6):414-436. https://doi.org/10.1080/02652048.2021.1942275 PMid:34157915
83. Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB. Integrated approach of agri-nanotechnology: challenges and future trends. Frontiers in Plant Science, 2017; 8:471. https://doi.org/10.3389/fpls.2017.00471 PMid:28421100 PMCid:PMC5378785
84. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale research letters, 2021; 16(1):173. https://doi.org/10.1186/s11671-021-03628-6 PMid:34866166 PMCid:PMC8645667
85. Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, Chithrani BD, Cho SH, Cook JR, Favaudon V, Gholami YH. Roadmap for metal nanoparticles in radiation therapy: Current status, translational challenges, and future directions. Physics in Medicine & Biology, 2020; 65(21):21RM02. https://doi.org/10.1088/1361-6560/ab9159 PMid:32380492
86. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 2022; 26:102336. https://doi.org/10.1016/j.eti.2022.102336
87. Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy: Current status, challenges and future prospects. Therapeutic delivery, 2019; 10(2):113-132. https://doi.org/10.4155/tde-2018-0062 PMid:30678550
Published



How to Cite
Issue
Section
Copyright (c) 2025 Isani Dutta , Atibur Rahaman , Suryavardhan Singh , Nandlal Kumar , Mayank Kumar Tiwari

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).