Plant natural products: A lead for nephroprotection
Abstract
An extremely dangerous side effect of type I and type II diabetes is diabetic nephropathy (DN). From the early microproteinuria to end-stage renal failure, it progresses. About one in three diabetics in the US suffer from diabetic nephropathy. Chronic hyperglycemia is the primary cause of diabetic ketoacidosis. Hyperglycemia (HG) has the potential to cause humoral mediators and cytokines to be produced by both resident and non-resident renal cells. These substances may interfere with cell growth, alter renal cell and tissue phenotype and function, interact with proteins, produce advanced glycation end products (AGEs), damage tubules and glomeruli, and ultimately cause kidney disease. Poor blood glucose management is thus a significant risk factor for the onset of DN. An alternate course of treatment for DN may use extracts from herbal remedies. Medicinal plants' bioactive components stop DN from progressing. Attention has to be paid to the role that traditional herbs and medications play in the treatment of diabetic nephropathy, particularly in India where several fruits and herbs are believed to provide health benefits. Natural compounds influence the KEAP1/Nrf2/ARE and NFB pathways in addition to having antioxidant and anti-inflammatory properties. The efficacy of entire herbs, plants, or seeds, together with their active components, in treating diabetic nephropathy was investigated in preclinical research. Natural compounds are biologically active substances that come from natural sources and are beneficial for treating specific illnesses. Numerous natural substances, such as glycosides, polysaccharides, terpenoids, alkaloids, flavonoids, and polyphenols, have been shown to enhance DN. The exorbitant expenses associated with contemporary medications suggest that other approaches are necessary for improved DN treatment. Future research on herbal remedies may provide a natural key to open a pharmacy for diabetologists.
Keywords: Diabetic nephropathy; nephroprotective plant; herbal compounds, bioactive compound
Keywords:
Diabetic nephropathy, nephroprotective plant, herbal compounds, bioactive compoundDOI
https://doi.org/10.22270/jddt.v14i9.6783References
Shahin DH H, Sultana R, Farooq J, Taj T, Khaiser UF, Alanazi NS, Alshammari MK, Alshammari MN, Alsubaie FH, Asdaq SM, Alotaibi AA. Insights into the uses of traditional plants for diabetes nephropathy: a review. Current Issues in Molecular Biology. 2022 Jun 29;44(7):2887-902. https://doi.org/10.3390/cimb44070199 PMid:35877423 PMCid:PMC9316237
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JC, Mbanya JC, Pavkov ME. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice. 2022 Jan 1;183:109119. https://doi.org/10.1016/j.diabres.2021.109119 PMid:34879977 PMCid:PMC11057359
Zhang S, Ge Q, Chen L, Chen K. Studies of the anti-diabetic mechanism of Pueraria lobata based on metabolomics and network pharmacology. Processes. 2021 Jul 19;9(7):1245. https://doi.org/10.3390/pr9071245
Magee C, Grieve DJ, Watson CJ, Brazil DP. Diabetic nephropathy: a tangled web to unweave. Cardiovascular drugs and therapy. 2017 Dec;31:579-92. https://doi.org/10.1007/s10557-017-6755-9 PMid:28956186 PMCid:PMC5730625
Liu J, Liu Z, Sun W, Luo L, An X, Yu D, Wang W. Role of sex hormones in diabetic nephropathy. Frontiers in Endocrinology. 2023 Apr 18;14:1135530. https://doi.org/10.3389/fendo.2023.1135530
PMid:37143724 PMCid:PMC10151816
Erfanpoor S, Etemad K, Kazempour S, Hadaegh F, Hasani J, Azizi F, Parizadeh D, Khalili D. Diabetes, hypertension, and incidence of chronic kidney disease: is there any multiplicative or additive interaction?. International journal of endocrinology and metabolism. 2021 Jan;19(1). https://doi.org/10.5812/ijem.101061 PMid:33815514 PMCid:PMC8010431
Ahmed MA, Ferede YM, Takele WW. Incidence and predictors of chronic kidney disease in type-II diabetes mellitus patients attending at the Amhara region referral hospitals, Ethiopia: a follow-up study. Plos one. 2022 Jan 26;17(1):e0263138. https://doi.org/10.1371/journal.pone.0263138 PMid:35081168 PMCid:PMC8791503
Mishriky BM, Cummings DM, Powell JR. Diabetes-Related Microvascular Complications-A Practical Approach. Primary care. 2022 Apr 22;49(2):239-54. https://doi.org/10.1016/j.pop.2021.11.008 PMid:35595480
Weldegiorgis M, Woodward M. The impact of hypertension on chronic kidney disease and end-stage renal disease is greater in men than women: a systematic review and meta-analysis. BMC nephrology. 2020 Dec;21:1-9. https://doi.org/10.1186/s12882-020-02151-7 PMid:33238919 PMCid:PMC7687699
Lee G. End-stage renal disease in the Asian-Pacific region. InSeminars in nephrology 2003 Jan 1 (Vol. 23, No. 1, pp. 107-114). WB Saunders. https://doi.org/10.1053/snep.2003.50009 PMid:12563605
Ahmad J. Management of diabetic nephropathy: recent progress and future perspective. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2015 Oct 1;9(4):343-58. https://doi.org/10.1016/j.dsx.2015.02.008 PMid:25845297
Tomino Y, Gohda T. The prevalence and management of diabetic nephropathy in Asia. Kidney Diseases. 2015 Apr 30;1(1):52-60. https://doi.org/10.1159/000381757 PMid:27536665 PMCid:PMC4934822
Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. BioMed research international. 2021;2021(1):1497449. https://doi.org/10.1155/2021/1497449 PMid:34307650 PMCid:PMC8285185
Aye MM, Aung HT, Sein MM, Armijos C. A review on the phytochemistry, medicinal properties and pharmacological activities of 15 selected Myanmar medicinal plants. Molecules. 2019 Jan 15;24(2):293. https://doi.org/10.3390/molecules24020293 PMid:30650546 PMCid:PMC6359042
Kushwaha K, Sharma S, Gupta J. Metabolic memory and diabetic nephropathy: Beneficial effects of natural epigenetic modifiers. Biochimie. 2020 Mar 1;170:140-51. https://doi.org/10.1016/j.biochi.2020.01.007 PMid:31954720
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines. 2018 Aug 25;5(3):93. https://doi.org/10.3390/medicines5030093 PMid:30149600 PMCid:PMC6165118
Cushnie TT, Cushnie B, Lamb AJ. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International journal of antimicrobial agents. 2014 Nov 1;44(5):377-86. https://doi.org/10.1016/j.ijantimicag.2014.06.001 PMid:25130096
Masuda Y, Kikuzaki H, Hisamoto M, Nakatani N. Antioxidant properties of gingerol related compounds from ginger. Biofactors. 2004;21(1‐4):293-6. https://doi.org/10.1002/biof.552210157 PMid:15630214
Ojewole JA. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2006 Sep;20(9):764-72. https://doi.org/10.1002/ptr.1952 PMid:16807883
Akhani SP, Vishwakarma SL, Goyal RK. Anti‐diabetic activity of Zingiber officinale in streptozotocin‐induced type I diabetic rats. Journal of pharmacy and Pharmacology. 2004 Jan;56(1):101-5. https://doi.org/10.1211/0022357022403 PMid:14980006
Ahmad N, Sulaiman S, Mukti NA, Murad NA, Hamid NA, Yusof YA. Effects of ginger extract (Zingiber officinale Roscoe) on antioxidant status of hepatocarcinoma induced rats. Malaysian Journal of Biochemistry and Molecular Biology. 2006;14:7-12.
