Stem Cells Advancement and Applications: A Regenerative Medicines
Abstract
Innovative advancements in stem cell research have led to the development of organoids that serve as in vitro models for human organ development and disease studies. Developments in the culture of human pluripotent stem cells (hPSCs) have facilitated the creation of made tailored differentiation approaches, which have important uses in regenerative medicine. These advancements have enabled the implantation of hPSC-derived cell therapy products into patients, and the results of numerous ongoing clinical trials have been encouraging. A novel strategy for customized cell-based treatments for a range of human illnesses is ectopic expression of reprogramming factors, which allows adult somatic cells to be reprogrammed into induced pluripotent stem cells (IPSCs). The IPSCs technology is a useful tool for drug development and disease modelling, in addition to providing possible remedies. Similar to embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) are capable of genetic correction and can develop into any type of cell in the body. These features offer IPSCs a possible path way for the development of long-term treatments for a wide range of diseases that are currently incurable. Additionally, we review the potential uses of IPSCs and clinical examination of future cell culture strategies for large-scale production to improve patient accessibility.
Keywords: Induced pluripotent stem cells (IPSCs), regenerative medicine, stem cell reprogramming, embryonic stem cells, and human pluripotent stem cell.
Keywords:
Induced pluripotent stem cells (IPSCs), regenerative medicine, stem cell reprogramming, embryonic stem cells, human pluripotent stem cellDOI
https://doi.org/10.22270/jddt.v15i2.6979References
1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell. 2006 Aug 25;126(4):663-76. https://doi.org/10.1016/j.cell.2006.07.024 PMid:16904174
2. Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012 Jan 19;481(7381):295-305. https://doi.org/10.1038/nature10761 PMid:22258608 PMCid:PMC3652331
3. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell. 2006 Aug 25;126(4):663-76. https://doi.org/10.1016/j.cell.2006.07.024 PMid:16904174
4. Wert GD, Mummery C. Human embryonic stem cells: research, ethics and policy. Human reproduction. 2003 Apr 1;18(4):672-82. https://doi.org/10.1093/humrep/deg143 PMid:12660256
5. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II. Induced pluripotent stem cell lines derived from human somatic cells. Obstetrical & Gynecological Survey. 2008 Mar 1;63(3):154-5. https://doi.org/10.1097/01.ogx.0000305193.72586.39
6. Kimbrel EA, Lanza R. Pluripotent stem cells: the last 10 years. Regenerative Medicine. 2016 Dec 1;11(8):831-47. https://doi.org/10.2217/rme-2016-0117 PMid:27908220
7. MJ B. Adult mice generated from induced pluripotent stem cells. Nature. 2009;461:91-4. https://doi.org/10.1038/nature08310 PMid:19672243
8. Kang L, Wang J, Zhang Y, Kou Z, Gao S. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell stem cell. 2009 Aug 7;5(2):135-8. https://doi.org/10.1016/j.stem.2009.07.001 PMid:19631602
9. Orkin RW, Gehron P, McGoodwin EB, Martin GR, Valentine T, Swarm R. A murine tumor producing a matrix of basement membrane. The Journal of experimental medicine. 1977 Jan 1;145(1):204-20. https://doi.org/10.1084/jem.145.1.204 PMid:830788 PMCid:PMC2180589
10. Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials. 2008 Apr 1;29(11):1630-7. https://doi.org/10.1016/j.biomaterials.2007.12.014 PMid:18201760
11. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang RR, Ueno Y, Zheng YW, Koike N, Aoyama S. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013 Jul 25;499(7459):481-4. https://doi.org/10.1038/nature12271 PMid:23823721
12. Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature biotechnology. 2015 Nov;33(11):1193-200. https://doi.org/10.1038/nbt.3392 PMid:26458176 PMCid:PMC4747858
13. Mills RJ, Titmarsh DM, Koenig X, Parker BL, Ryall JG, Quaife-Ryan GA, Voges HK, Hodson MP, Ferguson C, Drowley L, Plowright AT. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proceedings of the National Academy of Sciences. 2017 Oct 3;114(40):E8372-81.
