Development of a technique for determining the viability of dormant organisms in powdered substances

  • Ivan Andreevich Gaidashev Department of Pharmaceutical and Toxicological Chemistry, People's Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., Moscow, 117198, Russian Federation https://orcid.org/0009-0009-2197-8861
  • Yuliana Gennadievna Nikolaeva Department of Pharmaceutical and Toxicological Chemistry, People's Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., Moscow, 117198, Russian Federation
  • Anton Vladimirovich Syroeshkin Department of Pharmaceutical and Toxicological Chemistry, People's Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., Moscow, 117198, Russian Federation https://orcid.org/0000-0003-3279-7520

Abstract

The purposes of pharmaceutical biotechnology and quality control of probiotics containing lyophilized bacterial preparations, as well as the purpose of ensuring biological safety, require methods for rapid determination of the viability of dormant forms. This paper describes an approach to determining the viability of dry powdered substances. Lyophilized powder of Kalanchoe daigermontiana, dry dormant eggs of Artemia salina, and dry powder of Lycopodium sp. spores were proposed as model objects. Suspensions of virus-like particles (VLPs) to SARS-CoV-2 were proposed as a cell-free reference material. The following methods of elemental analysis were used in the study: X-ray fluorescence spectroscopy (XRF) on an energy-dispersive device, atomic absorption spectroscopy with electrothermal atomization, and Zeeman background correction (GZ-AAS). The free water content was determined by NMR spin echo. A new method was also used for recording the kinetics of changes in broadband radio emission in the centimeter and millimeter wavelength ranges, with a measurement duration of up to 20 minutes. Live and inactivated powdered preparations of K. daigermontiana and A. salina were prepared and characterized by elemental composition, water content, and spin-spin relaxation time (T2). For these live and inactivated preparations, it was determined that the flux density of intrinsic thermal radio emission decreases by an order of magnitude with the loss of viability. In the future, the results obtained will allow for a rapid test of the viability of lyophilized therapeutics (from medicinal plants to bacterial mixtures that stabilize the intestinal microflora).


Keywords: millimeter emission, X-ray fluorescence analysis, NMR spin echo, nanoparticles, powdered substances, medicinal plant raw materials

Keywords: millimeter emission, X-ray fluorescence analysis, NMR spin echo, nanoparticles, powdered substances, medicinal plant raw materials

Downloads

Download data is not yet available.

Author Biographies

Ivan Andreevich Gaidashev, Department of Pharmaceutical and Toxicological Chemistry, People's Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., Moscow, 117198, Russian Federation

Department of Pharmaceutical and Toxicological Chemistry, People's Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., Moscow, 117198, Russian Federation

Yuliana Gennadievna Nikolaeva, Department of Pharmaceutical and Toxicological Chemistry, People's Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., Moscow, 117198, Russian Federation

Department of Pharmaceutical and Toxicological Chemistry, People's Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., Moscow, 117198, Russian Federation

Anton Vladimirovich Syroeshkin, Department of Pharmaceutical and Toxicological Chemistry, People's Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., Moscow, 117198, Russian Federation

Department of Pharmaceutical and Toxicological Chemistry, People's Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., Moscow, 117198, Russian Federation