Harliansyah H, Noor Azian Murad NA, Wan Zurinah WN, Yasmin Anum MY. Antiproliferative, antioxidant and apoptosis effects of Zingiber officinale and 6-gingerol on HepG2 cells.
Morakinyo AO, Akindele AJ, Ahmed Z. Modulation of antioxidant enzymes and inflammatory cytokines: possible mechanism of anti-diabetic effect of ginger extracts. African Journal of Biomedical Research. 2011;14(3):195-202.
Abdul Sani NF, Belani LK, Pui Sin C, Abdul Rahman SN, Das S, Zar Chi T, Makpol S, Yusof YA. Effect of the combination of gelam honey and ginger on oxidative stress and metabolic profile in streptozotocin‐induced diabetic Sprague‐Dawley rats. BioMed Research International. 2014;2014(1):160695. https://doi.org/10.1155/2014/160695 PMid:24822178 PMCid:PMC4009231
Heimes K, Feistel B, Verspohl EJ. Impact of the 5-HT3 receptor channel system for insulin secretion and interaction of ginger extracts. European journal of pharmacology. 2009 Dec 10;624(1-3):58-65. https://doi.org/10.1016/j.ejphar.2009.09.049 PMid:19818348
Karaboz I. Antimicrobial and cytotoxic activities of Zingiber officinalis extracts. Fabad J. Pharm. Sci. 2010;33:76-85.
Al-Tahtawy RH, El-Bastawesy AM, Monem MA, Zekry ZK, Al-Mehdar HA, El-Merzabani MM. Antioxidant activity of the volatile oils of Zingiber officinale (ginger). Spatula DD. 2011;1(1):1-8. https://doi.org/10.5455/spatula.20101209111419
Dissanayake KG, Waliwita WA, Liyanage RP. A review on medicinal uses of Zingiber officinale (ginger). International Journal of Health Sciences and Research. 2020 Jun;10(6):142-8.
Shahin DH H, Sultana R, Farooq J, Taj T, Khaiser UF, Alanazi NS, Alshammari MK, Alshammari MN, Alsubaie FH, Asdaq SM, Alotaibi AA. Insights into the uses of traditional plants for diabetes nephropathy: a review. Current Issues in Molecular Biology. 2022 Jun 29;44(7):2887-902. https://doi.org/10.3390/cimb44070199 PMid:35877423 PMCid:PMC9316237
Sun J, Zhao Y, Hu J. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PloS one. 2013 Jun 25;8(6):e67078. https://doi.org/10.1371/journal.pone.0067078 PMid:23825622 PMCid:PMC3692410
Kato A, Higuchi Y, Goto H, Kizu H, Okamoto T, Asano N, Hollinshead J, Nash RJ, Adachi I. Inhibitory effects of Zingiber officinale Roscoe derived components on aldose reductase activity in vitro and in vivo. Journal of agricultural and food chemistry. 2006 Sep 6;54(18):6640-4. https://doi.org/10.1021/jf061599a PMid:16939321
Singh AB, Akanksha SN, Maurya R, Srivastava AK. Anti-hyperglycaemic, lipid lowering and anti-oxidant properties of [6]-gingerol in db/db mice. Int J Med Med Sci. 2009 Dec;1(12):536-44.
Chakraborty D, Mukherjee A, Sikdar S, Paul A, Ghosh S, Khuda-Bukhsh AR. [6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicology letters. 2012 Apr 5;210(1):34-43. https://doi.org/10.1016/j.toxlet.2012.01.002 PMid:22285432
Al Hroob AM, Abukhalil MH, Alghonmeen RD, Mahmoud AM. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomedicine & Pharmacotherapy. 2018 Oct 1;106:381-9. https://doi.org/10.1016/j.biopha.2018.06.148 PMid:29966984
Kato A, Higuchi Y, Goto H, Kizu H, Okamoto T, Asano N, Hollinshead J, Nash RJ, Adachi I. Inhibitory effects of Zingiber officinale Roscoe derived components on aldose reductase activity in vitro and in vivo. Journal of agricultural and food chemistry. 2006 Sep 6;54(18):6640-4. https://doi.org/10.1021/jf061599a PMid:16939321
Asdaq SM, Challa O, Alamri AS, Alsanie WF, Alhomrani M, Asad M. The potential benefits of using garlic oil and its active constituent, dially disulphide, in combination with carvedilol in ameliorating isoprenaline-induced cardiac damage in rats. Frontiers in Pharmacology. 2021 Sep 27;12:739758. https://doi.org/10.3389/fphar.2021.739758 PMid:34646139 PMCid:PMC8502798
Asdaq SM, Alamri AS, Alsanie WF, Alhomrani M. Cardioprotective potential of garlic oil and its active constituent, diallyl disulphide, in presence of carvedilol during chronic isoprenaline injection-mediated myocardial necrosis in rats. Molecules. 2021 Aug 25;26(17):5137. https://doi.org/10.3390/molecules26175137 PMid:34500571 PMCid:PMC8434135
Rahman K. Historical perspective on garlic and cardiovascular disease. The journal of nutrition. 2001 Mar 1;131(3):977S-9S. https://doi.org/10.1093/jn/131.3.977S PMid:11238800
Asdaq SM, Lokaraja S, Alamri AS, Alsanie WF, Alhomrani M, Almutiri AH, Nagaraja S, Imran M. Potential Interaction of Fresh Garlic with Metformin during Ischemia‐Reperfusion Induced Cardiac Injury in Diabetic Rats. Evidence‐Based Complementary and Alternative Medicine. 2021;2021(1):9739089. https://doi.org/10.1155/2021/9739089 PMid:34527070 PMCid:PMC8437587
Davis SR. An overview of the antifungal properties of allicin and its breakdown products-the possibility of a safe and effective antifungal prophylactic. Mycoses. 2005 Mar;48(2):95-100. https://doi.org/10.1111/j.1439-0507.2004.01076.x PMid:15743425
Arellano Buendia AS, Tostado González M, Sánchez Reyes O, García Arroyo FE, Argüello García R, Tapia E, Sánchez Lozada LG, Osorio Alonso H. Immunomodulatory effects of the nutraceutical garlic derivative allicin in the progression of diabetic nephropathy. International journal of molecular sciences. 2018 Oct 11;19(10):3107. https://doi.org/10.3390/ijms19103107 PMid:30314265 PMCid:PMC6212798
Anwar MM, Meki AR. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2003 Aug 1;135(4):539-47. https://doi.org/10.1016/S1095-6433(03)00114-4 PMid:12890544
Thomson M, Al-Amin ZM, Al-Qattan KK, Shaban LH, Ali M. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. International Journal of Diabetes and Metabolism. 2007 Mar;15(3):108-15. https://doi.org/10.1159/000497643
Drobiova H, Thomson M, Al-Qattan K, Peltonen-Shalaby R, Al-Amin Z, Ali M. Garlic increases antioxidant levels in diabetic and hypertensive rats determined by a modified peroxidase method. Evidence‐Based Complementary and Alternative Medicine. 2011;2011(1):703049. https://doi.org/10.1093/ecam/nep011 PMid:19233877 PMCid:PMC3137236
Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine. 2006 Nov 24;13(9-10):624-9. https://doi.org/10.1016/j.phymed.2005.09.010 PMid:17085291
Al-Qattan KK, Mansour MH, Thomson M, Ali M. Garlic decreases liver and kidney receptor for advanced glycation end products expression in experimental diabetes. Pathophysiology. 2016 Jun 1;23(2):135-45. https://doi.org/10.1016/j.pathophys.2016.02.003 PMid:26968224
Shiju TM, Rajkumar R, Rajesh NG, Viswanathan P. Aqueous extract of Allium sativum L bulbs offer nephroprotection by attenuating vascular endothelial growth factor and extracellular signal-regulated kinase-1 expression in diabetic rats.
