Antibacterial and antifungal activity of Combretum farinosum Kunth and Combretum igneiflorum Rendón & R. Delgad. extracts

Authors

Abstract

Infectious diseases like bacterial, fungal, viral are the top killers of a third of the world population. Limited access to comprehensive treatment forces people to rely on herbal concoctions for treatment. Combretum farinosum Kunth and C. igneiflorum Rendón & R. Delgad. are two similar vine plant species that have insufficient scientific investigation. The purpose of the study is to determine the in vitro antimicrobial activity of crude extracts of different parts of Combretum igneiflorum (roots, stem, and leaves) and Combretum farinosum (roots, fruits, leaves, and stem) using petroleum ether, acetone, and ethanol-water.  The crude extract was tested against food-borne pathogens. Twenty-seven crude extracts were prepared from C. igneiflorum (roots, stem, and leaves) and C. farinosum (roots, stem, leaves, and fruits) and screened for their antimicrobial activity against four Gram-positive bacteria (Enterococcus faecalis, Staphylococcus aureus, Staphylococcus aureus methicillin resistant, Bacillus subtilis), four Gram-negative bacteria (Salmonella enteritidis, Pseudomonas aeruginosa, Shigella flexneri, and Escherichia coli B), and one fungus species (Candida albicans) using agar disc-diffusion, and microbroth dilution assays. Results show that crude extracts of both plants tested had broad antimicrobial activity. The minimum inhibitory concentration (MIC) of C. farinosum extract against tested bacteria ranged from 0.32 to 100 mg/ml, whereas C. igneiflorum extracts that showed antibacterial activity ranged from 2.5 to 75 mg/ml. Gram-positive bacteria tested were more susceptible to the extracts than gram-negative bacteria. Crude extracts of C. igneiflorum and C. farinosum have broad antimicrobial activity against the microbes tested.

Keywords: Combretum farinosum Kunth, Combretum igneiflorum Rendón & R. Delgad. MTT, Minimum Inhibitory Concentration (MIC), Antifungal, Antibacterial.

Keywords:

Combretum farinosum Kunth, Combretum igneiflorum Rendón & R. Delgad. MTT, Antifungal, Antibacterial

DOI

https://doi.org/10.22270/jddt.v13i9.6221

Author Biographies

Alfred Addo-Mensah, Department of Biology and Chemistry, Texas A & M International University, Laredo, Texas, USA

Department of Biology and Chemistry, Texas A & M International University, Laredo, Texas, USA

Irma Andrea Maldonado, Department of Biology and Chemistry, Texas A & M International University, Laredo, Texas, USA

Department of Biology and Chemistry, Texas A & M International University, Laredo, Texas, USA

Cristobal Lopez, Department of Biology and Chemistry, Texas A & M International University, Laredo, Texas, USA

Department of Biology and Chemistry, Texas A & M International University, Laredo, Texas, USA

Monica O. Mendez, Department of Biology and Chemistry, Texas A & M International University, Laredo, Texas, USA

Department of Biology and Chemistry, Texas A & M International University, Laredo, Texas, USA

Francisco Javier Rendón-Sandoval, Laboratorio Nacional de Identificación y Caracterización Vegetal, University of Guadalajara, 44600 Jalisco, Mexico

Laboratorio Nacional de Identificación y Caracterización Vegetal, University of Guadalajara, 44600 Jalisco, Mexico

Andrea Alarcon, Department of Biology and Chemistry, Texas A & M International University, Laredo, Texas, USA

Department of Biology and Chemistry, Texas A & M International University, Laredo, Texas, USA

References

Boutayeb A. The Impact of Infectious Diseases on the Development of Africa. Handbook of Disease Burdens and Quality of Life Measures, 2010; 1171-88. https://doi.org/10.1007/978-0-387-78665-0_66 PMCid:PMC7120372

Kipkore W., Wanjohi B., Rono H. et al. A study of the medicinal plants used by the Marakwet Community in Kenya. J Ethnobiology Ethnomedicine, 2014; 10:24. https://doi.org/10.1186/1746-4269-10-24 PMid:24555424 PMCid:PMC3974104

World Health Organization. WHO traditional medicine strategy: 2014-2023. 2023. https://www.who.int/publications/i/item/9789241506096 accessed 07/31/2023.