References

1. Astashkina AP, Khudyakova LI, Kolbysheva YV. Microbiological quality control of probiotic products. Procedia Chemistry. 2014 Jan;1;(10):74-9. https://doi.org/10.1016/j.proche.2014.10.014
2. Klein-Junior LC, de Souza MR, Viaene J, Bresolin TMB, de Gasper AL, Henriques AT, Heyden YV. Quality Control of Herbal Medicines: From Traditional Techniques to State-of-the-art Approaches. Planta Med. 2021 Oct;87(12-13):964-988. https://doi.org/10.1055/a-1529-8339 PMid:34412146
3. Momcilovic D, Rasooly A. Detection and analysis of animal materials in food and feed. Journal of Food Protection. 2000 Nov;1;63(11):1602-9. doi: 10.4315/0362-028x-63.11.1602. https://doi.org/10.4315/0362-028X-63.11.1602 PMid:11079709
4. Zuber S, Brüssow H. COVID 19: challenges for virologists in the food industry. Microb Biotechnol. 2020 Nov;13(6):1689-1701. https://doi.org/10.1111/1751-7915.13638 PMid:32700430 PMCid:PMC7404336
5. Xue T, Lu Y, Yang H, Hu X, Zhang K, Ren Y, Wu C, Xia X, Deng R, Wang Y. Isothermal RNA Amplification for the Detection of Viable Pathogenic Bacteria to Estimate the Salmonella Virulence for Causing Enteritis. J Agric Food Chem. 2022 Feb 9;70(5):1670-1678. https://doi.org/10.1021/acs.jafc.1c07182 PMid:35099949
6. Andrews M, Baum J, Gilson PR, Wilson DW. Bottoms up! Malaria parasite invasion the right way around. Trends Parasitol. 2023 Dec;39(12):1004-1013. https://doi.org/10.1016/j.pt.2023.09.010 PMid:37827961
7. Syroeshkin AV, Bakeeva LE, Cherepanov DA. Contraction transitions of F1-F0 ATPase during catalytic turnover. Biochimica Et Biophysica Acta (BBA) - Bioenergetics. 1998 Dec;1;1409(2):59-71. https://doi.org/10.1016/S0005-2728(98)00150-9
8. Grimaldi M, Santoro A, Buonocore M, Crivaro C, Funicello N, Saponetti MS, et al. A new approach to supramolecular structure determination in pharmaceutical preparation of Self-Assembling peptides: A case study of lanreotide Autogel. Pharmaceutics. 2022 Mar;20;14(3):681. https://doi.org/10.3390/pharmaceutics14030681 PMid:35336055 PMCid:PMC8954372
9. Kogo T, Utatsu K, Taharabaru T, Onodera R, Motoyama K, Higashi T. Polyrotaxane-Based Supramolecular Material for Improvement of Pharmaceutical Properties of Protein Drugs. J Pharm Sci. 2022 Jul;111(7):2116-2120. https://doi.org/10.1016/j.xphs.2022.01.018 PMid:35093335
10. Sorokin EV, Tsareva TR, Rudneva IA, Timofeev BI, Lyashko AV, Balanova MA, Artemov EK, Grebennikova TV, Timofeeva TA. [Monoclonal antibodies to hemagglutinin of influenza A/H7N3 virus (Orthomyxoviridae: Alphainfluenzavirus: Influenza A virus)]. Vopr Virusol. 2021 Jul 9;66(3):189-197. Russian. https://doi.org/10.36233/0507-4088-45 PMid:34251156
11. Derjaguin BV, Abrikosova II, Lifshitz EM. Molecular attraction of condensed bodies. Physics-Uspekhi 2015 Sep;30;58(9):906-24. https://doi.org/10.3367/UFNe.0185.201509i.0981
12. Stöhr M, Sadhukhan M, Al-Hamdani YS, Hermann J, Tkatchenko A. Coulomb interactions between dipolar quantum fluctuations in van der Waals bound molecules and materials. Nat Commun. 2021 Jan 8;12(1):137. https://doi.org/10.1038/s41467-020-20473-w PMid:33420079 PMCid:PMC7794295
13. Deryagin BV. Thermodynamics of Free, Foam, and Emulsion Films. Kolloidnyj Zhurnal. 1994;56(1) 133-134.
14. Syroeshkin AV, Petrov GV, Taranov VV, Pleteneva TV, Koldina AM, Gaydashev IA, Kolyabina ES, Galkina DA, Sorokina EV, Uspenskaya EV, Kazimova IV, Morozova MA, Lebedeva VV, Cherepushkin SA, Tarabrina IV, Syroeshkin SA, Tertyshnikov AV, Grebennikova TV. Radiothermal Emission of Nanoparticles with a Complex Shape as a Tool for the Quality Control of Pharmaceuticals Containing Biologically Active Nanoparticles. Pharmaceutics. 2023 Mar 16;15(3):966. https://doi.org/10.3390/pharmaceutics15030966 PMid:36986826 PMCid:PMC10059067