Mariee AD, Abd‐Allah GM, El‐Yamany MF. Renal oxidative stress and nitric oxide production in streptozotocin‐induced diabetic nephropathy in rats: the possible modulatory effects of garlic (Allium sativum L.). Biotechnology and applied biochemistry. 2009 Mar;52(3):227-32. https://doi.org/10.1042/BA20080086 PMid:18588510
Mösbauer K, Fritsch VN, Adrian L, Bernhardt J, Gruhlke MC, Slusarenko AJ, Niemeyer D, Antelmann H. The effect of allicin on the proteome of SARS-CoV-2 infected Calu-3 Cells. Frontiers in Microbiology. 2021 Oct 28;12:746795. https://doi.org/10.3389/fmicb.2021.746795 PMid:34777295 PMCid:PMC8581659
Huang H, Jiang Y, Mao G, Yuan F, Zheng H, Ruan Y, Wu T. Protective effects of allicin on streptozotocin‐induced diabetic nephropathy in rats. Journal of the Science of Food and Agriculture. 2017 Mar;97(4):1359-66. https://doi.org/10.1002/jsfa.7874 PMid:27363537
Arellano Buendia AS, Tostado González M, Sánchez Reyes O, García Arroyo FE, Argüello García R, Tapia E, Sánchez Lozada LG, Osorio Alonso H. Immunomodulatory effects of the nutraceutical garlic derivative allicin in the progression of diabetic nephropathy. International journal of molecular sciences. 2018 Oct 11;19(10):3107. https://doi.org/10.3390/ijms19103107 PMid:30314265 PMCid:PMC6212798
Arellano-Buendía AS, Castañeda-Lara LG, Loredo-Mendoza ML, García-Arroyo FE, Rojas-Morales P, Argüello-García R, Juárez-Rojas JG, Tapia E, Pedraza-Chaverri J, Sánchez-Lozada LG, Osorio-Alonso H. Effects of allicin on pathophysiological mechanisms during the progression of nephropathy associated to diabetes. Antioxidants. 2020 Nov 15;9(11):1134. https://doi.org/10.3390/antiox9111134 PMid:33203103 PMCid:PMC7697950
Huang H, Jiang Y, Mao G, Yuan F, Zheng H, Ruan Y, Wu T. Protective effects of allicin on streptozotocin‐induced diabetic nephropathy in rats. Journal of the Science of Food and Agriculture. 2017 Mar;97(4):1359-66. https://doi.org/10.1002/jsfa.7874 PMid:27363537
Gómez-Sierra T, Molina-Jijón E, Tapia E, Hernández-Pando R, García-Niño WR, Maldonado PD, Reyes JL, Barrera-Oviedo D, Torres I, Pedraza-Chaverri J. S-allylcysteine prevents cisplatin-induced nephrotoxicity and oxidative stress. Journal of Pharmacy and Pharmacology. 2014 Sep;66(9):1271-81. https://doi.org/10.1111/jphp.12263 PMid:24779924
Shi H, Jing X, Wei X, Perez RG, Ren M, Zhang X, Lou H. S‐allyl cysteine activates the Nrf2‐dependent antioxidant response and protects neurons against ischemic injury in vitro and in vivo. Journal of neurochemistry. 2015 Apr;133(2):298-308. https://doi.org/10.1111/jnc.12986 PMid:25393425
Tsai CY, Wang CC, Lai TY, Tsu HN, Wang CH, Liang HY, Kuo WW. Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes. International journal of cardiology. 2013 Sep 30;168(2):1286-97. https://doi.org/10.1016/j.ijcard.2012.12.004 PMid:23453443
Ooi LS, Li Y, Kam SL, Wang H, Wong EY, Ooi VE. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. The American journal of Chinese medicine. 2006;34(03):511-22. https://doi.org/10.1142/S0192415X06004041 PMid:16710900
Lin CC, Wu SJ, Chang CH, Ng LT. Antioxidant activity of Cinnamomum cassia. Phytotherapy Research. 2003 Aug;17(7):726-30. https://doi.org/10.1002/ptr.1190 PMid:12916067
Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes care. 2003 Dec 1;26(12):3215-8. https://doi.org/10.2337/diacare.26.12.3215 PMid:14633804
Lee SH, Lee SY, Son DJ, Lee H, Yoo HS, Song S, Oh KW, Han DC, Kwon BM, Hong JT. Inhibitory effect of 2′-hydroxycinnamaldehyde on nitric oxide production through inhibition of NF-κB activation in RAW 264.7 cells. Biochemical pharmacology. 2005 Mar 1;69(5):791-9. https://doi.org/10.1016/j.bcp.2004.11.013 PMid:15710356
Rao PV, Gan SH. Cinnamon: a multifaceted medicinal plant. Evidence‐Based Complementary and Alternative Medicine. 2014;2014(1):642942. https://doi.org/10.1155/2014/642942 PMid:24817901 PMCid:PMC4003790
Mishra A, Bhatti R, Singh A, Ishar MP. Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta medica. 2010 Mar;76(05):412-7. https://doi.org/10.1055/s-0029-1186237 PMid:19876811
Muthenna P, Raghu G, Kumar PA, Surekha MV, Reddy GB. Effect of cinnamon and its procyanidin-B2 enriched fraction on diabetic nephropathy in rats. Chemico-biological interactions. 2014 Oct 5;222:68-76. https://doi.org/10.1016/j.cbi.2014.08.013 PMid:25199697
Ranasinghe P, Pigera S, Premakumara GS, Galappaththy P, Constantine GR, Katulanda P. Medicinal properties of 'true'cinnamon (Cinnamomum zeylanicum): a systematic review. BMC complementary and alternative medicine. 2013 Dec;13:1-0. https://doi.org/10.1186/1472-6882-13-275 PMid:24148965 PMCid:PMC3854496
Cheng DM, Kuhn P, Poulev A, Rojo LE, Lila MA, Raskin I. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix. Food chemistry. 2012 Dec 15;135(4):2994-3002. https://doi.org/10.1016/j.foodchem.2012.06.117 PMid:22980902 PMCid:PMC3444749
Anderson RA, Broadhurst CL, Polansky MM, Schmidt WF, Khan A, Flanagan VP, Schoene NW, Graves DJ. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. Journal of agricultural and food chemistry. 2004 Jan 14;52(1):65-70. https://doi.org/10.1021/jf034916b PMid:14709014
Anderson RA, Broadhurst CL, Polansky MM, Schmidt WF, Khan A, Flanagan VP, Schoene NW, Graves DJ. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. Journal of agricultural and food chemistry. 2004 Jan 14;52(1):65-70. https://doi.org/10.1021/jf034916b PMid:14709014
Muthenna P, Raghu G, Kumar PA, Surekha MV, Reddy GB. Effect of cinnamon and its procyanidin-B2 enriched fraction on diabetic nephropathy in rats. Chemico-biological interactions. 2014 Oct 5;222:68-76. https://doi.org/10.1016/j.cbi.2014.08.013 PMid:25199697
GT W, Villeneuve NF, Lamore SD, Bause AS, Jiang T, Zhang DD. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules. 2010 May 7;15(5):3338-55. https://doi.org/10.3390/molecules15053338 PMid:20657484 PMCid:PMC3101712
Liao BC, Hsieh CW, Liu YC, Tzeng TT, Sun YW, Wung BS. Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-κB activation: Effects upon IκB and Nrf2. Toxicology and applied pharmacology. 2008 Jun 1;229(2):161-71. https://doi.org/10.1016/j.taap.2008.01.021 PMid:18304597
Hussain S, Rahman R, Mushtaq A, Zerey-Belaskri AE. Clove: A review of a precious species with multiple uses. Int. J. Chem. Biochem. Sci. 2017 Jan;11:129-33.
