Nanotechnology in Drug Delivery System: A New Approach
Abstract
An extensive examination of the prior developments of drug delivery systems (DDS) based on nanoparticles will be covered in this study, along with novel research findings on the therapeutic improvement of antiretroviral therapy. Practitioners will be able to provide medications to target particular body parts thanks to the use of nanoparticle DDS. The application of nanoparticles as a DDS is having a discernible therapeutic impact in the treatment of cancers. DDS will also be used in medical imaging to illuminate brain function, cancers, or other body cellular activities. There is great promise for using nanoparticle DDS to enhance human health. Its unique features, such as its nanoscale structure, improved permeability and retention capacity, higher surface-area-to-volume ratio, ability to be functionalized on the surface etc., make it a successful drug delivery method for the administration of antiviral treatments. The more important variables that impact target-specific drug delivery, optimal cellular uptake, degree of opsonization by host immune cells, drug retention time, transcytosis, biological half-life extension, in vivo stability, and cytotoxicity are nevertheless the size, shape, charge, and surface topology of the nanoparticles. The review will shed light on the significant obstacle of clinical safety and efficacy as well as the elaborate role of drug delivery based on nanotechnology.
Keywords: Nanotechnology, Dendrimers, Controlled drug release, Nanoparticle, Nanospheres.
Keywords:
Nanotechnology, Dendrimers, Controlled drug release, Nanoparticles, NanospheresDOI
https://doi.org/10.22270/jddt.v15i2.6988References
1. Sahu T, Ratre RK, Chauhan S, Lvks Bhaskar, et al., Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science, Journal of Drug Delivery Science and Technology, 2021; 63:1773-2247. https://doi.org/10.1016/j.jddst.2021.102487
2. Medical Advisory Secretariat. Coil embolization for intracranial aneurysms: an evidence-based analysis, Ont Health Technol Assess Ser, 2006; 6(1):111-114.
3. Sichert JA, Tong Y, Mutz N, Vollmer M, et al., Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets, Nano Lett, 2015; 15(10):6521-6527. https://doi.org/10.1021/acs.nanolett.5b02985 PMid:26327242
4. Zandonella C, The tiny toolkit, Nature, 2003; 423: 10-12. https://doi.org/10.1038/423010a PMid:12721596
5. Moghimi SM, Farhangrazi ZS, Nanomedicine and the complement paradigm, Nanomedicine: Nanotechnology, Biology and Medicine, 2013; 9(4):458-460. https://doi.org/10.1016/j.nano.2013.02.011 PMid:23499667
6. Zarrintaj P, Moghaddam AS, Manouchehri S, Atoufi Z, et al., Can regenerative medicine and nanotechnology combine to heal wounds The search for the ideal wound dressing, Nanomedicine, 2017; 12(19):2403-2422. https://doi.org/10.2217/nnm-2017-0173 PMid:28868968
7. Stirland DL, Nichols JW, Denison TA, Bae YH, Targeted drug delivery for cancer therapy, Biomaterials for Cancer Therapeutics, Woodhead Publishing, 2013; 31-56. https://doi.org/10.1533/9780857096760.1.31
8. Dobrovolskaia MA, Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy, Journal of Control Release, 2015; 571-83. https://doi.org/10.1016/j.jconrel.2015.08.056 PMid:26348388 PMCid:PMC4688153
9. Farokhzad OC, Langer R, Impact of nanotechnology on drug delivery, ACS Nano, 2009; 3(1):16-20. https://doi.org/10.1021/nn900002m PMid:19206243
10. Reibold M, Paufler P, Levin A et al., Carbon nanotubes in an ancient Damascus sabre, Nature, 2006; 444(7117): 286. https://doi.org/10.1038/444286a PMid:17108950
11. Mappes T, Jahr N, Csaki A, et al., The invention of immersion ultramicroscopy in 1912-the birth of nanotechnology, Angew Chem Int Ed Engl, 2012; 51(45):11208-11212. https://doi.org/10.1002/anie.201204688 PMid:23065955
12. Krukemeyer MG, Krenn V, Huebner F, Wagner W et al., History and Possible Uses of Nanomedicine Based on Nanoparticles and Nanotechnological Progress, Journal of Nanomedicine & Nanotechnology, 2015; 6: 336. https://doi.org/10.4172/2157-7439.1000336
13. Feynman RP, There's plenty of room at the bottom, An invitation to enter a new field of physics, Engineering and Science (Caltech), 1960; 23: 22-36.