15. Melekhov E.I. On the possible principle of regulation of damage and protective reaction of cells, Journal. Gen. Biology, 1983;44(3):386-397.
16. Nikolaeva YG, Frolov VA, Syroeshkin AV. Effect of low temperatures on diapausing cysts of Artemia salina. Natural and Technical Sciences. 2008;3;21-25.
17. Jönsson KI. Radiation Tolerance in Tardigrades: Current Knowledge and Potential Applications in Medicine. Cancers (Basel). 2019 Sep;9;11(9):1333. https://doi.org/10.3390/cancers11091333 PMid:31505739 PMCid:PMC6770827
18. Gajardo GM, Beardmore JA. The brine shrimp artemia: adapted to critical life conditions. Front Physiol. 2012 Jun;22;3:185. https://doi.org/10.3389/fphys.2012.00185 PMid:22737126 PMCid:PMC3381296
19. Aksenov SI, Goriachev SN, Fateeva MV, Nikitina TN. NMR spin echo study of different strains of Saccharomycodes genus yeasts with varying resistance to lyophilization. 1973 Sep;1;5:729-36.
20. Sellami I, Naceur HB, Kacem A. Study of Cysts Biometry and Hatching Percentage of the Brine Shrimp Artemia salina (Linnaeus, 1758) from the Sebkha of Sidi El Hani (Tunisia) According to Successive Generations. Aquaculture Studies. 2020 Dec;17;21(1):41-6. https://doi.org/10.4194/2618-6381-v21_1_05
21.Giacosa JPR, Morbelli MA, Giudice GE, Gorrer DA. Spore morphology and wall ultrastructure of Lycopodiaceae from northwest Argentina. Review of Palaeobotany and Palynology. 2016 Feb; 1;225:84-94. https://doi.org/10.1016/j.revpalbo.2015.11.009
22. Gaidashev IA, Syroeshkin AV. Development of a reference sample for rapid analysis of an elemental composition of medicinal plant raw materials. Int J Appl Pharm. 2024 Mar;16(2). https://doi.org/10.22159/ijap.2024v16i2.49870.
23. Petrov GV, Taranov VV, Syroeshkin AV. Express method for quality control of products after the fluidized bed aerosol chamber by detecting radio thermal emission of nanoparticles. European Chemical Bulletin. 2023;12;6;3035-3041. https://doi.org/10.48047/ecb/2023.12.6.273 .
24. Goncharuk VV, Lapshin VB, Burdeinaya TN, Pleteneva TV, Chernopyatko AS, Atamanenko ID, et al. Physicochemical properties and biological activity of the water depleted of heavy isotopes. Journal of Water Chemistry and Technology. 2011 Feb;1;33(1):8-13. https://doi.org/10.3103/S1063455X11010024
25. Nikolaeva YG, Nikolaev GM, Timofeev KN, et. al. The study of the state of water in dormant forms of Artemia salina. Vestnik RUDN. 2007;1;5-9.
26. Syroeshkin AV, Tarabrina IV, Morozova MA, Marukhlenko AV, Zlatskiy I, Makarova MP. Possible Mechanisms of Relations between the Thermal Neutrons Field and Biosphere. The Scientific World Journal. 2020 Aug;11;2020:1-5. https://doi.org/10.1155/2020/2175296 PMid:32848512 PMCid:PMC7439186
27. Petrov GV, Galkina DA, Koldina AM, Grebennikova TV, Eliseeva O, Chernoryzh YYu, et al. Controlling the quality of nanodrugs according to their new Property-Radiothermal emission. Pharmaceutics. 2024 Jan 26;16(2):180. https://doi.org/10.3390/pharmaceutics16020180 PMid:38399241 PMCid:PMC10891502
28. Syroeshkin AV, Pleteneva TV, Uspenskaya EV, Zlatskiy I, Antipova NV, Grebennikova TV, et al. D/H control of chemical kinetics in water solutions under low deuterium concentrations. Chemical Engineering Journal. 2019 Dec;1;377:119827. https://doi.org/10.1016/j.cej.2018.08.213
29. Hosry LE, Sok N, Richa R, Mashtoub LA, Cayot P, Bou-Maroun E. Sample preparation and analytical techniques in the determination of trace elements in food: a review. Foods. 2023 Feb 20;12(4):895. https://doi.org/10.3390/foods12040895 PMid:36832970 PMCid:PMC9956155
Crossmark
Statistics
69 Views | 5 Downloads
How to Cite
1.
Gaidashev I, Nikolaeva Y, Syroeshkin A. Development of a technique for determining the viability of dormant organisms in powdered substances. JDDT [Internet]. 15Mar.2024 [cited 19Apr.2024];14(3):60-5. Available from: https://jddtonline.info/index.php/jddt/article/view/6467