Soni VK, Ratre YK, Mehta A, Dixit AK, Dwivedi M, Shukla D, Kumar A, Vishvakarma NK. Curcumin: a spice pigment against hepatic cancer. InTheranostics and Precision Medicine for the Management of Hepatocellular Carcinoma, Volume 3 2022 Jan 1 (pp. 141-159). Academic Press. https://doi.org/10.1016/B978-0-323-99283-1.00007-0 PMid:35469977
Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochemical and biophysical research communications. 2005 Jan 14;326(2):472-4. https://doi.org/10.1016/j.bbrc.2004.11.051 PMid:15582601
Lu M, Yin N, Liu W, Cui X, Chen S, Wang E. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. BioMed research international. 2017;2017(1):1516985. https://doi.org/10.1155/2017/1516985 PMid:28194406 PMCid:PMC5282455
Önder A. Coriander and its phytoconstituents for the beneficial effects. Potential of essential oils. 2018 Sep 26;165. https://doi.org/10.5772/intechopen.78656
Barros L, Duenas M, Dias MI, Sousa MJ, Santos-Buelga C, Ferreira IC. Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chemistry. 2012 May 15;132(2):841-8. https://doi.org/10.1016/j.foodchem.2011.11.048
Uitterhaegen E, Sampaio KA, Delbeke EI, De Greyt W, Cerny M, Evon P, Merah O, Talou T, Stevens CV. Characterization of French coriander oil as source of petroselinic acid. Molecules. 2016 Sep 8;21(9):1202. https://doi.org/10.3390/molecules21091202 PMid:27617992 PMCid:PMC6273068
Kajal A, Singh R. Coriandrum sativum seeds extract mitigate progression of diabetic nephropathy in experimental rats via AGEs inhibition. PloS one. 2019 Mar 7;14(3):e0213147. https://doi.org/10.1371/journal.pone.0213147 PMid:30845182 PMCid:PMC6405108
Morcos SR, Elhawary Z, Gabrial GN. Protein-rich food mixtures for feeding the young in Egypt 1. Formulation. Zeitschrift für Ernährungswissenschaft. 1981 Dec;20:275-82. https://doi.org/10.1007/BF02021639 PMid:7340230
Abdel-Barry JA, Abdel-Hassan IA, Al-Hakiem MH. Hypoglycaemic and antihyperglycaemic effects of Trigonella foenum-graecum leaf in normal and alloxan induced diabetic rats. Journal of ethnopharmacology. 1997 Nov 1;58(3):149-55. https://doi.org/10.1016/S0378-8741(97)00101-3 PMid:9421250
Radwan Sayed AA, Khalifa M, el-Latif A, Fahim F. Fenugreek attenuation of diabetic nephropathy in alloxan-diabetic rats. J. physiol. biochem. 2012:263-9. https://doi.org/10.1007/s13105-011-0139-6 PMid:22237966
Alanazi AZ, Mohany M, Alasmari F, Mothana RA, Alshehri AO, Alhazzani K, Ahmed MM, Al-Rejaie SS. Amelioration of diabetes-induced nephropathy by Loranthus regularis: implication of oxidative stress, inflammation and hyperlipidaemia. Applied Sciences. 2021 May 17;11(10):4548. https://doi.org/10.3390/app11104548
Halim ME, Misra A. The effects of the aqueous extract of Pterocarpus santalinus heartwood and vitamin E supplementation in streptozotocin-induced diabetic rats. J Med Plants Res. 2011 Feb 4;5(3):398-409.
Jiménez-Escrig A, Rincón M, Pulido R, Saura-Calixto F. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. Journal of Agricultural and food Chemistry. 2001 Nov 19;49(11):5489-93. https://doi.org/10.1021/jf010147p PMid:11714349
Lin CY, Yin MC. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant foods for human nutrition. 2012 Sep;67:303-8.https://doi.org/10.1007/s11130-012-0294-0 PMid:22581156
Adesida A, Farombi EO. Free radical scavenging activities of guava extract in vitro. Afr J Med Med Sci. 2012;41(Suppl):81-90.
Kuang QT, Zhao JJ, Ye CL, Wang JR, Ye KH, Zhang XQ, Wang Y, Ye WC. Nephro-protective effects of total triterpenoids from Psidium guajava leaves on type 2 diabetic rats. Zhong yao cai= Zhongyaocai= Journal of Chinese Medicinal Materials. 2012 Jan 1;35(1):94-7.
