Therapeutic aspects of biologically potent vanillin derivatives: A critical review

Abstract

4-hydroxy 3-methoxy benzaldehyde (Vanillin) is an aromatic phenolic aldehyde with unique chemical properties and pharmacological impact. Because of its potent nature, it acts as a lead for drug discovery and development techniques. Heterocyclic compounds with vanillin moiety were efficacious and thrive against many emerging infectious diseases, which can also lead to develop numerous fused heterocyclic vanillin derivatives and various heterocyclic compounds such as pyrimidines, quinoxalines, imidazoles or thiazoles. Greener-mediated synthesis is a sustained chemical reaction used to synthesize hazardless vanillin derivatives with a high yield of product in desired time. Due to its several reasonable modifications with high bioactivity, vanillin moiety can be used to develop various potent derivatives like vanillin-based ferrocenyl chalcone derivatives, vanillin-hydrazone derivatives, Schiff base and Mannich base-based derivatives, pyrazoline vanillin-based derivatives, triazole-based vanillin derivatives and vanillin hybrids plays a crucial role in the coordination chemistry. These derivatives exhibited plenty of biological applications, which include anticancer, antioxidant, antibacterial, antitubercular, antimalarial, antiviral, anti-inflammatory, anti-Alzheimer and anti-diabetic effects. Hence, this review focuses on the significance of vanillin derivatives responsible for biological activity.


Keywords: Vanillin; 4-hydroxy 3-methoxy benzaldehyde; Vanillin derivatives; Antimicrobial; Anticancer; Biological applications

Keywords: Vanillin, 4-hydroxy 3-methoxy benzaldehyde, Vanillin derivatives, Antimicrobial, Biological applications

Downloads

Download data is not yet available.

Author Biographies

Raju Senthil Kumar, Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode – 637 205, Tamilnadu, India.

Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy,  Tiruchengode – 637 205, Tamilnadu, India.

Sundhararajan Naveena, Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode – 637 205, Tamilnadu, India.

Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy,  Tiruchengode – 637 205, Tamilnadu, India.

Sekar Praveen, Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode – 637 205, Tamilnadu, India.

Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy,  Tiruchengode – 637 205, Tamilnadu, India.

Nagalingam Yogadharshini, Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengode – 637 205, Tamilnadu, India.

Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy,  Tiruchengode – 637 205, Tamilnadu, India.

