Microneedle Delivery of Protein and Peptides: Advances in Drug Delivery
Abstract
Microneedles are the advances in the transdermal drug delivery system of proteins and peptide drugs which exerts its effect through the formation of the micro channels. Microneedles are of various types such as solid microneedles, dissolving microneedles, metallic microneedles, 3D printed microneedles; polymer based microneedles, Hydrogel microneedles and coated microneedles. Microneedle characterization is the most important part after the formulation. These dosage forms have both advantages and limitations. Stability enhancement, targeted drug delivery, low invasiveness, enhanced skin absorption etc. are some of the advantages associated with microneedles. Likewise shallow penetration, chances of skin irritation and injury, chances of degradation in different extreme temperature and pH etc. are some of the limitations. Needle integrity, uniform drug distribution, diffusion and degradation, sterility and contamination, immunogenicity and immune response, Activity preservation are the crucial parts that should be controlled during formulation. Improved stability of proteins, stabilization of inactive ingredients, utilization in the field of gene therapy and mRNA delivery, development of smart microneedles, development of multilayered microneedles, ligand targeting etc. are some of the advances in the microneedle delivery system. These delivery systems are widely recognized as the future of the drug delivery addressing the challenges associated with the patient compliance.
Keywords: Microneedles, Needle Integrity, Immunogenicity, Patient compliance
Keywords:
Microneedles, Needle Integrity, Immunogenecity, Patient ComplianceDOI
https://doi.org/10.22270/jddt.v15i2.6995References
1. Banga AK. Therapeutic peptides and proteins: formulation, processing, and delivery systems: CRC press; 2005.
https://doi.org/10.1201/9781420039832
2. Herwadkar A, Banga AK. Transdermal delivery of peptides and proteins. Peptide and protein delivery: Elsevier; 2011. p. 69-86. https://doi.org/10.1016/B978-0-12-384935-9.10004-5
3. Adhikari D, Pokhrel S. An Overview on Protein and Peptide Drug Delivery System: Advancesand Strategies. Journal of Drug Discovery and Health Sciences. 2024;1(04):239-43.
4. Banga AK. Transdermal and intradermal delivery of therapeutic agents: application of physical technologies: CRC press; 2011. https://doi.org/10.1201/b10906
5. Magnusson B, Runn P. Effect of penetration enhancers on the permeation of the thyrotropin releasing hormone analogue pGlu-3-methyl-His-Pro amide through human epidermis. International journal of pharmaceutics. 1999;178(2):149-59. https://doi.org/10.1016/S0378-5173(98)00316-0 PMid:10205635
6. Herwadkar A, Banga AK. Peptide and protein transdermal drug delivery. Drug Discovery Today: Technologies. 2012;9(2):e147-e54. https://doi.org/10.1016/j.ddtec.2011.11.007 PMid:24064275
7. Sivamani RK, Liepmann D, Maibach HI. Microneedles and transdermal applications. Expert opinion on drug delivery. 2007;4(1):19-25. https://doi.org/10.1517/17425247.4.1.19 PMid:17184159
8. Sachdeva V, K. Banga A. Microneedles and their applications. Recent patents on drug delivery & formulation. 2011;5(2):95-132. https://doi.org/10.2174/187221111795471445 PMid:21453248
9. Banga AK. Microporation applications for enhancing drug delivery. Expert opinion on drug delivery. 2009;6(4):343-54. https://doi.org/10.1517/17425240902841935 PMid:19348604