14. Dekkers JF, Wiegerinck CL, De Jonge HR, Bronsveld I, Janssens HM, De Winter-de Groot KM, Brandsma AM, De Jong NW, Bijvelds MJ, Scholte BJ, Nieuwenhuis EE. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature medicine. 2013 Jul;19(7):939-45. https://doi.org/10.1038/nm.3201 PMid:23727931
15. Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, Chen Y, Clevers H. Organoid culture systems for prostate epithelial and cancer tissue. Nature protocols. 2016 Feb;11(2):347-58. https://doi.org/10.1038/nprot.2016.006 PMid:26797458 PMCid:PMC4793718
16. Chinta MS, Wan DC, Longaker MT. "Tissues in a dish": a review of organoids in plastic surgery. Plastic and Reconstructive Surgery-Global Open. 2020 Apr 1;8(4):e2787. https://doi.org/10.1097/GOX.0000000000002787 PMid:32440447 PMCid:PMC7209840
17. Chichagova V, Hilgen G, Ghareeb A, Georgiou M, Carter M, Sernagor E, Lako M, Armstrong L. Human iPSC differentiation to retinal organoids in response to IGF1 and BMP4 activation is line-and method-dependent. Stem Cells. 2020 Feb 1;38(2):195-201. https://doi.org/10.1002/stem.3116 PMid:31721366 PMCid:PMC7383896
18. Takasato M, Er PX, Chiu HS, Little MH. Generation of kidney organoids from human pluripotent stem cells. Nature protocols. 2016 Sep;11(9):1681-92. https://doi.org/10.1038/nprot.2016.098 PMid:27560173 PMCid:PMC5113819
19. Miller AJ, Hill DR, Nagy MS, Aoki Y, Dye BR, Chin AM, Huang S, Zhu F, White ES, Lama V, Spence JR. In vitroinduction andin vivoengraftment of lung bud tip progenitor cells derived from human pluripotent stem cells.
20. Czerniecki SM, Cruz NM, Harder JL, Menon R, Annis J, Otto EA, Gulieva RE, Islas LV, Kim YK, Tran LM, Martins TJ. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell stem cell. 2018 Jun 1;22(6):929-40. https://doi.org/10.1016/j.stem.2018.04.022 PMid:29779890 PMCid:PMC5984728
21. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell. 2007 Nov 30;131(5):861-72. https://doi.org/10.1016/j.cell.2007.11.019 PMid:18035408
22. Kobold S, Bultjer N, Stacey G, Mueller SC, Kurtz A, Mah N. History and current status of clinical studies using human pluripotent stem cells. Stem Cell Reports. 2023 Aug 8;18(8):1592-8. https://doi.org/10.1016/j.stemcr.2023.03.005 PMid:37028422 PMCid:PMC10444540
23. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS. Enrichment of neurons and neural precursors from human embryonic stem cells. Experimental neurology. 2001 Dec 1;172(2):383-97. https://doi.org/10.1006/exnr.2001.7832 PMid:11716562
24. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M. Autologous induced stem-cell-derived retinal cells for macular degeneration. New England Journal of Medicine. 2017 Mar 16;376(11):1038-46. https://doi.org/10.1056/NEJMoa1608368 PMid:28296613
25. Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, Bhoumik A, Cepa I, Cesario RM, Haakmeester C, Kadoya K. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PloS one. 2012 May 18;7(5):e37004. https://doi.org/10.1371/journal.pone.0037004 PMid:22623968 PMCid:PMC3356395
26. Wang YK, Zhu WW, Wu MH, Wu YH, Liu ZX, Liang LM, Sheng C, Hao J, Wang L, Li W, Zhou Q. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson's disease. Stem cell reports. 2018 Jul 10;11(1):171-82. https://doi.org/10.1016/j.stemcr.2018.05.010 PMid:29910127 PMCid:PMC6067059
27. Valamehr B, Robinson M, Abujarour R, Rezner B, Vranceanu F, Le T, Medcalf A, Lee TT, Fitch M, Robbins D, Flynn P. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem cell reports. 2014 Mar 11;2(3):366-81. https://doi.org/10.1016/j.stemcr.2014.01.014 PMid:24672758 PMCid:PMC3964282
28. Yamashita A, Yoshitomi H, Kihara S, Toguchida J, Tsumaki N. Culture substrate-associated YAP inactivation underlies chondrogenic differentiation of human induced pluripotent stem cells. Stem Cells Translational Medicine. 2021 Jan 1;10(1):115-27. https://doi.org/10.1002/sctm.20-0058 PMid:32822104 PMCid:PMC7780802
29. Kawamura T, Miyagawa S, Fukushima S, Maeda A, Kashiyama N, Kawamura A, Miki K, Okita K, Yoshida Y, Shiina T, Ogasawara K. Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates. Stem cell reports. 2016 Mar 8;6(3):312-20. https://doi.org/10.1016/j.stemcr.2016.01.012 PMid:26905198 PMCid:PMC4788782
30. Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature. 1958 Jul 5;182(4627):64-5. https://doi.org/10.1038/182064a0 PMid:13566187
31. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilić J, Pekarik V, Tiscornia G, Edel M. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature biotechnology. 2008 Nov;26(11):1276-84. https://doi.org/10.1038/nbt.1503 PMid:18931654
32. Raab S, Klingenstein M, Liebau S, Linta L. A comparative view on human somatic cell sources for iPSC generation. Stem cells international. 2014;2014(1):768391. https://doi.org/10.1155/2014/768391 PMid:25431601 PMCid:PMC4241335