Newman D.J., and Cragg G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod., 2016; 79:629-661. https://doi.org/10.1021/acs.jnatprod.5b01055 PMid:26852623

Thornburg C.C., Britt J.R., Evans J.R., Akee R.K., Whitt J.A,, Trinh S.K., Harris M.J., Thompson J.R., Ewing T.L., Shipley S.M., Grothaus P.G., Newman D.J., Schneider J.P., Grkovic T., O'Keefe B.R. NCI Program for Natural Product Discovery: A Publicly-Accessible Library of Natural Product Fractions for High-Throughput Screening. ACS Chem Biol., 2018; 13(9):2484-2497. https://doi.org/10.1021/acschembio.8b00389 PMid:29812901 PMCid:PMC8130845

World Health Organization (2021). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021. https://www.who.int/publications/i/item/9789240027336, Accessed on 08/22/2023.

Zhou, N., Cheng, Z., Zhang, X. et al. Global antimicrobial resistance: a system-wide comprehensive investigation using the Global One Health Index. Infect Dis Poverty 2022; 11:92. https://doi.org/10.1186/s40249-022-01016-5 PMid:35996187 PMCid:PMC9395850

Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod., 2020; 27;83(3):770-803. https://doi.org/10.1021/acs.jnatprod.9b01285 PMid:32162523

Harvey A.L., Edrada-Ebel R., and Quinn R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015; 14:111-129. https://doi.org/10.1038/nrd4510 PMid:25614221

Thomford N.E., et al. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. Int J Mol Sci, 2018; 19(6). https://doi.org/10.3390/ijms19061578 PMid:29799486 PMCid:PMC6032166

Atanasov, A.G., Zotchev, S.B., Dirsch, V.M. et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021; 20, 200-216. https://doi.org/10.1038/s41573-020-00114-z PMid:33510482 PMCid:PMC7841765

Barnes E.C., Kumar R., and Davis R.A. The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Nat. Prod. Rep. 2016; 33:372-381. https://doi.org/10.1039/C5NP00121H PMid:26739749

Feher M., and Schmidt J.M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci., 2003; 43:218-227. https://doi.org/10.1021/ci0200467 PMid:12546556

Li J.W.-H., and Vederas J.C. Drug discovery and natural products: end of an era or an endless frontier? Science, 2009; 325:161-165. https://doi.org/10.1126/science.1168243 PMid:19589993

Wilson R.M. and Danishefsky S.J. Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. J. Org. Chem., 2006, 27, 20

Newman DJ, Cragg GM. Natural Products as Sources of New, Drugs from 1981 to 2014. J Nat Prod. 2016 79(3):629-61. https://doi.org/10.1021/acs.jnatprod.5b01055 PMid:26852623

Lawson A.D.G., MacCoss M., and Heer J.P. Importance of rigidity in designing small molecule drugs to tackle protein-protein interactions (PPIs) through stabilization of desired conformers. J. Med. Chem. 2018; 61:4283-4289. https://doi.org/10.1021/acs.jmedchem.7b01120 PMid:29140691

Dzobo K. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. Comprehensive Pharmacology. 2022:408-22. https://doi.org/10.1016/B978-0-12-820472-6.00041-4 PMCid:PMC8016209

Huang M., Lu J.J., Ding J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospect. 2021; 11:5-13. https://doi.org/10.1007/s13659-020-00293-7 PMid:33389713 PMCid:PMC7933288

Williams E., Rendon-Sandoval F.J., and Addo-Mensah A. Combretum farinosum Extract Toxicity to Skin and Lung Cell Lines as Measured by the Methylthiazoletetrazolium Assay. Research Journal of Medicinal Plants, 2017; 11:25-31. https://doi.org/10.3923/rjmp.2017.25.31

Rendón-Sandoval, F.J., & Ibarra-Manríquez, G. El género Combretum (Combretaceae) en el occidente de México. Revista Mexicana de Biodiversidad, 2018; 89(2):340-350. https://doi.org/10.22201/ib.20078706e.2018.2.2144

Rendón-Sandoval F.J., Ramírez Delgadillo R., and Frías Castro A. Una especie nueva de Combretum (Combretaceae, sección Combretum) de la Costa del Occidente de México. Novon, 2011; 21(4):483-486. https://doi.org/10.3417/2010058

Jabbari Shiadeh SM, Pormohammad A, Hashemi A, Lak P. Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and meta-analysis. Infect Drug Resist. 2019; 12:2713-2725. https://doi.org/10.2147/IDR.S206084 PMid:31564921 PMCid:PMC6731464