14. Drexler KE, Engines of Creation, The coming era of nanotechnology, Anchor Books, New York, 1986.
15. Drexler KE, Peterson C, Pergamit G, Unbounding the Future: The nanotechnology revolution, Morrow, New York, 1991.
16. Freitas Jr RA, Nanomedicine, vol. I: Basic capabilities, Landes Bioscience, Georgetown, TX, USA, 1999.
17. Kreuter J, Nanoparticles a historical perspective, International Journal of Pharmaceutics, 2007; 331(1):1-10. https://doi.org/10.1016/j.ijpharm.2006.10.021 PMid:17110063
18. Noorlander CW, Kooi MW, Oomen AG, Park MV, et al., Horizon scan of nanomedicinal products, Nanomedicine, 2015; 10(10):1599-1608. https://doi.org/10.2217/nnm.15.21 PMid:25694061
19. Agrawal M, Saraf S, Antimisiaris SG, Hamano N, et al., Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region, Expert Opinion on Drug Delivery, 2018; 15(6):589-617. https://doi.org/10.1080/17425247.2018.1471058 PMid:29733231
20. Jogani VV, Shah PJ, Mishra P, Mishra AK, et al., Intranasal mucoadhesive microemulsion of tacrine to improve brain targeting, Alzheimer Disease and Association Disorder, 2008; 22(2):116-24. https://doi.org/10.1097/WAD.0b013e318157205b .
21. Majumder J, Taratula O, Minko T, Nanocarrier-based systems for targeted and site specific therapeutic delivery, Advanced Drug Delivery Reviews, 2019; 144:57-77. https://doi.org/10.1016/j.addr.2019.07.010 PMid:31400350 PMCid:PMC6748653
22. Li X, Tsibouklis J, Weng T, et al., Nano carriers for drug transport across the blood-brain barrier, Journal of Drug Target, 2017; 25(1):17-28. https://doi.org/10.1080/1061186X.2016.1184272 PMid:27126681
23. Agrawal M, Saraf S, Antimisiaris SG, Hamano N, et al., Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region, Expert Opinion on Drug Delivery, 2018; 15(6):589-617. https://doi.org/10.1080/17425247.2018.1471058 PMid:29733231
24. Talelli M, Hennink WE, Thermosensitive polymeric micelles for targeted drug delivery, Nanomedicine, 2011; 6(7):1245-55. https://doi.org/10.2217/nnm.11.91 PMid:21929459
25. Shah P, Chavda K, Vyas B, Patel S, Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: Role of P-gp inhibition, Drug Delivery Translational Research, 2021; 11: 1166-1185. https://doi.org/10.1007/s13346-020-00839-9 PMid:32804301
26. Miller MR, Shaw CA, Langrish JP, From particles to patients: oxidative stress and the cardiovascular effects of air pollution, Future Cardiol, 2012; 8(4):577-602. https://doi.org/10.2217/fca.12.43 PMid:22871197
27. Alexis F, Pridgen E, Molnar LK, Farokhzad OC, Factors affecting the clearance and biodistribution of polymeric nanoparticles, Mol Pharm, 2008; 5(4):505-15. https://doi.org/10.1021/mp800051m PMid:18672949 PMCid:PMC2663893
28. Prabhu RH, Patravale VB, Joshi MD, Polymeric nanoparticles for targeted treatment in oncology: current insights, International Journal of Nanomedicine, 2015; 10:1001-1018. https://doi.org/10.2147/IJN.S56932 PMid:25678788 PMCid:PMC4324541
29. Danhier F, Lecouturier N, Vroman B, Jérôme C, et al., Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation, Journal of Controlled Release, 2009; 133(1):11-7. https://doi.org/10.1016/j.jconrel.2008.09.086 PMid:18950666
30. Oerlemans C, Bult W, Bos M, Storm G, et al., Polymeric micelles in anticancer therapy: targeting, imaging and triggered release, Pharmaceutical Research, 2010; 27(12):2569-2589. https://doi.org/10.1007/s11095-010-0233-4 PMid:20725771 PMCid:PMC2982955
31. Jin X, Mo R, Ding Y, Zheng W, et al., Paclitaxel-loaded N-octyl-O-sulphate chitosan micelles for superior cancer therapeutic efficacy and overcoming drug resistance, Molecular Pharmaceutic Journal, 2014; 11(1):145-157. https://doi.org/10.1021/mp400340k PMid:24261922
32. Bharali DJ, Khalil M, Gurbuz M, Simone TM, et al., Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers, International Journal of Nanomedicine, 2009; 4:1-7.