10. Reinke A, Whiteside EJ, Windus L, Desai D, Stehr E, Rad ZF. The advantages of microneedle patches compared to conventional needle-based drug delivery and biopsy devices in medicine. Biomedical Engineering Advances. 2024:100127. https://doi.org/10.1016/j.bea.2024.100127
11. Tariq N, Ashraf MW, Tayyaba S. A review on solid microneedles for biomedical applications. Journal of Pharmaceutical Innovation. 2022;17(4):1464-83. https://doi.org/10.1007/s12247-021-09586-x
12. Rabiei M, Kashanian S, Bahrami G, Derakhshankhah H, Barzegari E, Samavati SS, et al. Dissolving microneedle-assisted long-acting Liraglutide delivery to control type 2 diabetes and obesity. European Journal of Pharmaceutical Sciences. 2021;167:106040. https://doi.org/10.1016/j.ejps.2021.106040 PMid:34655736
13. Singh P, Carrier A, Chen Y, Lin S, Wang J, Cui S, et al. Polymeric microneedles for controlled transdermal drug delivery. Journal of controlled release. 2019;315:97-113. https://doi.org/10.1016/j.jconrel.2019.10.022 PMid:31644938
14. Kapoor Y, Milewski M, Dick L, Zhang J, Bothe JR, Gehrt M, et al. Coated microneedles for transdermal delivery of a potent pharmaceutical peptide. Biomedical microdevices. 2020;22:1-10. https://doi.org/10.1007/s10544-019-0462-1 PMid:31845070
15. Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD, et al. Transdermal delivery of desmopressin using a coated microneedle array patch system. Journal of controlled release. 2004;97(3):503-11. https://doi.org/10.1016/S0168-3659(04)00171-3 PMid:15212882
16. Hong X, Wu Z, Chen L, Wu F, Wei L, Yuan W. Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Letters. 2014;6:191-9. https://doi.org/10.1007/BF03353783
17. Kim M, Jung B, Park J-H. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials. 2012;33(2):668-78. https://doi.org/10.1016/j.biomaterials.2011.09.074 PMid:22000788
18. Sargioti N, Levingstone TJ, O'Cearbhaill ED, McCarthy HO, Dunne NJ. Metallic microneedles for transdermal drug delivery: Applications, fabrication techniques and the effect of geometrical characteristics. Bioengineering. 2022;10(1):24. https://doi.org/10.3390/bioengineering10010024 PMid:36671595 PMCid:PMC9855189
19. Davis SP, Martanto W, Allen MG, Prausnitz MR. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Transactions on Biomedical Engineering. 2005;52(5):909-15. https://doi.org/10.1109/TBME.2005.845240 PMid:15887540
20. Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. Iscience. 2021;24(1). https://doi.org/10.1016/j.isci.2020.102012 PMid:33506186 PMCid:PMC7814162
21. Wu M, Zhang Y, Huang H, Li J, Liu H, Guo Z, et al. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Materials Science and Engineering: C. 2020;117:111299. https://doi.org/10.1016/j.msec.2020.111299 PMid:32919660
22. Yang Q, Zhong W, Xu L, Li H, Yan Q, She Y, et al. Recent progress of 3D-printed microneedles for transdermal drug delivery. International journal of pharmaceutics. 2021;593:120106. https://doi.org/10.1016/j.ijpharm.2020.120106 PMid:33232756
23. Puri A, Nguyen HX, Tijani AO, Banga AK. Characterization of microneedles and microchannels for enhanced transdermal drug delivery. Therapeutic Delivery. 2021;12(1):77-103. https://doi.org/10.4155/tde-2020-0096 PMid:33410340
24. Lutton RE, Moore J, Larrañeta E, Ligett S, Woolfson AD, Donnelly RF. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug delivery and translational research. 2015;5:313-31. https://doi.org/10.1007/s13346-015-0237-z PMid:26022578