References

1. Oladimeji HO, Njinga S, Abdullahi ST. Evaluation of Antioxidant Activity of Obtained Derivatives of Vanillin. J Pharm Res Sci Technol. 2022; 6(1):17-26. https://doi.org/10.31531/jprst.1000157.
2. Breloy L, Negrell C, Mora AS, Li WSJ, Brezova V, Caillol S, et al. Vanillin Derivative as Performing Type I Photoinitiator. Eur Polym J. 2020; 132(3):109727. https://doi.org/10.1016/j.eurpolymj.2020.109727.
3. Sahoo CR, Paidesetty SK, Sarathbabu S, Dehury B, Kumar NS, Padhy RN. Molecular dynamics simulation, synthesis and topoisomerase inhibitory actions of vanillin derivatives: a systematic computational structural integument. J Biomol Struct Dyn. 2022; 40(22):11653-63. https://doi.org/10.1080/07391102.2021.1961867.
4. Furuya T, Kuroiwa M, Kino K. Biotechnological production of vanillin using immobilized enzymes. J Biotechnol. 2016; 243:25-28. https://doi.org/10.1016/j.jbiotec.2016.12.021.
5. Saito T, Aono R, Furuya T, Kino K. Efficient and long-term vanillin production from 4-vinylguaiacol using immobilized whole cells expressing Cso2 protein. J Biosci Bioeng. 2020; 130(3):260-64. https://doi.org/10.1016/j.jbiosc.2020.04.012.
6. Fayeulle A, Trudel E, Damiens A, Josse A, Youssef NBH, Vigneron P, et al. Antimicrobial and antioxidant activities of amines derived from vanillin as potential preservatives: Impact of the substituent chain length and polarity. Sustain Chem Pharm. 2021; 22:100471. https://doi.org/10.1016/j.scp.2021.100471.
7. Yadav R, Saini D, Yadav D. Synthesis and Evaluation of Vanillin Derivatives as Antimicrobial Agents. Turkish J Pharm Sci. 2018; 15(1):57-62. https://doi.org/10.4274/tjps.97752.
8. Ma W, Li X, Song P, Zhang Q, Wu Z, Wang J, et al. A vanillin derivative suppresses the growth of HT29 cells through the Wnt/β-catenin signaling pathway. Eur J Pharmacol. 2019; 849:43-49. https://doi.org/10.1016/j.ejphar.2019.01.047.
9. Mohanraj DGR, Alagumuthu M, Subramaniam P, Bakthavachalam D, Arumugam S, Chellam S. Anti‐microbial effects of vanillin‐based pyridyl‐benzylidene‐5‐fluoroindolins. J Heterocycl Chem. 2021; 58(7);1515-24. https://doi.org/10.1002/jhet.4277.
10. Patterson AE, Flewelling AJ, Clark TN, Geier SJ, Vogels CM, Masuda JD, et al. Anti-microbial and anti-mycobacterial activities of aliphatic amines derived from vanillin. Can J Chem. 2015; 93(11):1-26. https://doi.org/10.1139/cjc-2015-0400.
11. Hariono M, Abdullah N, Damodaran KV, Kamarulzaman EE, Mohamed N, Hassan SS, et al. Potential New H1N1 Neuraminidase Inhibitors from Ferulic Acid and Vanillin: Molecular Modelling, Synthesis and in Vitro Assay. Sci Rep. 2016; 6:38692. https://doi.org.10.1038/srep38692.
12. Syahri J, Nasution H, Nurohmah BA, Purwono B, Yuanita E. Novel aminoalkylated chalcone: Synthesis, biological evaluation, and docking simulation as potent antimalarial agents. J Appl Pharm Sci. 2020; 10(6):1-005. https://doi.org/10.7324/JAPS.2020.10601.
13. Asadi P, Alvani M, Hajhashemi V, Rostami M, Khodarahmi G. Design, synthesis, biological evaluation, and molecular docking study on triazine based derivatives as anti-inflammatory agents. J Mol Struct. 2021; 1243. https://doi.org/10.1016/j.molstruc.2021.130760.
14. Blaikie L, Kay G, Lin PKT. Synthesis and in vitro evaluation of vanillin derivatives as multi-target therapeutics for the treatment of Alzheimer's disease. Bioorg Med Chem Lett. 2020; 30(21):127505. https://doi.org/10.1016/j.bmcl.2020.127505.