33. Morgan MT, Carnahan MA, Immoos CE, Ribeiro AA, et al., Dendritic molecular capsules for hydrophobic compounds, Journal of American Chemical Society, 2003; 125(50):15485-15489. https://doi.org/10.1021/ja0347383 PMid:14664594
34. Levine DH, Ghoroghchian PP, Freudenberg J, Zhang G, et al., Polymersomes: a new multi-functional tool for cancer diagnosis and therapy, Methods, 2008; 46(1):25-32. https://doi.org/10.1016/j.ymeth.2008.05.006 PMid:18572025 PMCid:PMC2714227
35. Han L, Tang C, Yin C, Effect of binding affinity for siRNA on the in vivo antitumor efficacy of polyplexes, Biomaterials, 2013; 34(21):5317-5327. https://doi.org/10.1016/j.biomaterials.2013.03.060 PMid:23591392
36. Wong HL, Rauth AM, Bendayan R, Manias JL, et al., A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells, Pharmaceutical Research, 2006; 23(7):1574-1585. https://doi.org/10.1007/s11095-006-0282-x PMid:16786442
37. Asati A, Santra S, Kaittanis C, Perez JM, Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles, ACS Nano, 2010; 4(9):5321–5331. doi: 10.1021/nn100816s
38. Couvreur P, Vauthier C, Nanotechnology: intelligent design to treat complex disease, Pharmaceutical Research, 2006; 23(7):1417-1450. https://doi.org/10.1007/s11095-006-0284-8 PMid:16779701
39. Peppas NA, Bures P, Leobandung W, Ichikawa H, Hydrogels in pharmaceutical formulations, European Journal of Pharmaceutical and Biopharmaceutics, 2000; 50(1):27-46. https://doi.org/10.1016/S0939-6411(00)00090-4 PMid:10840191
40. De Jong WH, Borm PJ, Drug delivery and nanoparticles: applications and hazards, International Journal of Nanomedicine, 2008; 3(2):133-149. https://doi.org/10.2147/IJN.S596 PMid:18686775 PMCid:PMC2527668
41. Dufresne MH, Miele E, The impact of nanoparticles on drug delivery, Nanomedicine: Nanotechnology, Biology and Medicine, 2015; 11(7):1679-1694.
42. Maeda H, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, Advances Enzyme Regulation, 2001; 41:189-207. https://doi.org/10.1016/S0065-2571(00)00013-3 PMid:11384745
43. Kroll, Jesse H. et al. "Carbon Oxidation State as a Metric for Describing the Chemistry of Atmospheric Organic Aerosol." Nature Chemistry 3.2 (2011); 133-139. https://doi.org/10.1038/nchem.948 PMid:21258386
44. Peres M, Pereira JA, "Nanomedicine: Advances in Nanotechnology for Drug Delivery", Pharmaceuticals, 2022; 15(4):453.
45. Jain RK, et al., "Delivery of nanomedicines: role of nanoparticle size and shape." Molecular Pharmaceutics, 2006; 3(5):656-660
46. Elsabahy M, Wooley KL, Design of polymeric nanoparticles for biomedical delivery applications, Chemical Society Reviews, 2012; 41:2545-2561. https://doi.org/10.1039/c2cs15327k PMid:22334259 PMCid:PMC3299918
47. Guo S, Li D, Zhang L, Li J, et al., Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery, Biomaterials, 2009; 30(10):1881-1889. https://doi.org/10.1016/j.biomaterials.2008.12.042 .
48. Calvo P, Vila-Jato JL, Alonso MJ, Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers, Journal of Pharmaceutical Sciences, 1996; 85(5):530-6. https://doi.org/10.1021/js950474+ PMid:8742946
49. Moorthi C, Kathiresan, Fabrication of Dual Drug Loaded Polymeric Nanosuspension: Incorporating Analytical Hierarchy Process and Data Envelopment Analysis in the Selection of a Suitable Method, International Journal of Pharmacy and Pharmaceutical Science, 2013; 5(2):499-504. https://api.semanticscholar.org/CorpusID:73612613
50. Morose G, The 5 principles of design for safer nanotechnology, Journal of Cleaner Production, 2010; 18(3):285-289. https://doi.org/10.1016/j.jclepro.2009.10.001
51. Marin E, Briceño ML, Caballero GC, Critical evaluation of biodegradable polymers used in nanodrugs, International Journal of Nanomedicines, 2013; 8:3071. https://doi.org/10.1016/j.jclepro.2009.10.001
52. Herrero EP, Alonso MJ, Csaba N, Polymer-based oral peptide nanomedicines, Therapeutic Delivery, 2012; 3(5):657-668. https://doi.org/10.4155/tde.12.40 PMid:22834409
53. Kadajji VG, Betageri GV, Water Soluble Polymers for Pharmaceutical Applications, Polymers, 2011; 3(4):1972-2009. https://doi.org/10.3390/polym3041972
