The Multifaceted Therapeutic Profile of Madecassoside: A Scholarly Review
Abstract
Medicinal plants are indispensable in both modern and traditional healthcare, offering a diverse array of bioactive compounds with therapeutic properties, including anti-inflammatory, antimicrobial, and anticancer effects. They provide accessible and affordable treatment options and play a crucial role in drug discovery, enhancing holistic health and promoting biodiversity conservation. Ongoing scientific research continues to validate and expand their applications in contemporary medicine, underscoring their enduring significance. Centella asiatica, a medicinal plant known for its therapeutic properties in traditional medicine and increasingly recognized in modern pharmacology for various health benefits. Madecassoside, stands out as a phytoactive constituent of Centella asiatica, renowned for its wide-ranging pharmacological properties, encompassing anti-inflammatory, antioxidant, wound-healing, and skin-protective effects. The present review illuminates madecassoside's pharmacological properties and its mechanistic roles, as documented by various researchers.
Keywords: Madecassoside, Centella asiatica, anti-inflammatory, antioxidant, wound-healing
Keywords:
Madecassoside, Centella asiatica, anti-inflammatory, antioxidant, wound-healingDOI
https://doi.org/10.22270/jddt.v14i9.6767References
Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, Kudo M, Gao M, Liu T. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol. 2020;11:568032. https://doi.org/10.3389/fphar.2020.568032 PMid:33013406 PMCid:PMC7498642
Arribas-López E, Zand N, Ojo O, Snowden MJ, Kochhar T. A Systematic Review of the Effect of Centella asiatica on Wound Healing. Int J Environ Res Public Health. 2022;19(6):3266. https://doi.org/10.3390/ijerph19063266 PMid:35328954 PMCid:PMC8956065
Gohil KJ, Patel JA, Gajjar AK. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J Pharm Sci. 2010;72(5):546-556. https://doi.org/10.4103/0250-474X.78519 PMid:21694984 PMCid:PMC3116297
Renju K, Gayathri V, Sabulal B. Biocompatible madecassoside encapsulated alginate chitosan nanoparticles, their anti-proliferative activity on C6 glioma cells. Carbohydrate Polymer Technologies and Applications. 2021;2, 2666-8939. https://doi.org/10.1016/j.carpta.2021.100106
Li Z, You K, Li J, Wang Y, Xu H, Gao B, Wang J. Madecassoside suppresses proliferation and invasiveness of HGF-induced human hepatocellular carcinoma cells via PKC-cMET-ERK1/2-COX-2-PGE2 pathway. Int Immunopharmacol. 2016;33:24-32. https://doi.org/10.1016/j.intimp.2016.01.027 PMid:26851630
Bandopadhyay S, Mandal S, Ghorai M, Jha NK, Kumar M, Radha, Ghosh A, Proćków J, Pérez de la Lastra JM, Dey A. Therapeutic properties and pharmacological activities of asiaticoside and madecassoside: A review. J Cell Mol Med. 2023;27(5):593-608. https://doi.org/10.1111/jcmm.17635 PMid:36756687 PMCid:PMC9983323
Xu CL, Qu R, Zhang J, Li LF, Ma SP. Neuroprotective effects of madecassoside in early stage of Parkinson's disease induced by MPTP in rats. Fitoterapia. 2013;90:112-118. https://doi.org/10.1016/j.fitote.2013.07.009 PMid:23876367
Ling Y, Gong Q, Xiong X, Sun L, Zhao W, Zhu W, Lu Y. Protective effect of madecassoside on H2O2-induced oxidative stress and autophagy activation in human melanocytes. Oncotarget. 2017;8(31):51066-51075. https://doi.org/10.18632/oncotarget.17654 PMid:28881630 PMCid:PMC5584231
Ling Z, Zhou S, Zhou Y, Zhong W, Su Z, Qin Z. Protective role of madecassoside from Centella asiatica against protein L-isoaspartyl methyltransferase deficiency-induced neurodegeneration. Neuropharmacology.2024;246:109834. https://doi.org/10.1016/j.neuropharm.2023.109834 PMid:38181970
Li SQ, Xie YS, Meng QW, Zhang J, Zhang T. Neuroprotective properties of Madecassoside from Centella asiatica after hypoxic-ischemic injury. Pak J Pharm Sci. 2016;29(6):2047-2051. https://pubmed.ncbi.nlm.nih.gov/28375122/
