Effect of Thymoquinone on Ovarian Carcinoma Cell Viability (OVCAR-3)

  • İlhan Özdemir Dicle University Faculty of Medicine Histology and Embryology Department, Diyarbakır, Turkey. https://orcid.org/0000-0001-9957-0211
  • Cenap Ekinci Dicle University Faculty of Medicine Histology and Embryology Department, Diyarbakır, Turkey.

Abstract

Aim: Ovarian cancer is the third most common gynecological malignancy worldwide. However, it has the highest mortality rate among cancers due to its asymptomatic course, late diagnosis and recurrence. Doxorubicin (Dox) is one of the most commonly prescribed chemotherapeutics in the treatment of ovarian and breast cancer. The serious side effects of chemotherapeutic drugs and the development of drug resistance restrict the use of these drugs. The use of natural products with anticancer activity may help partially overcome these problems. In this study, the effects of thymoquinone (TQ) and Dox, a powerful chemotherapy agent, on cell growth inhibition and cell viability on OVCAR-3 and human skin keratinocyte cell line (HaCaT) were determined by the MTT method.


Method: Ovarian adenocarcinoma cell lines OVCAR-3 (CCL-2™) and HaCat (RRID: CVCL_0038) were used in the study. To determine the IC50 (inhibitory concentration) doses of Dox and TQ, HeLa and HaCaT cell lines were cultivated with the help of an automatic multipipet. Then, MTT test was applied to analyze cell survival (viability).


Results: OVCAR-3 cell growth was approximately 2.12 nM at the 48th hour in cells treated with Dox, while the IC50 value of TQ at the 48th hour was found to be 62.9 µM.


Conclusion: These results show that TQ potentiates the effect of Dox and the Dox/TQ combination may be a promising alternative to other chemotherapeutic combinations in the treatment of ovarian cancer with lower side effects.


Keywords: Thymoquinone, Cancer, Ovarian adenocarcinoma, MTT

Keywords: Thymoquinone, Cancer, Ovarian adenocarcinoma, MTT

Downloads

Download data is not yet available.

Author Biographies

İlhan Özdemir, Dicle University Faculty of Medicine Histology and Embryology Department, Diyarbakır, Turkey.

Dicle University Faculty of Medicine Histology and Embryology Department, Diyarbakır, Turkey.

Cenap Ekinci, Dicle University Faculty of Medicine Histology and Embryology Department, Diyarbakır, Turkey.

Dicle University Faculty of Medicine Histology and Embryology Department, Diyarbakır, Turkey.