Sen SS, Sukumaran V, Giri SS, Park SC. Flavonoid fraction of guava leaf extract attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-κB signalling pathway in Labeo rohita macrophages. Fish & shellfish immunology. 2015 Nov 1;47(1):85-92. https://doi.org/10.1016/j.fsi.2015.08.031 PMid:26327113
Lin CY, Yin MC. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant foods for human nutrition. 2012 Sep;67:303-8. https://doi.org/10.1007/s11130-012-0294-0 PMid:22581156
Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: a literature review. Chinese medicine. 2010 Dec;5:1-9. https://doi.org/10.1186/1749-8546-5-13 PMid:20370896 PMCid:PMC2855614
Huang YC, Zhu HM, Cai JQ, Huang YZ, Xu J, Zhou Y, Chen XH, Li XQ, Yang ZM, Deng L. Hypoxia inhibits the spontaneous calcification of bone marrow‐derived mesenchymal stem cells. Journal of Cellular Biochemistry. 2012 Apr;113(4):1407-15. https://doi.org/10.1002/jcb.24014 PMid:22135004
Dona M, Dell'Aica I, Calabrese F, Benelli R, Morini M, Albini A, Garbisa S. Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. The Journal of Immunology. 2003 Apr 15;170(8):4335-41. https://doi.org/10.4049/jimmunol.170.8.4335 PMid:12682270
Haqqi TM, Anthony DD, Gupta S, Ahmad N, Lee MS, Kumar GK, Mukhtar H. Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proceedings of the National Academy of Sciences. 1999 Apr 13;96(8):4524-9. https://doi.org/10.1073/pnas.96.8.4524 PMid:10200295 PMCid:PMC16365
Sudano Roccaro A, Blanco AR, Giuliano F, Rusciano D, Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrobial agents and chemotherapy. 2004 Jun;48(6):1968-73. https://doi.org/10.1128/AAC.48.6.1968-1973.2004 PMid:15155186 PMCid:PMC415601
Mr S. Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr. 2002;132:2307-11. https://doi.org/10.1093/jn/132.8.2307 PMid:12163680
Weber JM, Ruzindana-Umunyana A, Imbeault L, Sircar S. Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral research. 2003 Apr 1;58(2):167-73. https://doi.org/10.1016/S0166-3542(02)00212-7 PMid:12742577
Ahn TG, Kim HK, Park SW, Kim SA, Lee BR, Han SJ. Protective effects of green tea polyphenol against cisplatin-induced nephrotoxicity in rats. Obstetrics & Gynecology Science. 2014 Nov 20;57(6):464-70. https://doi.org/10.5468/ogs.2014.57.6.464 PMid:25469334 PMCid:PMC4245339
Mozaffari-Khosravi H, Ahadi Z, Barzegar K. The effect of green tea and sour tea on blood pressure of patients with type 2 diabetes: a randomized clinical trial. Journal of dietary supplements. 2013 Jun 1;10(2):105-15. https://doi.org/10.3109/19390211.2013.790333 PMid:23725524
Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla‐Nakbi, A.B., Rouabhia, M., Mahdouani, K. and Bakhrouf, A., 2007. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(6), pp.501-506. https://doi.org/10.1002/ptr.2124 PMid:17380552
Shan B, Cai YZ, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of agricultural and food chemistry. 2005 Oct 5;53(20):7749-59. https://doi.org/10.1021/jf051513y PMid:16190627
Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, Cartwright K, Foiles PG, Freedman BI, Raskin P, Ratner RE, Spinowitz BS. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. American journal of nephrology. 2004 Feb 16;24(1):32-40. https://doi.org/10.1159/000075627 PMid:14685005
Tilton RG, Chang K, Hasan KS, Smith SR, Petrash JM, Misko TP, Moore WM, Currie MG, Corbett JA, McDaniel ML, Williamson JR. Prevention of diabetic vascular dysfunction by guanidines: inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes. 1993 Feb 1;42(2):221-32. https://doi.org/10.2337/diab.42.2.221 PMid:7678825
Ramya S, Murugan M, Krishnaveni K, Sabitha M, Kandeepan C, Jayakumararaj R, In-silico ADMET profile of Ellagic Acid from Syzygium cumini: A Natural Biaryl Polyphenol with Therapeutic Potential to Overcome Diabetic Associated Vascular Complications, Journal of Drug Delivery and Therapeutics. 2012;12(1):91-101 https://doi.org/10.22270/jddt.v12i1.5179
Verma KK, Kumar B, Raj H, Sharma A, A review on chemical constituents, traditional uses, pharmacological studies of Zanthoxylum armatum (rutaceae), Journal of Drug Delivery and Therapeutics. 2021;11(2-S):136-142 https://doi.org/10.22270/jddt.v11i2-S.4786
Sen S, Chen S, Feng B, Wu Y, Lui E, Chakrabarti S. Preventive effects of North American ginseng (Panax quinquefolium) on diabetic nephropathy. Phytomedicine. 2012 Apr 15;19(6):494-505. https://doi.org/10.1016/j.phymed.2012.01.001 PMid:22326549
Kang KS, Ham J, Kim YJ, Park JH, Cho EJ, Yamabe N. Heat-processed Panax ginseng and diabetic renal damage: active components and action mechanism. Journal of ginseng research. 2013 Oct;37(4):379. https://doi.org/10.5142/jgr.2013.37.379 PMid:24233065 PMCid:PMC3825853
Hadad GM, Abdel Salam RA, Soliman RM, Mesbah MK. High-performance liquid chromatography quantification of principal antioxidants in black seed (Nigella sativa L.) phytopharmaceuticals. Journal of AOAC International. 2012 Jul 1;95(4):1043-7. https://doi.org/10.5740/jaoacint.11-207 PMid:22970569
Kaleem M, Kirmani D, Asif M, et al. Biochemical effects of Nigella sativa L seeds in diabetic rats. Indian J Exp Biol. 2006;44 (9):745-748.
Saleem U, Ahmad B, Rehman K, Mahmood S, Alam M, Erum A. Nephro-protective effect of vitamin C and Nigella sativa oil on gentamicin associated nephrotoxicity in rabbits. Pak J Pharm Sci. 2012 Oct 1;25(4):727-30.
Mousavi G. Study on the effect of black cumin (Nigella sativa Linn.) on experimental renal ischemia-reperfusion injury in rats. Acta Cirurgica Brasileira. 2015;30:542-50. https://doi.org/10.1590/S0102-865020150080000005 PMid:26352334
Rchid H, Chevassus H, Nmila R, Guiral C, Petit P, Chokaïri M, Sauvaire Y. Nigella sativa seed extracts enhance glucose‐induced insulin release from rat‐isolated Langerhans islets. Fundamental & clinical pharmacology. 2004 Oct;18(5):525-9. https://doi.org/10.1111/j.1472-8206.2004.00275.x PMid:15482373
Balbaa M, El-Zeftawy M, Ghareeb D, Taha N, Mandour AW. Nigella sativa relieves the altered insulin receptor signaling in streptozotocin‐induced diabetic rats fed with a high‐fat diet. Oxidative Medicine and Cellular Longevity. 2016;2016(1):2492107. https://doi.org/10.1155/2016/2492107 PMid:27579151 PMCid:PMC4989085
Elsherbiny NM, El-Sherbiny M. Thymoquinone attenuates Doxorubicin-induced nephrotoxicity in rats: Role of Nrf2 and NOX4. Chemico-biological interactions. 2014 Nov 5;223:102-8. https://doi.org/10.1016/j.cbi.2014.09.015 PMid:25268985
Khattab MM, Nagi MN. Thymoquinone supplementation attenuates hypertension and renal damage in nitric oxide deficient hypertensive rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2007 May;21(5):410-4. https://doi.org/10.1002/ptr.2083 PMid:17236176
Rocha J, Eduardo‐Figueira M, Barateiro A, Fernandes A, Brites D, Bronze R, Duarte CM, Serra AT, Pinto R, Freitas M, Fernandes E. Anti‐inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic & clinical pharmacology & toxicology. 2015 May;116(5):398-413. https://doi.org/10.1111/bcpt.12335 PMid:25287116
Jiang WL, Xu Y, Zhang SP, Hou J, Zhu HB. Effect of rosmarinic acid on experimental diabetic nephropathy. Basic & clinical pharmacology & toxicology. 2012 Apr;110(4):390-5. https://doi.org/10.1111/j.1742-7843.2011.00828.x PMid:22053730
Öztürk H, Öztürk H, Terzi EH, Özgen U, Duran A. Protective effects of rosmarinic acid against renal ischaemia/reperfusion injury in rats. Journal of the Pakistan Medical Association. 2014.