Luo Y, Yang YP, Liu J, et al. Neuroprotective effects of madecassoside against focal cerebral ischemia reperfusion injury in rats. Brain Res. 2014;1565:37-47. https://doi.org/10.1016/j.brainres.2014.04.008 PMid:24735651
Sasmita AO, Ling APK, Voon KGL, Koh RY, Wong YP. Madecassoside activates anti neuroinflammatory mechanisms by inhibiting lipopolysaccharide induced microglial inflammation. Int J Mol Med. 2018;41(5):3033-3040. https://doi.org/10.3892/ijmm.2018.3479 PMid:29436598
Viswanathan G, Dan VM, Radhakrishnan N, Nair AS, Rajendran Nair AP, Baby S. Protection of mouse brain from paracetamol-induced stress by Centella asiatica methanol extract. J Ethnopharmacol. 2019;236:474-483. https://doi.org/10.1016/j.jep.2019.03.017 PMid:30872170
Yuan H, Zhao Y, Li S, Qin J, Yu X. Madecassoside ameliorates cisplatin-induced nephrotoxicity by inhibiting activation of the mitogen activated protein kinase pathway. Environ Toxicol. 2023;38(7):1473-1483. https://doi.org/10.1002/tox.23777 PMid:37087747
Su Z, Ye J, Qin Z, Ding X. Protective effects of madecassoside against Doxorubicin induced nephrotoxicity in vivo and in vitro. Sci Rep. 2015;5:18314. https://doi.org/10.1038/srep18314 PMid:26658818 PMCid:PMC4677317
Tan SC, Rajendran R, Bhattamisra SK, Krishnappa P, Davamani F, Chitra E, Ambu S, Furman B, Candasamy M. Effect of madecassoside in reducing oxidative stress and blood glucose in streptozotocin-nicotinamide-induced diabetes in rats. J Pharm Pharmacol. 2023;75(8):1034-1045. https://doi.org/10.1093/jpp/rgad063 PMid:37402616
Tan SC, Rajendran R, Bhattamisra SK, Krishnappa P, Davamani F, Chitra E, Ambu S, Furman B, Candasamy M. Protective effects of madecassoside, a triterpenoid from Centella asiatica, against oxidative stress in INS-1E cells. Nat Prod Res. 2024:1-8. https://doi.org/10.1080/14786419.2024.2315499
Elhassan SAM, Candasamy M, Ching TS, Heng YK, Bhattamisra SK. Effect of madecassoside and catalpol in amelioration of insulin sensitivity in pancreatic (INS-1E) β-cell line. Nat Prod Res. 2021;35(22):4627-4631. https://doi.org/10.1080/14786419.2019.1696794 PMid:31797687
Li H, Gong X, Zhang L, et al. Madecassoside attenuates inflammatory response on collagen-induced arthritis in DBA/1 mice. Phytomedicine. 2009;16(6-7):538-546. https://doi.org/10.1016/j.phymed.2008.11.002 PMid:19135346
Won JH, Shin JS, Park HJ, et al. Anti-inflammatory effects of madecassic acid via the suppression of NF-kappaB pathway in LPS-induced RAW 264.7 macrophage cells. Planta Med. 2010;76(3):251-257. https://doi.org/10.1055/s-0029-1186142 PMid:19774506
Moqbel SAA, He Y, Xu L, et al. Rat Chondrocyte Inflammation and Osteoarthritis Are Ameliorated by Madecassoside. Oxid Med Cell Longev. 2020;2020:7540197. https://doi.org/10.1155/2020/7540197 PMid:32089778 PMCid:PMC7023724
Lu X, Zeng R, Lin J, Hu J, Rong Z, Xu W, Liu Z, Zeng W. Pharmacological basis for use of madecassoside in gouty arthritis: anti-inflammatory, anti-hyperuricemic, and NLRP3 inhibition. Immunopharmacol Immunotoxicol. 2019 Apr;41(2):277-284. https://doi.org/10.1080/08923973.2019.1590721 PMid:31084401
Shen X, Guo M, Yu H, Liu D, Lu Z, Lu Y. Propionibacterium acnes related anti-inflammation and skin hydration activities of madecassoside, a pentacyclic triterpene saponin from Centella asiatica. Biosci Biotechnol Biochem. 2019;83(3):561-568. https://doi.org/10.1080/09168451.2018.1547627 PMid:30452312
Lu W, Luo D, Chen D, et al. Systematic Study of Paeonol/Madecassoside Co-Delivery Nanoemulsion Transdermal Delivery System for Enhancing Barrier Repair and Anti-Inflammatory Efficacy. Molecules. 2023;28(13):5275. https://doi.org/10.3390/molecules28135275 PMid:37446936 PMCid:PMC10343821
Du B, Zhang Z, Li N. Madecassoside prevents Aβ(25-35)-induced inflammatory responses and autophagy in neuronal cells through the class III PI3K/Beclin-1/Bcl-2 pathway. Int Immunopharmacol. 2014;20(1):221-228. https://doi.org/10.1016/j.intimp.2014.02.036 PMid:24631516