54. Kalepu S, Manthina M, Padavala V, Oral lipid-based drug delivery systems-an overview, Acta Pharmaceutica Sinica B 3, 2013; 361-372. https://doi.org/10.1016/j.apsb.2013.10.001
55. Cavalli R, Caputo O, Carlotti ME, Trotta M, et al., Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles, International Journal of Pharmaceutics, 1997; 148:47-54. https://doi.org/10.1016/S0378-5173(96)04822-3
56. Mehta SK, Jindal N, Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs, Colloids Surfaces B:Biointerfaces, 2013; 101:434-441. https://doi.org/10.1016/j.colsurfb.2012.07.006 PMid:23010052
57. Singh P, Prabakaran D, Jain S, Mishra V, et al., Cholera toxin B subunit conjugated bile salt stabilized vesicles (bilosomes) for oral immunization, International Journal of Pharmaceutics, 2004; 278(2):379-390. https://doi.org/10.1016/j.ijpharm.2004.03.014 PMid:15196642
58. Shukla A, Khatri K, Gupta PN, Goyal AK, et al., Oral immunization against hepatitis B using bile salt stabilized vesicles (bilosomes), Journal of Pharmacy and Pharmaceutical Sciences, 2008; 11(1):59-66. https://doi.org/10.18433/J3K01M PMid:18445364
59. Venkateswarlu V, Manjunath K, Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles, Journal of Controlled Release, 2004; 95(3):627-638. https://doi.org/10.1016/j.jconrel.2004.01.005 PMid:15023472
60. Yang S, Zhu J, Lu Y, Liang B, et al., Body distribution of camptothecin solid lipid nanoparticles after oral administration, Pharmaceutical Research, 1999; 16(5):751-757. https://doi.org/10.1023/A:1018888927852 PMid:10350020
61. Hu L, Xing Q, Meng J, Shang C, Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles, AAPS PharmSciTech, 2010; 11(2):582-587. https://doi.org/10.1208/s12249-010-9410-3 PMid:20352534 PMCid:PMC2902353
62. Makadia HK, Siegel SJ, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers (Basel), 2011; 3(3):1377-1397. https://doi.org/10.3390/polym3031377 PMid:22577513 PMCid:PMC3347861
63. Ali H, Kalashnikova I, White MA, Sherman M, et al., Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model, International Journal of Pharmaceutics, 2013; 454(1):149-157. https://doi.org/10.1016/j.ijpharm.2013.07.010 PMid:23850397 PMCid:PMC3800161
64. Chernyak Y, Henon F, Harris RB, Gould RD, et al., Formation of perfluoropolyether coatings by the rapid expansion of supercritical solutions (RESS) process Part 1: experimental results, Industrial & Engineering Chemistry Research journal 2001; 40(26):6118-6126. https://doi.org/10.1021/ie010267m
65. Desai MP, Labhasetwar V, Walter E, et al., The Mechanism of Uptake of Biodegradable Microparticles in Caco-2 Cells Is Size Dependent, Pharmaceutical Research 14, 1997; 1568-1573 https://doi.org/10.1023/A:1012126301290 PMid:9434276
66. Rao JP, Geckeler KE, Polymer nanoparticles: preparation techniques and size-control Parameters, Progress in Polymer Science, 2011; 36(7):887-913. https://doi.org/10.1016/j.progpolymsci.2011.01.001
67. Öztürk K, Kaplan M, Çalış S. Effects of nanoparticle size, shape, and zeta potential on drug delivery, International Journal of Pharmaceutics, 2024;666. https://doi.org/10.1016/j.ijpharm.2024.124799 PMid:39369767
68. Couvreur P, Barratt G, Fattal E, Legrand P, et al., Nanocapsule technology: a review. Critical Reviews in Therapeutic Drug Carrier Systems, 2002; 19(2):99-134. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i2.10 PMid:12197610
69. Li X, et al., Nanoparticle-based Drug Delivery Systems for Targeted Cancer Therapy, Nanomedicine: Nanotech Bio and Medi, 2015; 11(6):1211-1233. https://doi.org/10.1016/j.smaim.2020.04.001 PMid:34553138 PMCid:PMC8455119
70. Sahana D., et al., Stability of Nanoparticles in Drug Delivery, Current Drug Metabolism, 2019; 20(6):492-506.
71. Muthu MS, Feng SS, Pharmaceutical stability aspects of nanomedicines, Nanomedicine, 2009; 4(8):857-60. https://doi.org/10.2217/nnm.09.75 PMid:19958220
72. Liu Y, et al., Immunogenicity of Nanoparticles, Nature Materials, 2017; 16(4):344-357.
73. Ferrari M., Cancer Nanotechnology: Opportunities and Challenges, Nature Reviews Cancer, 2005; 5(3):161-171. https://doi.org/10.1038/nrc1566 PMid:15738981
74. Kallinteri P, et al., Nanoparticles in Drug Delivery Systems, Nanomedi: Nanotech Biology and Medicine, 2015; 11(5):1115-1134.