Mushtaq N, Schmatz R, Ahmed M, Pereira LB, da Costa P, Reichert KP, Dalenogare D, Pelinson LP, Vieira JM, Stefanello N, de Oliveira LS. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats. Journal of physiology and biochemistry. 2015 Dec;71:743-51. https://doi.org/10.1007/s13105-015-0438-4 PMid:26452500
Erkan N, Ayranci G, Ayranci E. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food chemistry. 2008 Sep 1;110(1):76-82. https://doi.org/10.1016/j.foodchem.2008.01.058 PMid:26050168
Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry. 2003 Jan 1;62(2):121-5. https://doi.org/10.1016/S0031-9422(02)00513-7 PMid:12482446
Jeanette S, Alex K, Adviye E. Oxidative stress and the use of antioxidants in diabetes. Cardiovasc Diabetol. 2005;4:5-9. https://doi.org/10.1186/1475-2840-4-5 PMid:15862133 PMCid:PMC1131912
Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Aβ25-35. Behavioural brain research. 2007 Jun 18;180(2):139-45. https://doi.org/10.1016/j.bbr.2007.03.001 PMid:17420060
Tavafi M, Ahmadvand H, TAMJIDIPOOR A. Rosmarinic acid ameliorates diabetic nephropathy in uninephrectomized diabetic rats.
Bakırel T, Bakırel U, Keleş OÜ, Ülgen SG, Yardibi H. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. Journal of ethnopharmacology. 2008 Feb 28;116(1):64-73. https://doi.org/10.1016/j.jep.2007.10.039 PMid:18063331
Tavafi M, Ahmadvand H. Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats. Tissue and Cell. 2011 Dec 1;43(6):392-7. https://doi.org/10.1016/j.tice.2011.09.001 PMid:22000907
Dhakar RC, Maurya SD, Pooniya BK, Bairwa N, Gupta M, Moringa: The Herbal Gold To Combat Malnutrition, Chronicles of Young Scientists, 2011;2(3):119-125. https://doi.org/10.4103/2229-5186.90887
Mimura J, Kosaka K, Maruyama A, Satoh T, Harada N, Yoshida H, Satoh K, Yamamoto M, Itoh K. Nrf2 regulates NGF mRNA induction by carnosic acid in T98G glioblastoma cells and normal human astrocytes. The journal of biochemistry. 2011 Aug 1;150(2):209-17. https://doi.org/10.1093/jb/mvr065 PMid:21596795
de Oliveira MR, Ferreira GC, Schuck PF. Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: Role for PI3K/Akt/Nrf2 pathway. Toxicology in Vitro. 2016 Apr 1;32:41-54. https://doi.org/10.1016/j.tiv.2015.12.005 PMid:26686574
de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM. Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chemico-biological interactions. 2015 Dec 5;242:396-406. https://doi.org/10.1016/j.cbi.2015.11.003 PMid:26577515
Unander DW, Webster GL, Blumberg BS. Records of usage or assays in Phyllanthus (Euphorbiaceae) I. subgenera Isocladus, Kirganelia, Cicca and Emblica. Journal of Ethnopharmacology. 1990 Oct 1;30(3):233-64. https://doi.org/10.1016/0378-8741(90)90105-3 PMid:2259214
Al-Malki AL. Oat protects against diabetic nephropathy in rats via attenuating advanced glycation end products and nuclear factor kappa B. Evidence‐based Complementary and Alternative Medicine. 2013;2013(1):609745. https://doi.org/10.1155/2013/609745 PMid:24223616 PMCid:PMC3810450
Cohen MM. Tulsi-Ocimum sanctum: A herb for all reasons. Journal of Ayurveda and integrative medicine. 2014 Oct;5(4):251. https://doi.org/10.4103/0975-9476.146554 PMid:25624701 PMCid:PMC4296439
Shafi S, Tabassum N, Ahmad F. Diabetic nephropathy and herbal medicines. International Journal of Phytopharmacology. 2012;3(1):10-7.
Komalasari T, Harimurti S. A Review on the Anti-diabetic Activity of Andrographis paniculata (Burm. f.) Nees based In-vivo Study. Int J Public Heal Sci. 2015 Dec;4(4):256-63. https://doi.org/10.11591/ijphs.v4i4.4743
Li, J., Sapper, T.N., Mah, E., Rudraiah, S., Schill, K.E., Chitchumroonchokchai, C., Moller, M.V., McDonald, J.D., Rohrer, P.R., Manautou, J.E. and Bruno, R.S., 2016. Green tea extract provides extensive Nrf2‐independent protection against lipid accumulation and NFκB pro‐inflammatory responses during nonalcoholic steatohepatitis in mice fed a high‐fat diet. Molecular nutrition & food research, 60(4), pp.858-870. https://doi.org/10.1002/mnfr.201500814 PMid:26679056 PMCid:PMC4828297
Kim HS, Quon MJ, Kim JA. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox biology. 2014 Jan 1;2:187-95. https://doi.org/10.1016/j.redox.2013.12.022 PMid:24494192 PMCid:PMC3909779
Varatharajan R, Sattar MZ, Chung I, Abdulla MA, Kassim NM, Abdullah NA. Antioxidant and pro-oxidant effects of oil palm (Elaeis guineensis) leaves extract in experimental diabetic nephropathy: a duration-dependent outcome. BMC Complementary and Alternative Medicine. 2013 Dec;13:1-3. https://doi.org/10.1186/1472-6882-13-242 PMid:24074026 PMCid:PMC3829664
Pang B, Zhao LH, Zhou Q, Zhao TY, Wang H, Gu CJ, Tong XL. Application of berberine on treating type 2 diabetes mellitus. International journal of endocrinology. 2015;2015(1):905749. https://doi.org/10.1155/2015/905749 PMid:25861268 PMCid:PMC4377488
Sun SF, Zhao TT, Zhang HJ, Huang XR, Zhang WK, Zhang L, Yan MH, Dong X, Wang H, Wen YM, Pan XP. Renoprotective effect of berberine on type 2 diabetic nephropathy in rats. Clinical and Experimental Pharmacology and Physiology. 2015 Jun;42(6):662-70. https://doi.org/10.1111/1440-1681.12402 PMid:25867602
Zhu L, Han J, Yuan R, Xue L, Pang W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biological research. 2018 Dec;51:1-2. https://doi.org/10.1186/s40659-018-0157-8 PMid:29604956 PMCid:PMC5878418
Ma Z, Zhu L, Wang S, Guo X, Sun B, Wang Q, Chen L. Berberine protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition involving the inactivation of the NLRP3 inflammasome. Renal failure. 2022 Dec 31;44(1):923-32. https://doi.org/10.1080/0886022X.2022.2079525 PMid:35618411 PMCid:PMC9154812
Kim MJ, Lim Y. Protective effect of short‐term genistein supplementation on the early stage in diabetes‐induced renal damage. Mediators of Inflammation. 2013;2013(1):510212. https://doi.org/10.1155/2013/510212 PMid:23737649 PMCid:PMC3657423
Jia Q, Yang R, Liu XF, Ma SF, Wang L. Genistein attenuates renal fibrosis in streptozotocin-induced diabetic rats. Molecular medicine reports. 2019 Jan;19(1):423-31. https://doi.org/10.3892/mmr.2018.9635