25. Avcil M, Çelik A. Microneedles in drug delivery: progress and challenges. Micromachines. 2021;12(11):1321. https://doi.org/10.3390/mi12111321 PMid:34832733 PMCid:PMC8623547
26. Dillon C, Hughes H, O'Reilly NJ, Allender CJ, Barrow DA, McLoughlin P. Dissolving microneedle based transdermal delivery of therapeutic peptide analogues. International Journal of Pharmaceutics. 2019;565:9-19. https://doi.org/10.1016/j.ijpharm.2019.04.075 PMid:31047995
27. Dillon C, Hughes H, O'Reilly NJ, McLoughlin P. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. International Journal of Pharmaceutics. 2017;526(1-2):125-36. https://doi.org/10.1016/j.ijpharm.2017.04.066 PMid:28461268
28. Wu Y, Vora LK, Wang Y, Adrianto MF, Tekko IA, Waite D, et al. Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye. European Journal of Pharmaceutics and Biopharmaceutics. 2021;165:306-18. https://doi.org/10.1016/j.ejpb.2021.05.022 PMid:34048879
29. Liu S, Zhang S, Duan Y, Niu Y, Gu H, Zhao Z, et al. Transcutaneous immunization of recombinant Staphylococcal enterotoxin B protein using a dissolving microneedle provides potent protection against lethal enterotoxin challenge. Vaccine. 2019;37(29):3810-9. https://doi.org/10.1016/j.vaccine.2019.05.055 PMid:31147275
30. Kochhar JS, Zou S, Chan SY, Kang L. Protein encapsulation in polymeric microneedles by photolithography. International journal of nanomedicine. 2012:3143-54. https://doi.org/10.2147/IJN.S32000 PMid:22787403 PMCid:PMC3392142
31. Bisgaard SI. Evaluation of In-plane Silicon Microneedles for Allergy Diagnostics. 2023.
32. Zhao B, Jin Z, Yu Y, Li Y, Wang J, Wan W, et al. A Thermostable Dissolving Microneedle Vaccine with Recombinant Protein of Botulinum Neurotoxin Serotype A. Toxins. 2022;14(12):881. https://doi.org/10.3390/toxins14120881 PMid:36548778 PMCid:PMC9781108
33. Mönkäre J, Nejadnik MR, Baccouche K, Romeijn S, Jiskoot W, Bouwstra JA. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery. Journal of controlled release. 2015;218:53-62. https://doi.org/10.1016/j.jconrel.2015.10.002 PMid:26437262
34. Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Advanced Drug Delivery Reviews. 2023;199:114904. https://doi.org/10.1016/j.addr.2023.114904 PMid:37263542 PMCid:PMC10526705
35. Courtenay AJ, McCrudden MT, McAvoy KJ, McCarthy HO, Donnelly RF. Microneedle-mediated transdermal delivery of bevacizumab. Molecular pharmaceutics. 2018;15(8):3545-56. https://doi.org/10.1021/acs.molpharmaceut.8b00544 PMid:29996645
36. Fukushima K, Ise A, Morita H, Hasegawa R, Ito Y, Sugioka N, et al. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharmaceutical research. 2011;28:7-21. https://doi.org/10.1007/s11095-010-0097-7 PMid:20300802
37. Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: Applications and growing therapeutic potential. Journal of Controlled Release. 2022;348:186-205. https://doi.org/10.1016/j.jconrel.2022.05.045 PMid:35662577
38. Chen J, Bian J, Hantash BM, Albakr L, Hibbs DE, Xiang X, et al. Enhanced skin retention and permeation of a novel peptide via structural modification, chemical enhancement, and microneedles. International Journal of Pharmaceutics. 2021;606:120868. https://doi.org/10.1016/j.ijpharm.2021.120868 PMid:34242628
39. Asfour MH. Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques. Drug delivery and translational research. 2021;11:1-23. https://doi.org/10.1007/s13346-020-00746-z PMid:32337668
40. Yang L, Yang Y, Chen H, Mei L, Zeng X. Polymeric microneedle‐mediated sustained release systems: Design strategies and promising applications for drug delivery. Asian Journal of Pharmaceutical Sciences. 2022;17(1):70-86. https://doi.org/10.1016/j.ajps.2021.07.002 PMid:35261645 PMCid:PMC8888142