75. Jin Y, Huan Y, Zhao JX, Wu M, Kannan S, Toxicity of nanomaterials to living cells, Proc Natl Acad Sci U S A, 2005; 59:42-43.
76. Mohanraj VJ, Chen Y, Nanoparticles-a review, J. Pharm. Res, 2006; 5(1):561-573. https://doi.org/10.4314/tjpr.v5i1.14634
77. Tsolou A, Angelou E, Didaskalou S, Bikiaris D, et al., Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery, Intern J of Nano, 2020; 15:4899-4918. https://doi.org/10.2147/IJN.S244712 PMid:32764924 PMCid:PMC7369311
78. Witzigmann D, Woodrow K, Lipid nanoparticles for RNA delivery, Current Opinion in Solid State and Materials Science, 2017; 21(1):1-9.
79. Langer R, Tirrell DA, Designing materials for biology and medicine, Nature, 2004; 428(6982):487-492. https://doi.org/10.1038/nature02388 PMid:15057821
80. Patel MM, Patel VH, Nanoparticles in drug delivery systems for treatment of central nervous system disorders, Current Drug Delivery, 2015; 12(1):1-11.
81. Dhanik A, Gupta R, Nanoparticles in inhalation drug delivery, J of Drug Del Sci and Technol, 2020; 56:101549. https://doi.org/10.1016/j.jddst.2020.101549
82. Sheng J, He H, Han L, Qin J, et al., Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates, J Contr Rel 2016; 233:181-190. https://doi.org/10.1016/j.jconrel.2016.05.015 PMid:27178809
83. Fong J, Liu Y, Nanotechnology in antimicrobial therapy: A review, J of Antimicro Chemo, 2018; 73(9):2355-2367.
84. Sondi I, Salopek-Sondi B, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J of Colloid and Interface Sci, 2004; 275(1):177-182. https://doi.org/10.1016/j.jcis.2004.02.012 PMid:15158396
85. Rosenberg B, Fundamental studies with cisplatin, Cancer, 1985; 55(10):2303-23l6. https://doi.org/10.1002/1097-0142(19850515)55:10<2303::AID-CNCR2820551002>3.0.CO;2-L PMid:3886121
86. Jain KK, Nanobiotechnology: a convergence of nanotechnology and biotechnology, Nature Nanotechnology, 2008; 3(4):201-204.
87. Sethi JK, et al., Nanoparticle-mediated Combination Therapy: A Novel Approach to Cancer Treatment, Frontiers in Pharmacology, 2019; 10:786.
88. Muller RH, Petersen RD, Hommoss A, Pardeike J, Nanostructured lipid carriers (NLC) in cosmetic dermal products, Adv. Drug Deliv. Rev., 2007; 59:522-530. https://doi.org/10.1016/j.addr.2007.04.012 PMid:17602783
89. Barenholz Y, Doxil®-Liposomal formulations of doxorubicin: A review, J of Controlled Release, 2012; 160(2):117-134. https://doi.org/10.1016/j.jconrel.2012.03.020 PMid:22484195
90. Desai N, Nanoparticle albumin-bound paclitaxel (Abraxane®): A novel injectable formulation of paclitaxel, Cancer Chemotherapy and Pharmacology, 2012; 62(5):151-160. https://doi.org/10.1007/978-981-10-2116-9_6
91. Gordeuk VR, et al., Ferumoxytol in iron-deficiency anaemia, The New England J of Medi, 2009; 361(4):314-324.
92. Raza K, et al., Recent developments in nanocarrier-based drug delivery for cancer therapy. Nanomedicine: Nanotech, Bio and Medi, 2023; 42(4):163-178.
93. Zhao L, et al., Targeted drug delivery via nanoparticle systems: Opportunities and challenges, Frontiers in Pharmacology, 2022; 13:803186.
94. Lachman L, Liberman HA, Kaing JL, Theory and practice of Industrial Pharmacy, 3rd ed. Mumbai: Varghese Publishing House; 1987. P. 26-30
Published



How to Cite
Issue
Section
Copyright (c) 2025 Sanket P. Shinde, Christopher Benjamin Lobo , Harshal Suresh Singh Rajput, Gaurav Fulchand Nikam

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).