Jung E, Lee JA, Shin S, Roh KB, Kim JH, Park D. Madecassoside inhibits melanin synthesis by blocking ultraviolet-induced inflammation. Molecules. 2013;18(12):15724-15736. https://doi.org/10.3390/molecules181215724 PMid:24352025 PMCid:PMC6290557
Choi SW, Cho W, Oh H, Abd El-Aty AM, Hong SA, Hong M, Jeong JH, Jung TW. Madecassoside ameliorates hepatic steatosis in high-fat diet-fed mice through AMPK/autophagy-mediated suppression of ER stress. Biochem Pharmacol. 2023;217:115815. https://doi.org/10.1016/j.bcp.2023.115815 PMid:37741512
Wang W, Wu L, Li Q, Zhang Z, Xu L, Lin C, Gao L, Zhao K, Liang F, Zhang Q, Zhou M, Jiang W. Madecassoside prevents acute liver failure in LPS/D-GalN-induced mice by inhibiting p38/NF-κB and activating Nrf2/HO-1 signaling. Biomed Pharmacother. 2018 Jul;103:1137-1145. https://doi.org/10.1016/j.biopha.2018.04.162 PMid:29715757
Liu M, Dai Y, Li Y, et al. Madecassoside isolated from Centella asiatica herbs facilitates burn wound healing in mice. Planta Med. 2008;74(8):809-815. https://doi.org/10.1055/s-2008-1074533 PMid:18484522
Hou Q, Li M, Lu YH, Liu DH, Li CC. Burn wound healing properties of asiaticoside and madecassoside. Exp Ther Med. 2016;12(3):1269-1274. https://doi.org/10.3892/etm.2016.3459 PMid:27588048 PMCid:PMC4997909
Rachpirom M, Pichayakorn W, Puttarak P. Preparation, development, and scale-up of standardized pentacyclic triterpenoid-rich extract from Centella asiatica (L.) Urb. and study of its wound healing activity. Heliyon. 2023;9(7):e17807. https://doi.org/10.1016/j.heliyon.2023.e17807 PMid:37539271 PMCid:PMC10395139
Kim M, Heo H, Hong S, Lee J, Lee H. Synergistic Effect of Madecassoside and Rosmarinic Acid Against Ultraviolet B-Induced Photoaging in Human Skin Fibroblasts. J Med Food. 2023;26(12):919-926. https://doi.org/10.1089/jmf.2023.K.0201 PMid:37976111
Park KS. Pharmacological Effects of Centella asiatica on Skin Diseases: Evidence and Possible Mechanisms. Evid Based Complement Alternat Med. 2021;2021:5462633. https://doi.org/10.1155/2021/5462633 PMid:34845411 PMCid:PMC8627341
Liu M, Chen W, Zhang X, et al. Improved surface adhesion and wound healing effect of madecassoside liposomes modified by temperature-responsive PEG-PCL-PEG copolymers. Eur J Pharm Sci. 2020;151:105373. https://doi.org/10.1016/j.ejps.2020.105373 PMid:32450220
Li W, Yu Q, Shen Z, et al. Effects of a cream containing madecassoside, 5% panthenol, and copper-zinc-manganese on improving postlaser resurfacing wound healing: A split-face, randomized trial. Dermatol Ther. 2020;33(4):e13533. https://doi.org/10.1111/dth.13533
Li Z, Liu M, Wang H, Du S. Increased cutaneous wound healing effect of biodegradable liposomes containing madecassoside: preparation optimization, in vitro dermal permeation, and in vivo bioevaluation. Int J Nanomedicine. 2016;11:2995-3007. https://doi.org/10.2147/IJN.S105035 PMid:27486319 PMCid:PMC4962759
Changsan N, Srichana T, Atipairin A, Sawatdee S. Wound healing efficacy of a polymeric spray film solution containing Centella asiatica leaf extract on acute wounds. J Wound Care. 2023;32(Sup12):S22-S32. https://doi.org/10.12968/jowc.2023.32.Sup12.S22 PMid:38063299
Sawatdee S, Choochuay K, Chanthorn W, Srichana T. Evaluation of the topical spray containing Centella asiatica extract and its efficacy on excision wounds in rats. Acta Pharm. 2016;66(2):233-244. https://doi.org/10.1515/acph-2016-0018 PMid:27279066
Li GG, Bian GX, Ren JP, Wen LQ, Zhang M, Lü QJ. Protective effect of madecassoside against reperfusion injury after regional ischemia in rabbit heart in vivo. Yao Xue Xue Bao. 2007;42(5):475-80
Bian GX, Li GG, Yang Y, Liu RT, Ren JP, Wen LQ, Guo SM, Lu QJ. Madecassoside reduces ischemia-reperfusion injury on regional ischemia induced heart infarction in rat. Biol Pharm Bull. 2008 Mar;31(3):458-63. https://doi.org/10.1248/bpb.31.458 PMid:18310910