References

1. Cancer. https ://www.who.int/news-room/fact-sheet s/detail/cancer. Erişim: 16.04.2023.
2. Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer. BMJ. 2020;371:m3773. https://doi.org/10.1136/bmj.m3773 PMid:33168565
3. Barani M, Bilal M, Sabir F, Rahdar A, Kyzas GZ. Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci. 2021;266:118914. https://doi.org/10.1016/j.lfs.2020.118914 PMid:33340527
4. Rojas V, Hirshfield KM, Ganesan S, Rodriguez-Rodriguez L. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. Int J Mol Sci. 2016;17(12):2113. https://doi.org/10.3390/ijms17122113 PMid:27983698 PMCid:PMC5187913
5. Chen SN, Chang R, Lin LT, Chern CU, Tsai HW, Wen ZH, Li YH, Li CJ, Tsui KH. MicroRNA in Ovarian Cancer: Biology, Pathogenesis, and Therapeutic Opportunities. Int J Environ Res Public Health. 2019;16(9):1510. https://doi.org/10.3390/ijerph16091510 PMid:31035447 PMCid:PMC6539609
6. Tarhriz V, Bandehpour M, Dastmalchi S, Ouladsahebmadarek E, Zarredar H, Eyvazi S. Overview of CD24 as a new molecular marker in ovarian cancer. J Cell Physiol. 2019;234(3):2134-2142. https://doi.org/10.1002/jcp.27581 PMid:30317611
7. Aborehab NM, Osama N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 2019;19:154. https://doi.org/10.1186/s12935-019-0868-0 PMid:31171918 PMCid:PMC6547587
8. Gong C, Xie Y, Zhao Y, et al. Comparison of two regimens of weekly paclitaxel plus gemcitabine in patients with metastatic breast cancer: propensity score-matched analysis of real-world data. Ther Adv Drug Saf. 2022;13:20420986221146411. https://doi.org/10.1177/20420986221146411 PMid:36582188 PMCid:PMC9793024
9. Bayat Mokhtari R, Baluch N, Morgatskaya E, et al. Human bronchial carcinoid tumor initiating cells are targeted by the combination of acetazolamide and sulforaphane. BMC Cancer. 2019;19(1):864. https://doi.org/10.1186/s12885-019-6018-1 PMid:31470802 PMCid:PMC6716820
10. Frazier AL, Stoneham S, Rodriguez-Galindo C, et al. Comparison of carboplatin versus cisplatin in the treatment of paediatric extracranial malignant germ cell tumours: a report of the Malignant Germ Cell International Consortium. Eur J Cancer. 2018;98:30-7. https://doi.org/10.1016/j.ejca.2018.03.004 PMid:29859339
11. Jiang S, Pan AW, Lin TY, et al. Paclitaxel enhances carboplatin-dna adduct formation and cytotoxicity. Chem Res Toxicol. 2015;28(12):2250-2. https://doi.org/10.1021/acs.chemrestox.5b00422 PMid:26544157 PMCid:PMC4834887
12. Ahmad A, Mishra RK, Vyawahare A, Kumar A, Rehman MU, Qamar W, Khan AQ, Khan R. Thymoquinone (2-Isopropyl-5-methyl-1, 4benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharmaceutical Journal, 2019;27(8): 1113-1126. https://doi.org/10.1016/j.jsps.2019.09.008 PMid:31885471 PMCid:PMC6921197
13. Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, Ibrahim WN. (2021). Thymoquinone, as a Novel Therapeutic Candidate of Cancers. Pharmaceuticals, 2021;14(4): 369. https://doi.org/10.3390/ph14040369 PMid:33923474 PMCid:PMC8074212
14. Chowdhury FA, Hossain MK, Mostofa AGM, Akbor MM, bin Sayeed MS. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways. BioMed Research International, 2018;2018: 1-15. https://doi.org/10.1155/2018/4010629 PMid:29651429 PMCid:PMC5831880
15. Bhattacharya S, Muhammad N, Steele R, et al. Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget. 2016;7(22):33202-9. https://doi.org/10.18632/oncotarget.8898 PMid:27120805 PMCid:PMC5078086
16. De A, De A, Sharma R, et al. Sensitization of Carboplatinum- and Taxol-Resistant High-Grade Serous Ovarian Cancer Cells Carrying p53, BRCA1/2 Mutations by Emblica officinalis (Amla) via Multiple Targets. J Cancer. 2020;11(7):1927-1939. https://doi.org/10.7150/jca.36919 PMid:32194804 PMCid:PMC7052860
17. Sourani ZM, Pourgheysari BP, Beshkar PM, et al. Gallic Acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran J Med Sci. 2016;41(6):525-30.
18. He Z, Chen AY, Rojanasakul Y, et al. Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells. Oncol Rep. 2016 Jan;35(1):291-7. https://doi.org/10.3892/or.2015.4354 PMid:26530725 PMCid:PMC4699619
19. Jiang Y, Pei J, Zheng Y, et al. Gallic Acid: A Potential Anti-Cancer Agent. Chin J Integr Med. 2022;28(7):661-671. doi: 10.1007/s11655-021-3345-2. https://doi.org/10.1007/s11655-021-3345-2 PMid:34755289
20. Park WH, Kim SH. MAPK inhibitors augment gallic acid-induced A549 lung cancer cell death through the enhancement of glutathione depletion. Oncol Rep. 2013;30(1):513-9. doi: 10.3892/or.2013.2447. https://doi.org/10.3892/or.2013.2447 PMid:23660987