15. Pagare PP, Ghatge MS, Musayev FN, Deshpande TM, Chen Q, Braxton C, et al. Rational design of pyridyl derivatives of vanillin for the treatment of sickle cell disease. Bioorg Med Chem. 2018; 26(9):2530-38. https://doi.org/10.1016/j.bmc.2018.04.015.
16. Upendar reddy M, Somasekhara Reddy MC. Synthesis, characterization and anti-diabetic activity of vanillin based acetohydrazide-hydrazone derivatives. World J Pharm Res. 2017; 6(11):814-25. https://doi.org/10.20959/wjpr201715-10115.
17. Deepam A, Jyothi V. Green Protocols for the One-Pot Synthesis of Vanillin Based aminoalkyl and Amidoalkyl Naphthols and their Antibacterial Activity. Orient J Chem. 2017; 33(3):1354-65. http://dx.doi.org/10.13005/ojc/330336.
18. Tugrak M, Gul HI, Sakagami H, Mete E. Synthesis and anticancer properties of mono Mannich bases containing vanillin moiety. Med Chem Res. 2017; 26(1). https://doi.org/10.1007/s00044-017-1833-x.
19. Hernandez-Vázquez E, Castaneda-Arriaga R, Ramirez-Espinosa JJ, Medina-Campos ON, Hernandez-Luis F, Chaverri JP, et al. 1,5-Diarylpyrazole and vanillin hybrids: Synthesis, biological activity and DFT studies. Eur J Med Chem. 2015; 100:106-18. https://doi.org/10.1016/j.ejmech.2015.06.010.
20. Illicachi LA, Montalvo-Acosta JJ, Insuasty A, Quiroga J, Abonia R, Sortino M, et al. Synthesis and DFT Calculations of Novel Vanillin-Chalcones and Their 3-Aryl-5-(4-(2-(dimethylamino)-ethoxy)-3-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde Derivatives as Antifungal Agents. Molecules. 2017; 22(9):1476. https://doi.org 10.3390/molecules22091476.
21. Raghavan S, Manogaran P, Kuppuswami BK, Venkatraman, G, Narasimha KKG. Synthesis and anticancer activity of chalcones derived from vanillin and isovanillin. Med Chem Res. 2015; 24(12):4157-165. https://doi.org/10.1007/s00044-015-1453-2.
22. Belkhadem K, Cao Y, Roy R. Synthesis of Galectin Inhibitors by Regioselective 3'-O-Sulfation of Vanillin Lactosides Obtained under Phase Transfer Catalysis. Molecules. 2020; 26(1):115. https://doi.org/10.3390/molecules26010115.
23. De A, Ray HP, Jain P, Kaur H, Singh N. Synthesis, characterization, molecular docking and DNA cleavage study of transition metal complexes of o-vanillin and glycine derived Schiff base ligand. J Mol Struct. 2020; 1199(8):12690. https://doi.org/10.1016/j.molstruc.2019.126901.
24. Tuna M, Ugur T. Investigation of The Effects of Diaminopyridine and o-Vanillin Derivative Schiff Base Complexes of Mn(II), Mn(III), Co(II) and Zn(II) Metals on The Oxidative Bleaching Performance of H2O2. Sakarya Univ J Sci. 2021; 25(4):984-94. https://doi.org/10.16984/saufenbilder.948657.
25. Fugu M.B, Ndahi1 N.P, Paul B.B, Mustapha A.N. Synthesis, characterization, and antimicrobial studies of some vanillin schiff base metal (II) complexes. J Chem Pharm Res. 2013; 5(4):22-28.
26. Muche S, Harms K, Biernasiuk A, Malm A, Popiołek L, Hordyjewska A, et al. New Pd(II) schiff base complexes derived from ortho-vanillin and l-tyrosine or l-glutamic acid: Synthesis, characterization, crystal structures and biological properties. Polyhedron. 2018; 151:465-77. https://doi.org/10.1016/j.poly.2018.05.056.
27. Chigurupati S. Designing New Vanillin Schiff Bases and their Antibacterial Studies. J Med Bioeng. 2015; 4(5):363-66. https://doi.org/10.12720/jomb.4.5.363-366.