33. Bilousova G, Chen J, Roop DR. Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage. Journal of Investigative Dermatology. 2011 Apr 1;131(4):857-64. https://doi.org/10.1038/jid.2010.364 PMid:21150926
34. Veraitch O, Kobayashi T, Imaizumi Y, Akamatsu W, Sasaki T, Yamanaka S, Amagai M, Okano H, Ohyama M. Human Induced Pluripotent Stem Cell-Derived Ectodermal Precursor Cells Contribute to Hair Follicle Morphogenesis In Vivo. Journal of Investigative Dermatology. 2013 Jun 1;133(6):1479-88. https://doi.org/10.1038/jid.2013.7 PMid:23321923
35. Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F, Ramirez JM, De Vos J, Lehmann S. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes & development. 2011 Nov 1;25(21):2248-53. https://doi.org/10.1101/gad.173922.111 PMid:22056670 PMCid:PMC3219229
36. Wu H, Yang H, Rhee JW, Zhang JZ, Lam CK, Sallam K, Chang AC, Ma N, Lee J, Zhang H, Blau HM. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. European heart journal. 2019 Dec 1;40(45):3685-95. https://doi.org/10.1093/eurheartj/ehz326 PMid:31219556 PMCid:PMC7963137
37. Pecha S, Yorgan K, Röhl M, Geertz B, Hansen A, Weinberger F, Sehner S, Ehmke H, Reichenspurner H, Eschenhagen T, Schwoerer AP. Human iPS cell-derived engineered heart tissue does not affect ventricular arrhythmias in a guinea pig cryo-injury model. Scientific Reports. 2019 Jul 8;9(1):9831. https://doi.org/10.1038/s41598-019-46409-z PMid:31285568 PMCid:PMC6614415
38. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015 Oct 22;526(7574):564-8. https://doi.org/10.1038/nature15695 PMid:26444236
39. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences. 2008 Apr 15;105(15):5856-61. https://doi.org/10.1073/pnas.0801677105 PMid:18391196 PMCid:PMC2311361
40. Canfield SG, Stebbins MJ, Faubion MG, Gastfriend BD, Palecek SP, Shusta EV. An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons. Fluids and Barriers of the CNS. 2019 Dec;16:1-2. https://doi.org/10.1186/s12987-019-0145-6 PMid:31387594 PMCid:PMC6685239
41. Loring JF. Autologous induced pluripotent stem cell-derived neurons to treat Parkinson's disease. Stem cells and development. 2018 Jul 15;27(14):958-9. https://doi.org/10.1089/scd.2018.0107 PMid:29790422
42. Kim JH, Kurtz A, Yuan BZ, Zeng F, Lomax G, Loring JF, Crook J, Ju JH, Clarke L, Inamdar MS, Pera M. Report of the international stem cell banking initiative workshop activity: current hurdles and progress in seed-stock banking of human pluripotent stem cells. Stem cells translational medicine. 2017 Nov 1;6(11):1956-62. https://doi.org/10.1002/sctm.17-0144 PMid:29067781 PMCid:PMC6430055
43. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. The Lancet. 2005 Dec 10;366(9502):2019-25. https://doi.org/10.1016/S0140-6736(05)67813-0 PMid:16338451
44. Bix M, Liao NS, Zijlstra M, Loring J, Jaenisch R, Raulet D. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature. 1991 Jan 24;349(6307):329-31. https://doi.org/10.1038/349329a0 PMid:1987491
45. Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, Prunkard D, Colunga AG, Hanafi LA, Clegg DO, Turtle C. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nature biotechnology. 2017 Aug;35(8):765-72. https://doi.org/10.1038/nbt.3860 PMid:28504668 PMCid:PMC5548598
46. Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C, Thayer WO, Wahl A, Garcia JV, Reichenspurner H, Davis MM. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature biotechnology. 2019 Mar;37(3):252-8. https://doi.org/10.1038/s41587-019-0016-3 PMid:30778232 PMCid:PMC6419516
47. Gravina A, Tediashvili G, Rajalingam R, Quandt Z, Deisenroth C, Schrepfer S, Deuse T. Protection of cell therapeutics from antibody-mediated killing by CD64 overexpression. Nature biotechnology. 2023 May;41(5):717-27. https://doi.org/10.1038/s41587-022-01540-7 PMid:36593395 PMCid:PMC10188358
48. Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nature biotechnology. 2010 Apr;28(4):361-4. https://doi.org/10.1038/nbt.1616 PMid:20351691
49. Chen VC, Couture SM, Ye J, Lin Z, Hua G, Huang HI, Wu J, Hsu D, Carpenter MK, Couture LA. Scalable GMP compliant suspension culture system for human ES cells. Stem cell research. 2012 May 1;8(3):388-402. https://doi.org/10.1016/j.scr.2012.02.001 PMid:22459095
50. Kinney MA, Sargent CY, McDevitt TC. The multiparametric effects of hydrodynamic environments on stem cell culture. Tissue Engineering Part B: Reviews. 2011 May 18;17(4). https://doi.org/10.1089/ten.teb.2011.0040 PMid:21491967 PMCid:PMC3142632
Published



How to Cite
Issue
Section
Copyright (c) 2025 Priyanka Thakur , Nirmala , Jaspreet Kaur , Piyush Kaushal , Abhimanyu Bhardwaj , Vinay Pandit

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).