21. Al Balushi N, Hassan SI, Abdullah N, et al. Addition of Gallic Acid Overcomes Resistance to Cisplatin in Ovarian Cancer Cell Lines. Asian Pac J Cancer Prev. 2022;23(8):2661-2669. doi: 10.31557/APJCP.2022.23.8.2661. https://doi.org/10.31557/APJCP.2022.23.8.2661 PMid:36037120 PMCid:PMC9741893
22. Park WH. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels. Oncol Rep. 2017;37(2):1277-83. https://doi.org/10.3892/or.2016.5335 PMid:28035417
23. Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., & Sarkar, S. (2014). Drug resistance in cancer: An overview. In Cancers (Vol. 6, Issue 3). https://doi.org/10.3390/cancers6031769 PMid:25198391 PMCid:PMC4190567
24. Krzyszczyk, P., Acevedo, A., Davidoff, E. J., Timmins, L. M., Marrero-Berrios, I., Patel, M., White, C., Lowe, C., Sherba, J. J., Hartmanshenn, C., O'Neill, K. M., Balter, M. L., Fritz, Z. R., Androulakis, I. P., Schloss, R. S., & Yarmush, M. L. (2018). The growing role of precision and personalized medicine for cancer treatment. TECHNOLOGY, 06(03n04), 79-100. https://doi.org/10.1142/S2339547818300020 PMid:30713991 PMCid:PMC6352312
25. Mostofa, A., Hossain, M. K., Basak, D., & bin Sayeed, M. S. (2017). Thymoquinone as a Potential Adjuvant Therapy for Cancer Treatment : Evidence from Preclinical Studies. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00295 PMid:28659794 PMCid:PMC5466966
26. Manolis, A. A., Manolis, T. A., Melita, H., & Manolis, A. S. (2019). Spotlight on Spironolactone Oral Suspension for the Treatment of Heart Failure : Focus on Patient Selection and Perspectives Vascular Health and Risk Management, Volume 15, 571-579. https://doi.org/10.2147/VHRM.S210150 PMid:31920323 PMCid:PMC6941679
27. Zhang, Z., Zhou, L., Xie, N., Nice, E. C., Zhang, T., Cui, Y., & Huang, C. (2020). Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduction and Targeted Therapy, 5(1). https://doi.org/10.1038/s41392-020-00213-8 PMid:32616710
28. Jafri, M. A., Ansari, S. A., Alqahtani, M. H., & Shay, J. W. (2016b). Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Medicine, 8(1). https://doi.org/10.1186/s13073-016-0324-x PMid:27323951 PMCid:PMC4915101
29. Zubair, H., Khan, H. Y., Sohail, A., Azim, S., Ullah, M. F., Ahmad, A., Sarkar, F. H., & Hadi, S. M. (2013). Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death : putative anticancer mechanism of antioxidants. Cell Death & Disease, 4(6), e660. https://doi.org/10.1038/cddis.2013.172 PMid:23744360 PMCid:PMC3698541
30. Samarghandian, S., Azimi‐Nezhad, M., & Farkhondeh, T. (2018). Thymoquinoneinduced antitumor and apoptosis in human lung adenocarcinoma cells. Journal of Cellular Physiology, 234(7), 10421-10431. https://doi.org/10.1002/jcp.27710 PMid:30387147
31. Chu, S. C., Hsieh, Y. S., Yu, C. C., Lai, Y. Y., & Chen, P. N. (2014). Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy. PLoS ONE, 9(7), e101579. https://doi.org/10.1371/journal.pone.0101579 PMid:25000169 PMCid:PMC4085014
32. Warrier, N. M., Agarwal, P., & Kumar, P. (2020). Emerging Importance of Survivin in Stem Cells and Cancer : the Development of New Cancer Therapeutics. Stem Cell Reviews and Reports, 16(5), 828-852. https://doi.org/10.1007/s12015-020-09995-4 PMid:32691369 PMCid:PMC7456415
33. Präbst K, Engelhardt H, Ringgeler S, et al. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. Methods Mol Biol. 2017;1601:1-17. doi: 10.1007/978-1-4939-6960-9_1. https://doi.org/10.1007/978-1-4939-6960-9_1 PMid:28470513
34. Yan XX, Zhao YQ, He Y, et al. Cytotoxic and pro-apoptotic effects of botanical drugs derived from the indigenous cultivated medicinal plant Paris polyphylla var. yunnanensis. Front Pharmacol. 2023;14:1100825. https://doi.org/10.3389/fphar.2023.1100825 PMid:36778018 PMCid:PMC9911168
35. Stockert JC, Horobin RW, Colombo LL, et al. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018;120(3):159-167. https://doi.org/10.1016/j.acthis.2018.02.005 PMid:29496266
36. He Y, Zhu Q, Chen M, et al. The changing 50% inhibitory concentration (IC50) of cisplatin: a pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer. Oncotarget. 2016;7(43):70803-21. https://doi.org/10.18632/oncotarget.12223 PMid:27683123 PMCid:PMC5342590
Crossmark
Statistics
137 Views | 12 Downloads
How to Cite
1.
Özdemir İlhan, Ekinci C. Effect of Thymoquinone on Ovarian Carcinoma Cell Viability (OVCAR-3). JDDT [Internet]. 15Oct.2023 [cited 16May2024];13(10):76-1. Available from: https://jddtonline.info/index.php/jddt/article/view/6263