Park SY, Son JS, Oh IH, Choi JM, Lee MS. Clinical impact of methicillin-resistant Staphylococcus aureus bacteremia based on propensity scores. Infection. 2011; 39(2):141-7. https://doi.org/10.1007/s15010-011-0100-1 PMid:21424856

Popa GL, Papa MI. Salmonella spp. infection - a continuous threat worldwide. Germs. 2021, 11(1):88-96. https://www.cdc.gov/hai/organisms/pseudomonas.html https://doi.org/10.18683/germs.2021.1244 PMid:33898345 PMCid:PMC8057844

Ranjbar R, Farahani A. Shigella: Antibiotic-Resistance Mechanisms And New Horizons For Treatment. Infect Drug Resist. 2019; 12:3137-3167. https://doi.org/10.2147/IDR.S219755 PMid:31632102 PMCid:PMC6789722

Addo-Mensah A.K. and Holland D. Evaluation of the Antimicrobial Activity of Vangueria Bark, Fruit, Leaf, and Stem Extracts. Res. J. Medicinal Plants Studies, 2022; 10(2): 208-214. https://doi.org/10.22271/plants.2022.v10.i1c.1383

Mendes de Toledo C.E., Santos P.R., Palazzo de Mello J.C., Dias Filho B.P., Nakamura C.V., Ueda-Nakamura T. Antifungal Properties of Crude Extracts, Fractions, and Purified Compounds from Bark of Curatella americana L. (Dilleniaceae) against Candida Species. Evid Based Complement Alternat Med. 2015; 2015:673962. https://doi.org/10.1155/2015/673962 PMid:26347790 PMCid:PMC4548135

Eloff J.N. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complement Altern Med., 2019; 19(1):106. https://doi.org/10.1186/s12906-019-2519-3 PMid:31113428 PMCid:PMC6530048

Sarker M.M.R., Islam K.N., Huri H.Z., Rahman M., Imam H., Hosen M.B., Mohammad N. & Sarker M.Z.I. Studies of the impact of occupational exposure of pharmaceutical workers on the development of antimicrobial drug resistance. Journal of occupational health, 2014; 56:260-270. https://doi.org/10.1539/joh.14-0012-OA PMid:24953094

Eloff J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med., 1998; 64(8):711-3. https://doi.org/10.1055/s-2006-957563 PMid:9933989

Ramamoorthy R., Muthalagu M., Andra S. et al. Investigation on antimicrobial, antioxidant and cytotoxicity properties of triple bark extract formulated using traditional medicinal plants. SN Appl. Sci., 2019; 1:772. https://doi.org/10.1007/s42452-019-0791-y

Rakholiya K., Kaneria M., Desai D., and Chanda S. Antimicrobial activity of decoction extracts of residual parts (seed and peels) of Mangifera indica L. var. Kesar against pathogenic and food spoilage microorganism. In: Microbial pathogens and strategies for combating them: science, technology and education, Méndez-Vilas, A. (Ed.), Vol. 2, Book 4, Spain: Formatex, 2013. P. 850-856.

Lawal A.M., Lawan M.M., Apampa S.A. Phytochemical analysis and thin layer chromatography profiling of crude extracts from Guiera Senegalensis (Leaves). J Biotechnol Biomed Sci., 2019; 3(3):7-12. https://doi.org/10.22259/2637-5834.0303002

Solanki S.L., Modi C.M., Patel H.B., Patel U.D. Phytochemical screening and thin-layer chromatography of six medicinal plants from the surroundings of Junagadh, Gujarat, India. J Pharmacogn Phytochem., 2019; 8(4):3122-3126.

Dubale S., Kebebe D., Zeynudin A., Abdissa N., Suleman S. Phytochemical Screening and Antimicrobial Activity Evaluation of Selected Medicinal Plants in Ethiopia. J Exp Pharmacol, 2023; 8;15:51-62. https://doi.org/10.2147/JEP.S379805 PMid:36789235 PMCid:PMC9922502

Akomo E.F., Zongo C., Karou S.D., Obame L.C., Savadogo A., Atteke C., Traore A.S. In vitro antiplasmodial and antibacterial activities of Canthium multiflorum Schum and Thonn (Rubiacea) extracts. Pak J Biol Sci. 2009, 15;12(12):919-23. https://doi.org/10.3923/pjbs.2009.919.923 PMid:19777786