41. Yadav AR, Mohite SK. Recent advances in protein and peptide drug delivery. Research journal of pharmaceutical dosage forms and technology. 2020;12(3):205-12. https://doi.org/10.5958/0975-4377.2020.00035.X
42. Schuetz YB, Naik A, Guy RH, Kalia YN. Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert opinion on drug delivery. 2005;2(3):533-48. https://doi.org/10.1517/17425247.2.3.533 PMid:16296773
43. Koenitz L, Crean A, Vucen S. Stress factors affecting protein stability during the fabrication and storage of dissolvable microneedles. RPS Pharmacy and Pharmacology Reports. 2024;3(3):rqae018. https://doi.org/10.1093/rpsppr/rqae018
44. Long L-y, Zhang J, Yang Z, Guo Y, Hu X, Wang Y. Transdermal delivery of peptide and protein drugs: Strategies, advantages and disadvantages. Journal of Drug Delivery Science and Technology. 2020;60:102007. https://doi.org/10.1016/j.jddst.2020.102007
45. Lewis AL, Richard J. Challenges in the delivery of peptide drugs: an industry perspective. Therapeutic Delivery. 2015;6(2):149-63. https://doi.org/10.4155/tde.14.111 PMid:25690084
46. Liu T, Chen M, Fu J, Sun Y, Lu C, Quan G, et al. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharmaceutica Sinica B. 2021;11(8):2326-43. https://doi.org/10.1016/j.apsb.2021.03.003 PMid:34522590 PMCid:PMC8424228
47. Babity S, Laszlo E, Brambilla D. Polymer-based microneedles for decentralized diagnostics and monitoring: concepts, potentials, and challenges. Chemistry of Materials. 2021;33(18):7148-59. https://doi.org/10.1021/acs.chemmater.1c01866
48. Ito Y, Hirono M, Fukushima K, Sugioka N, Takada K. Two-layered dissolving microneedles formulated with intermediate-acting insulin. International journal of pharmaceutics. 2012;436(1-2):387-93. https://doi.org/10.1016/j.ijpharm.2012.06.047 PMid:22750407
49. Korkmaz E, Friedrich EE, Ramadan MH, Erdos G, Mathers AR, Ozdoganlar OB, et al. Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta biomaterialia. 2015;24:96-105. https://doi.org/10.1016/j.actbio.2015.05.036 PMid:26093066 PMCid:PMC8266287
50. Koh KJ, Liu Y, Lim SH, Loh XJ, Kang L, Lim CY, et al. Formulation, characterization and evaluation of mRNA-loaded dissolvable polymeric microneedles (RNApatch). Scientific reports. 2018;8(1):11842. https://doi.org/10.1038/s41598-018-30290-3 PMid:30087399 PMCid:PMC6081392
51. Abbas AA, Hanif W, Steer I, Hasan E, Teenan O, Akhavani M, et al. ProT-Patch: A Smart Coated Polymeric Microneedle Enables Noninvasive Protein Delivery and Reprogramming of Epidermal Skin Identity. ACS Materials Letters. 2024;6(11):4997-5005. https://doi.org/10.1021/acsmaterialslett.4c01609
52. Larrañeta E, McCrudden MT, Courtenay AJ, Donnelly RF. Microneedles: a new frontier in nanomedicine delivery. Pharmaceutical research. 2016;33:1055-73. https://doi.org/10.1007/s11095-016-1885-5 PMid:26908048 PMCid:PMC4820498
53. Kim H, Seong K-Y, Lee JH, Park W, Yang SY, Hahn SK. Biodegradable microneedle patch delivering antigenic peptide-hyaluronate conjugate for cancer immunotherapy. ACS Biomaterials Science & Engineering. 2019;5(10):5150-8. https://doi.org/10.1021/acsbiomaterials.9b00961 PMid:33455221
54. Lamprou DA. Emerging Technologies in the Delivery of Proteins and Peptides. Bioprocess Online. 2021
Published



How to Cite
Issue
Section
Copyright (c) 2025 Diwas Adhikari , Sharada Pokhrel

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).