Cao W, Li XQ, Zhang XN, Hou Y, Zeng AG, Xie YH, Wang SW. Madecassoside suppresses LPS-induced TNF-alpha production in cardiomyocytes through inhibition of ERK, p38, and NF-kappaB activity. Int Immunopharmacol. 2010;10(7):723-9. https://doi.org/10.1016/j.intimp.2010.03.015 PMid:20381648
Mando Z, Mando H, Afzan A, Shaari K, Hassan Z, Mohamad Taib MNA, Zakaria F. Biomarker triterpenoids of Centella asiatica as potential antidepressant agents: Combining in vivo and in silico studies. Behav Brain Res. 2024;466:114976. https://doi.org/10.1016/j.bbr.2024.114976 PMid:38599249
Liu MR, Han T, Chen Y, Qin LP, Zheng HC, Rui YC. Effect of madecassoside on depression behavior of mice and activities of MAO in different brain regions of rats. Zhong Xi Yi Jie He Xue Bao. 2004;2(6):440-4. https://doi.org/10.3736/jcim20040611 PMid:15539023
Cho W, Hong M, Mobarak EH, Birdal O, Lim MC, Jung MS, Hong SA, Jeong JH, Jung TW. Madecassoside modulates lipid metabolism in visceral adipocytes: exploring the browning, lipolysis, and lipogenesis mechanisms for potential obesity treatment. J Pharm Pharmacol. 2024;76(7):834-841. https://doi.org/10.1093/jpp/rgae042 PMid:38588466
Sun B, Hayashi M, Kudo M, Wu L, Qin L, Gao M, Liu T. Madecassoside Inhibits Body Weight Gain via Modulating SIRT1-AMPK Signaling Pathway and Activating Genes Related to Thermogenesis. Front Endocrinol (Lausanne). 2021;12:627950. https://doi.org/10.3389/fendo.2021.627950 PMid:33767670 PMCid:PMC7985537
Shan RR, Yu JT, Zhang SF, Xie MM, Hou R, Xie CY, Dong ZH, Yang Q, Hu XW, Dong YH, Zhang Y, Luo XF, Cui ZY, Liu XY, Xie YC, Wen JG, Liu MM, Jin J, Chen Q, Meng XM. Madecassoside alleviates acute kidney injury by regulating JNK-mediated oxidative stress and programmed cell death. Phytomedicine. 2024;123:155252. https://doi.org/10.1016/j.phymed.2023.155252 PMid:38056145
Arora R, Kumar R, Agarwal A, Reeta KH, Gupta YK. Comparison of three different extracts of Centella asiatica for anti-amnesic, antioxidant and anticholinergic activities: in vitro and in vivo study. Biomed Pharmacother. 2018;105:1344-1352. https://doi.org/10.1016/j.biopha.2018.05.156 PMid:30021372
Wang Q, Yao L, Xu K, et al. Madecassoside inhibits estrogen deficiency-induced osteoporosis by suppressing RANKL-induced osteoclastogenesis. J Cell Mol Med. 2019;23(1):380-394. https://doi.org/10.1111/jcmm.13942 PMid:30338925 PMCid:PMC6307845
Yu WG, Shen Y, Wu JZ, Gao YB, Zhang LX. Madecassoside impedes invasion of rheumatoid fibroblast-like synoviocyte from adjuvant arthritis rats via inhibition of NF-κB-mediated matrix metalloproteinase-13 expression. Chin J Nat Med. 2018;16(5):330-338. https://doi.org/10.1016/S1875-5364(18)30064-5 PMid:29860993
Dou Y, Luo J, Yu J, Xia Y, Dai Y. Cholinergic system is involved in the therapeutic effect of madecassoside on collagen-induced arthritis in rats. Int Immunopharmacol. 2019;75:105813. https://doi.org/10.1016/j.intimp.2019.105813 PMid:31404889
Lin X, Zhang S, Huang R, et al. Protective effect of madecassoside against cognitive impairment induced by D-galactose in mice [published correction appears in Pharmacol Biochem Behav. 202;200:173086. doi: 10.1016/j.pbb.2020.173086]. Pharmacol Biochem Behav. 2014;124:434-442. https://doi.org/10.1016/j.pbb.2014.07.014 PMid:25106808
Lu GX, Bian DF, Ji Y, Guo JM, Wei ZF, Jiang SD, Xia YF, Dai Y. Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice by downregulating collagen deposition. Phytother Res. 2014;28(8):1224-31. https://doi.org/10.1002/ptr.5120 PMid:24458872
Bian D, Liu M, Li Y, Xia Y, Gong Z, Dai Y. Madecassoside, a triterpenoid saponin isolated from Centella asiatica herbs, protects endothelial cells against oxidative stress. J Biochem Mol Toxicol. 2012;26(10):399-406. https://doi.org/10.1002/jbt.21434 PMid:22829481
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).