Kalan L., Grice E.A. Fungi in the Wound Microbiome. Adv Wound Care (New Rochelle). 2018; 7(7):247-255. https://doi.org/10.1089/wound.2017.0756 PMid:29984114 PMCid:PMC6032664

Britto C.D., Wong V.K., Dougan G., and Pollard A.J. A systematic review of antimicrobial resistance in Salmonella enterica serovar Typhi, the etiological agent of typhoid. PLoS neglected tropical diseases, 2018; 12(10): e0006779. https://doi.org/10.1371/journal.pntd.0006779 PMid:30307935 PMCid:PMC6198998

Khadka P., Thapaliya J., & Thapa S. Susceptibility pattern of Salmonella enterica against commonly prescribed antibiotics, to febrile-pediatric cases, in low-income countries. BMC Pediatric 2021; 21:38. https://doi.org/10.1186/s12887-021-02497-3 PMid:33446146 PMCid:PMC7809854

Raza J., Asmat T.M., Mustafa M.Z., Ishtiaq H., Mumtaz K., Jalees M.M., Samad A., Shah A.A., Khalid S., Rehman H. Contamination of ready-to-eat street food in Pakistan with Salmonella spp.: Implications for consumers and food safety. International Journal of Infectious Diseases, 2021; 106:123-127. https://doi.org/10.1016/j.ijid.2021.03.062 PMid:33771670

Thorley K., Charles H., Greig, D.R., Prochazka M., Mason L.C., Baker, K.S., Godbole, G., Sinka K. and Jenkins C. Emergence of extensively drug-resistant and multidrug-resistant Shigella flexneri serotype 2a associated with sexual transmission among gay, bisexual, and other men who have sex with men, in England: a descriptive epidemiological study. The Lancet Infectious Diseases, 2023; 23(6), 732-739. https://doi.org/10.1016/S1473-3099(22)00807-6 PMid:36731481

Kuete V. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med., 2010; 76(14):1479-91. https://doi.org/10.1055/s-0030-1250027 PMid:20533165

Kaczmarek B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials-A Minireview. Materials (Basel). 2020; 13(14):3224. https://doi.org/10.3390/ma13143224 PMid:32698426 PMCid:PMC7412100

Theisen L.L., Erdelmeier C.A.J., Spoden G.A., Boukhallouk F., Sausy A., Florin L., Muller C.P. Tannins from Hamamelis virginiana bark extract: Characterization and improvement of the antiviral efficacy against influenza a virus and human papillomavirus. PLoS ONE. 2014, 9, e88062. https://doi.org/10.1371/journal.pone.0088062 PMid:24498245 PMCid:PMC3909258

Jo¨bstl E., Howse J.R., Fairclough J.P., Williamson M.P. Noncovalent crosslinking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J. Agric. Food Chem. 2006; 54:4077-4081. https://doi.org/10.1021/jf053259f PMid:16756328

Karou S.D., Tchacondo T., Ilboudo D.P., Simpore J. Sub-Saharan Rubiaceae: A Review of their Traditional Uses, Phytochemistry and Biological Activities. Pakistan Journal of Biological Sciences, 2011; 14:149-169. https://doi.org/10.3923/pjbs.2011.149.169 PMid:21870639

Published

2023-09-15
Statistics
Abstract Display: 487
PDF Downloads: 507
PDF Downloads: 55

How to Cite

1.
Addo-Mensah A, Maldonado IA, Lopez C, Mendez MO, Rendón-Sandoval FJ, Alarcon A. Antibacterial and antifungal activity of Combretum farinosum Kunth and Combretum igneiflorum Rendón & R. Delgad. extracts. J. Drug Delivery Ther. [Internet]. 2023 Sep. 15 [cited 2026 Jan. 21];13(9):62-9. Available from: https://jddtonline.info/index.php/jddt/article/view/6221

How to Cite

1.
Addo-Mensah A, Maldonado IA, Lopez C, Mendez MO, Rendón-Sandoval FJ, Alarcon A. Antibacterial and antifungal activity of Combretum farinosum Kunth and Combretum igneiflorum Rendón & R. Delgad. extracts. J. Drug Delivery Ther. [Internet]. 2023 Sep. 15 [cited 2026 Jan. 21];13(9):62-9. Available from: https://jddtonline.info/index.php/jddt/article/view/6221