Mojadami S, Ahangarpour A, Mard SA, Khorsandi L. Diabetic nephropathy induced by methylglyoxal: gallic acid regulates kidney microRNAs and glyoxalase1-Nrf2 in male mice. Archives of Physiology and Biochemistry. 2023 May 4;129(3):655-62. https://doi.org/10.1080/13813455.2020.1857775 PMid:33460343
Jayaraman R, Subramani S, Abdullah SH, Udaiyar M. Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy. 2018 Jan 1;97:98-106. https://doi.org/10.1016/j.biopha.2017.10.102 PMid:29080465
Chen YJ, Kong L, Tang ZZ, Zhang YM, Liu Y, Wang TY, Liu YW. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomedicine & Pharmacotherapy. 2019 Mar 1;111:1166-75. https://doi.org/10.1016/j.biopha.2019.01.030 PMid:30841430
Sharma D, Tekade RK, Kalia K. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: an in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine. 2020 Sep 1;76:153235. https://doi.org/10.1016/j.phymed.2020.153235 PMid:32563017
Alshehri AS. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Archives of physiology and biochemistry. 2023 Jul 4;129(4):984-97. https://doi.org/10.1080/13813455.2021.1890129 PMid:33625930
Xiong C, Wu Q, Fang M, Li H, Chen B, Chi T. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. Journal of International Medical Research. 2020 Apr;48(4):0300060520903642 .https://doi.org/10.1177/0300060520903642 PMid:32242458 PMCid:PMC7132816
Zhang M, He L, Liu J, Zhou L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Experimental and Clinical Endocrinology & Diabetes. 2021 Oct;129(10):729-39. https://doi.org/10.1055/a-0998-7985 PMid:31896157
Xu T, Kuang T, Du H, Li Q, Feng T, Zhang Y, Fan G. Magnoflorine: A review of its pharmacology, pharmacokinetics and toxicity. Pharmacological Research. 2020 Feb 1;152:104632. https://doi.org/10.1016/j.phrs.2020.104632 PMid:31911246
Chang L, Wang Q, Ju J, Li Y, Cai Q, Hao L, Zhou Y. Magnoflorine ameliorates inflammation and fibrosis in rats with diabetic nephropathy by mediating the stability of lysine-specific demethylase 3A. Frontiers in Physiology. 2020 Dec 22;11:580406. https://doi.org/10.3389/fphys.2020.580406 PMid:33414721 PMCid:PMC7785030
Imran M, Arshad MS, Butt MS, Kwon JH, Arshad MU, Sultan MT. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids in health and disease. 2017 Dec;16:1-7. https://doi.org/10.1186/s12944-017-0449-y PMid:28464819 PMCid:PMC5414237
Pal PB, Sinha K, Sil PC. Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFα related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats. PloS one. 2014 Sep 18;9(9):e107220. https://doi.org/10.1371/journal.pone.0107220 PMid:25233093 PMCid:PMC4169432
Wang X, Gao L, Lin H, Song J, Wang J, Yin Y, Zhao J, Xu X, Li Z, Li L. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli. European Journal of Pharmacology. 2018 Apr 5;824:170-8. https://doi.org/10.1016/j.ejphar.2018.02.009 PMid:29444469
Lu Y, Ding Y, Wei J, He S, Liu X, Pan H, Yuan B, Liu Q, Zhang J. Anticancer effects of Traditional Chinese Medicine on epithelial-mesenchymal transition (EMT) in breast cancer: cellular and molecular targets. European Journal of Pharmacology. 2021 Sep 15;907:174275. https://doi.org/10.1016/j.ejphar.2021.174275 PMid:34214582
Guo C, Han F, Zhang C, Xiao W, Yang Z. Protective effects of oxymatrine on experimental diabetic nephropathy. Planta medica. 2014 Mar;80(04):269-76. https://doi.org/10.1055/s-0033-1360369 PMid:24535719
Xiao Y, Peng C, Xiao Y, Liang D, Yuan Z, Li Z, Shi M, Wang Y, Zhang F, Guo B. Oxymatrine inhibits twist-mediated renal tubulointerstitial fibrosis by upregulating Id2 expression. Frontiers in Physiology. 2020 Jun 19;11:599. https://doi.org/10.3389/fphys.2020.00599 PMid:32636757 PMCid:PMC7317027
Shin BC, Chung JH, Kim HL. Protective Effects of Catechin On Gene Expression of Glucose Metabolism in Streptozotocin-Induced Daibetic Nephropathy in Rats. Innephrology Dialysis Transplantation 2020;35:1317-1317. GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND: OXFORD UNIV PRESS. https://doi.org/10.1093/ndt/gfaa142.P0994
Goh YX, Jalil J, Lam KW, Husain K, Premakumar CM. Genistein: A review on its anti-inflammatory properties. Frontiers in pharmacology. 2022 Jan 24;13:820969. https://doi.org/10.3389/fphar.2022.820969 PMid:35140617 PMCid:PMC8818956
Kim MJ, Lim Y. Protective effect of short‐term genistein supplementation on the early stage in diabetes‐induced renal damage. Mediators of Inflammation. 2013;2013(1):510212. https://doi.org/10.1155/2013/510212 PMid:23737649 PMCid:PMC3657423
Jia Q, Yang R, Liu XF, Ma SF, Wang L. Genistein attenuates renal fibrosis in streptozotocin-induced diabetic rats. Molecular medicine reports. 2019 Jan;19(1):423-31. https://doi.org/10.3892/mmr.2018.9635
Elbe H, Vardi Nİ, Esrefoglu MU, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Human & experimental toxicology. 2015 Jan;34(1):100-13. https://doi.org/10.1177/0960327114531995 PMid:24812155
Liu Y, Li Y, Xu L, Shi J, Yu X, Wang X, Li X, Jiang H, Yang T, Yin X, Du L. Quercetin attenuates podocyte apoptosis of diabetic nephropathy through targeting EGFR signaling. Frontiers in Pharmacology. 2022 Jan 5;12:792777. https://doi.org/10.3389/fphar.2021.792777 PMid:35069207 PMCid:PMC8766833
Wang S, Shang S, Lv J, Hou D. Effects of quercetin on renal autophagy and interstitial fibrosis in diabetes mellitus. Food Science and Technology. 2022 Mar 14;42:e122821. https://doi.org/10.1590/fst.122821
Sezer ED, Oktay LM, Karadadaş E, Memmedov H, Selvi Gunel N, Sözmen E. Assessing anticancer potential of blueberry flavonoids, quercetin, kaempferol, and gentisic acid, through oxidative stress and apoptosis parameters on HCT-116 cells. Journal of medicinal food. 2019 Nov 1;22(11):1118-26. https://doi.org/10.1089/jmf.2019.0098 PMid:31241392
Nanjan MJ, Betz J. Resveratrol for the management of diabetes and its downstream pathologies. European endocrinology. 2014 Feb;10(1):31. https://doi.org/10.17925/EE.2014.10.01.31 PMid:29872461 PMCid:PMC5983094
Xu F, Wang Y, Cui W, Yuan H, Sun J, Wu M, Guo Q, Kong L, Wu H, Miao L. Resveratrol prevention of diabetic nephropathy is associated with the suppression of renal inflammation and mesangial cell proliferation: Possible roles of Akt/NF‐κB pathway. International Journal of Endocrinology. 2014;2014(1):289327. https://doi.org/10.1155/2014/289327 PMid:24672545 PMCid:PMC3941586