28. Gao J, Qiu S, Liang L, Hao Z, Zhou Q, Wang F, et al. Design, Synthesis, and Biological Evaluation of Vanillin Hydroxamic Acid Derivatives as Novel Peptide Deformylase Inhibitors. Curr Comput Aided Drug Des. 2018; 14(1):95-101. https://doi.org/10.2174/1573409913666170613074601.
29. Patel PA, Bhadani VN, Bhatt PV, Purohit DM. Synthesis and Biological Evaluation of Novel Chalcone and Pyrazoline Derivatives Bearing Substituted Vanillin Nucleus. J Heterocycl Chem. 2014; 52(4):1119-125. https://doi.org/10.1002/jhet2215.
30. Swapna M, Basavaraja HS, Jayadevaiah KV, Nagina kumari DN, Bharathi DR. Synthesis, characterization and biological activities of some novel thiadiazole derivatives. J Pharm Sci Res. 2019; 11(6):2113-120.
31. Harini ST, Kumar HV, Rangaswamy J, Naik N. Synthesis, antioxidant and antimicrobial activity of novel vanillin derived piperidin-4-one oxime esters: preponderant role of the phenyl ester substituents on the piperidin-4-one oxime core. Bioorg Med Chem Lett. 2012; 22(24):7588-92. https://doi.org/10.1016/j.bmcl.2012.10.019.
32. Hussain M, Qadri T, Hussain Z, Saeed A, Channar PA, Shehzadi SA, et al. Synthesis, antibacterial activity and molecular docking study of vanillin derived 1,4-disubstituted 1,2,3-triazoles as inhibitors of bacterial DNA synthesis. Heliyon. 2019; 5(11):e02812. https://doi.org/10.1016/j.heliyon.2019.e02812.
33. Muskinja J, Burmudzija A, Ratkovic Z, Rankovic B, Kosanic M, Bogdanovic GA, et al. Ferrocenyl chalcones with O-alkylated vanillins: synthesis, spectral characterization, microbiological evaluation, and single-crystal X-ray analysis. Med Chem Res. 2016; 25(9):1744-53. https://doi.org/10.1007/s00044-016-1609-8.
34. Retnosari R, Rachman IB, Sutrisno S, Sari MEF, Sukarianingsih D, Rukayadi Y. The antibacterial activity of vanillin derivative compounds. AIP Conf Proc. 2021; 2349(1):020073. https://doi.org/10.1063/5.0051523.
35. Kiran K, Ashok D, Rao BA, Sarasija M, Rao AS. Synthesis, characterisation, and antibacterial activity of some novel vanillin related hydrazone derivatives bearing 1,2,3-triazole ring. Russ J Gen Chem. 2017; 87(6):1288-94. https://doi.org/10.1134/S1070363217060251.
36. Govindasami T, Pandey A, Palanivelu N, Pandey A. Synthesis, Characterization and Antibacterial Activity of Biologically Important Vanillin Related Hydrazone Derivatives. Int J Org Chem. 2011; 01(03):71-7. https://doi.org/10.4236/ijoc.2011.13012.
37. Berk B, Ertas M, Biltekin SN. Synthesis, Antimicrobial Activity Studies and Molecular Property Predictions of Schiff Bases Derived from ortho-Vanillin. Acta Pharm Sci. 2017; 55(1):83-96. https://doi.org/10.23893/1307-2080.APS.0556.
38. Dua T, Mangal S, Akshita G, Harshdeep, Atri AK, Sharma P, et al. Novel Vanillin-based hybrids inhibit quorum sensing and silences phenotypical expressions in Pseudomonas aeruginosa. Drug Dev Res. 2023; 84(1):45-61. https://doi.org/10.1002/ddr.22011.
39. Thorat BR, Yamgar RS, Kamat P, Thorat VB, More K. Synthesis, SAR Study, Molecular Docking, HPLC Method Development and Anti-TB study of Novel 3-Chloro-N-{[7-mehtoxy-2-(4-methoxyphenyl)-1-benzofuran-5-yl]methyl}aniline. Chem Sci Rev Lett. 2015; 4(16):1253-68.
40. Narode H, Gayke M, Bhosale RS, Eppa G, Gohil N, Bhattacharjee G, et al. Vanillin containing 9H-fluoren sulfone scaffolds: Synthesis, biological evaluation and molecular docking study. Results Chem. 2021; 4(6):100269. https://doi.org/10.1016/j.rechem.2021.100269.