Moridi H, Karimi J, Sheikh N, Goodarzi MT, Saidijam M, Yadegarazari R, Khazaei M, Khodadadi I, Tavilani H, Piri H, Asadi S. Resveratrol-dependent down-regulation of receptor for advanced glycation end-products and oxidative stress in kidney of rats with diabetes. International journal of endocrinology and metabolism. 2015 Apr;13(2). https://doi.org/10.5812/ijem.23542 PMid:25892997 PMCid:PMC4394675
Al-Hussaini H, Kilarkaje N. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys. Toxicology and applied pharmacology. 2018 Jan 15;339:97-109. https://doi.org/10.1016/j.taap.2017.11.025 PMid:29229234
Peng F, Zhang H, He X, Song Z. Effects of ursolic acid on intestinal health and gut bacteria antibiotic resistance in mice. Frontiers in Physiology. 2021 May 28;12:650190. https://doi.org/10.3389/fphys.2021.650190 PMid:34122127 PMCid:PMC8195277
Peng F, Zhang H, He X, Song Z. Effects of ursolic acid on intestinal health and gut bacteria antibiotic resistance in mice. Frontiers in Physiology. 2021 May 28;12:650190. https://doi.org/10.3389/fphys.2021.650190 PMid:34122127 PMCid:PMC8195277
Zhang J, Wu C, Gao L, Du G, Qin X. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects. Advances in pharmacology. 2020 Jan 1;87:89-112. https://doi.org/10.1016/bs.apha.2019.08.002 PMid:32089240
Liu X, Wang W, Song G, Wei X, Zeng Y, Han P, Wang D, Shao M, Wu J, Sun H, Xiong G. Astragaloside IV ameliorates diabetic nephropathy by modulating the mitochondrial quality control network. PloS one. 2017 Aug 2;12(8):e0182558. https://doi.org/10.1371/journal.pone.0182558 PMid:28767702 PMCid:PMC5540580
Feng H, Zhu X, Tang Y, Fu S, Kong B, Liu X. Astragaloside IV ameliorates diabetic nephropathy in db/db mice by inhibiting NLRP3 inflammasome mediated inflammation. International Journal of Molecular Medicine. 2021 Aug 1;48(2):1-2. https://doi.org/10.3892/ijmm.2021.4996 PMid:34278447 PMCid:PMC8262660
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacological research. 2021 Feb 1;164:105373. https://doi.org/10.1016/j.phrs.2020.105373 PMid:33316380
Tiwari A, Gandhi S, Joshi M. Effect of Lupeol in Diabetic Nephropathy and Its Anti-oxidant Mechanism. Pathophysiology. 2019;28:1404-13.
Peng F, Zhang H, He X, Song Z. Effects of ursolic acid on intestinal health and gut bacteria antibiotic resistance in mice. Frontiers in Physiology. 2021 May 28;12:650190. https://doi.org/10.3389/fphys.2021.650190 PMid:34122127 PMCid:PMC8195277
Xu HL, Wang XT, Cheng Y, Zhao JG, Zhou YJ, Yang JJ, Qi MY. Ursolic acid improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-induced rats. Biomedicine & Pharmacotherapy. 2018 Sep 1;105:915-21. https://doi.org/10.1016/j.biopha.2018.06.055 PMid:30021385
Ma TK, Xu L, Lu LX, Cao X, Li X, Li LL, Wang X, Fan QL. Ursolic acid treatment alleviates diabetic kidney injury by regulating the ARAP1/AT1R signaling pathway. Diabetes, metabolic syndrome and obesity: targets and therapy. 2019 Dec 9:2597-608. https://doi.org/10.2147/DMSO.S222323 PMid:31849504 PMCid:PMC6910094
Mazumder K, Biswas B, Al Mamun A, Billah H, Abid A, Sarkar KK, Saha B, Azom S, Kerr PG. Investigations of AGEs' inhibitory and nephroprotective potential of ursolic acid towards reduction of diabetic complications. Journal of Natural Medicines. 2022 Mar;76(2):490-503. https://doi.org/10.1007/s11418-021-01602-1 PMid:35032247
Firuzi O, Khajehrezaei S, Ezzatzadegan S, Nejati M, Jahanshahi KA, Roozbeh J. Effects of silymarin on biochemical and oxidative stress markers in end‐stage renal disease patients undergoing peritoneal dialysis. Hemodialysis International. 2016 Oct;20(4):558-63. https://doi.org/10.1111/hdi.12413 PMid:27040041
Prabu SM, Muthumani M. RETRACTED ARTICLE: Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Molecular biology reports. 2012 Dec;39(12):11201-16. https://doi.org/10.1007/s11033-012-2029-6 PMid:23070905
Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M. Current approaches toward production of secondary plant metabolites. Journal of Pharmacy and Bioallied Sciences. 2012 Jan 1;4(1):10-20. https://doi.org/10.4103/0975-7406.92725 PMid:22368394 PMCid:PMC3283951
Hussain MS, Azam F, Ahamed KN, Ravichandiran V, Alkskas I. Anti-endotoxin effects of terpenoids fraction from Hygrophila auriculata in lipopolysaccharide-induced septic shock in rats. Pharmaceutical biology. 2016 Apr 2;54(4):628-36. https://doi.org/10.3109/13880209.2015.1070877 PMid:26428681
Hussain MS, Fareed S, Ali M, Rahman MA. Validation of the method for the simultaneous estimation of bioactive marker gallic acid and quercetin in Abutilon indicum by HPTLC. Asian Pacific Journal of Tropical Disease. 2012 Jan 1;2:S76-83. https://doi.org/10.1016/S2222-1808(12)60127-3
Hussain MS, Azam F, Eldarrat HA, Alkskas I, Mayoof JA, Dammona JM, Ismail H, Ali M, Arif M, Haque A. Anti-inflammatory, analgesic and molecular docking studies of Lanostanoic acid 3-O-α-D-glycopyranoside isolated from Helichrysum stoechas. Arabian Journal of Chemistry. 2020 Dec 1;13(12):9196-206. https://doi.org/10.1016/j.arabjc.2020.11.004
Hussain, M.S., Azam, F., Mezogi, J., Enwij, F.A., Benhusein, G.M., Haque, A., Khalid, M., Arif, M., Alam, M.M., Ahmad, I. and Saeed, M.,A simple validated HPTLC method for the analysis of flavonoids and molecular docking studies of novel tri-terpenoid glycoside isolated from Carya illinoinensis bark with potential anti-inflammatory and antinociceptive activities. South African Journal of Botany, 2022;147:596-607. https://doi.org/10.1016/j.sajb.2022.02.016
Hussain MS, Azam F, Eldarrat HA, Haque A, Khalid M, Hassan MZ, Ali M, Arif M, Ahmad I, Zaman G, Alabdallah NM. Structural, functional, molecular, and biological evaluation of novel triterpenoids isolated from Helichrysum stoechas (L.) Moench. Collected from Mediterranean Sea bank: Misurata-Libya. Arabian Journal of Chemistry. 2022 Jun 1;15(6):103818. https://doi.org/10.1016/j.arabjc.2022.103818
Hussain MS, Gebira HM, Ismail H, Ali M. New aliphatic ester constituents of Hygrophila auriculata (K. Schum) Heine from the Koshi river basin. Oriental Pharmacy and Experimental Medicine. 2019 Sep 1;19:251-8. https://doi.org/10.1007/s13596-018-0336-8
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).