41. da Silva Rodrigues JV, Rodrigues Gazolla PA, da Cruz Pereira I, Dias RS, Poly da Silva IE, Oliveira Prates JW, et al. Synthesis and virucide activity on zika virus of 1,2,3-triazole-containing vanillin derivatives. Antiviral Res. 2023; 105578. https://doi.org/10.1016/j.antiviral.2023.105578.
42. Mohsin Ali SM, Abdul Kalam Azad M, Jesmin M, Ahsan S, Mijanur Rahman M, Khanam JA, et al. In vivo anticancer activity of vanillin semicarbazone. Asian Pac J Trop Biomed. 2012; 2(6):438-42. https://doi.org.10.1016/S2221-1691(12)60072-0.
43. Mani A, Ahamed A, Ali D, Alarifi S, Akbar I. Dopamine-Mediated Vanillin Multicomponent Derivative Synthesis via Grindstone Method: Application of Antioxidant, Anti-Tyrosinase, and Cytotoxic Activities. Drug De Dev Ther. 2021; 15:787-02. https://doi.org/10.2147/DDDT.S288389.
44. Scipioni M, Kay G, Megson I, Lin PKT. Novel vanillin derivatives: Synthesis, anti-oxidant, DNA and cellular protection properties. Eur J Med Chem. 2018; 143:745-54. https://doi.org/10.1016/j.ejmech.2017.11.072.
45. Hayun H, Arrahman A, Purwati EM, Yanuar A, Fortunata F, Suhargo F, et al. Synthesis, anti-inflammatory and antioxidant activity of mannich bases of dehydrozingerone derivatives. J Young Pharm. 2018; 10(2):s6-s10. https://doi.org/10.5530/jyp.2018.2s.2.
46. Kumar Reddy ALV, Kathale NE. Synthesis and Anti-Inflammatory Activity of Hydrazones Bearing Biphenyl Moiety and Vanillin Based Hybrids. Orient J Chem. 2017; 33(2):971-78. https://doi.org/10.13005/ojc/330250.
47. Kumar Reddy ALV, Kathale NE. Synthesis, characterization and anti-inflammatory activity of hydrazones bearing 5-nitro-furan moiety and 5-iodo-vanillin hybrid. World J Pharm Res. 2017; 6(11):982-93. https://doi.org/10.20959/wjpr201711-9635.
48. Neethu MJ, Yusuf S. In-silico design, synthesis, anti-inflammatory and anticancer evaluation of pyrazoline analogues of vanillin. Int J Pharm Sci Drug Res. 2014; 6(2); 128-31. http://www.ijpsdr.com/index.php/ijpsdr/article/view/319.
49. Scipioni M, Kay G, Megson IL, Lin PPKT. Synthesis of novel vanillin derivatives: novel multi-targeted scaffold ligands against Alzheimer's disease. Med Chem Comm. 2019; 10(5):764-77. https://doi.org/10.1039/c9md00048h.
50. Chigurupati S, Selvaraj M, Mani V, Mohammad JI, Selvarajan KK, Akhtar SS, et al. Synthesis of azomethines derived from cinnamaldehyde and vanillin: in vitro aetylcholinesterase inhibitory, antioxidant and in silico molecular docking studies. Med Chem Res. 2018; 27(17):807-16. https://doi.org/10.1007/s00044-017-2104-6.
51. Kadium RT, Al-Hazam HA, Hameed BJ. Design, synthesis and characterization of some novel thiazolidine-2,4-dione derivatives as antidiabetic agents. Acta Pol Pharm Drug Res. 2022; 78:773-79. https://doi.org/10.32383/appdr/145368.
52. Li M, Gu MM, Lang Y, Shi J, Chen BPC, Guan H, et al. The vanillin derivative VND3207 protects intestine against radiation injury by modulating p53/NOXA signaling pathway and restoring the balance of gut microbiota. Free Radic Biol Med. 2019; 145:223-36. https://doi.org/10.1016/j.freeradbiomed.2019.09.035
Crossmark
Statistics
521 Views | 58 Downloads
How to Cite
1.
Senthil Kumar R, Naveena S, Praveen S, Yogadharshini N. Therapeutic aspects of biologically potent vanillin derivatives: A critical review. JDDT [Internet]. 15Jul.2023 [cited 19May2024];13(7):177-89. Available from: https://jddtonline.info/index.php/jddt/article/view/6159