Novel Drug Delivery System: Brief Review
Abstract
Current developments in our knowledge of the pharmacokinetic and pharmacodynamics behaviour of drugs provide a more logical framework for designing the best possible drug delivery system. It is understandable that multidisciplinary efforts will play a major role in the success of drug delivery research in the future. Any therapeutic agent that has the potential to be safer, more effective, and use an enhanced drug delivery mechanism offers pharmaceutical companies significant marketing prospects as well as advancements in the treatment of illnesses. Since ancient times, humans have utilized plants as food and medicine, viewing them as nature's solutions. The underlying idea is that every sickness has a remedy that is concealed in better ways using ayurvedic, homeopathic and allopathic. However, in order to promote sustained release, improve patient compliance, etc., the way herbal medications are delivered must also be modified. Because of challenges with processing, standardizing, extracting, and identifying them, herbal medications had historically been unable to draw scientists' attention to the development of novel drug delivery methods. However, with today's technological advancements, the development of herbal revolutionary drug delivery systems is made possible by novel drug delivery systems (NDDS). It is possible to achieve protection against toxicity, stability enhancement, enhanced bioavailability, and protection against chemical and physical degradation of herbal formulations through the application of advanced procedures which must give the result in better or faster way. In this review we will get the method of preparations of NDDS and the Application of NDDS.
Keywords: Herbal Drugs, Enhanced drug delivery, Phytosomes, Nanoparticles, liposomes.
Keywords:
Herbal Drugs, Enhanced drug delivery, Phytosomes, Nanoparticles, liposomesDOI
https://doi.org/10.22270/jddt.v13i11.6023References
Cott J. Natural product formulations available in Europe for psychotropic indications. Psychopharmacol Bull, 1995,31:745.
Khar R.K. and Jain N.K. Solid lipid nanoparticle as Novel Nanoparticle system in Targeted and controlled drug delivery.
Rastogi A, Roorkee College of Pharmacy and UTU Patanjali Ayurved Ltd, Sr. Chemist . PHARMATUTOR-ART-1652
Liposome Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation. (accessed on 1 June 2020).
Mazur F., Bally M., Städler B., Chandrawati R. Liposomes and lipid bilayers in biosensors. Adv. Colloid Interface Sci. 2017;249:88-99. https://doi.org/10.1016/j.cis.2017.05.020 PMid:28602208
Düzgüneş N., Gregoriadis G. Methods in Enzymology. Academic Press; Cambridge, MA, USA: Introduction: The Origins of Liposomes: Alec Bangham at Babraham; 2005;391:1-3. https://doi.org/10.1016/S0076-6879(05)91029-X
Bangham A.D., Horne R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 1964 ;8:660-668. https://doi.org/10.1016/S0022-2836(64)80115-7 PMid:14187392
Mirzavi F, Barati M, Soleimani A., Vakili-Ghartavol R., Jaafari M.R., Soukhtanloo M. A review on liposome-based therapeutic approaches against malignant melanoma. Int. J. Pharm. 2021;599:120413. https://doi.org/10.1016/j.ijpharm.2021.120413 PMid:33667562
Wang G, Parseh B., Du G. Prospects and challenges of anticancer agents' delivery via chitosan-based drug carriers to combat breast cancer: A review. Carbohydr.Polym. 2021;268:118192. https://doi.org/10.1016/j.carbpol.2021.118192 PMid:34127212
Watson D.S., Endsley A.N., Huang L. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine. 2012;30:2256-2272. https://doi.org/10.1016/j.vaccine.2012.01.070 PMCid:PMC3296885
Man F., Gawne P.J., de Rosales R.T.M. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv. Drug Delivery Rev. 2019;143:134-160. https://doi.org/10.1016/j.addr.2019.05.012 PMid:31170428 PMCid:PMC6866902
Dos S.R.B., Banerjee A., Kanekiyo T., Singh J. Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. Int. J. Pharm. 2019;566:717-730. https://doi.org/10.1016/j.ijpharm.2019.06.026 PMid:31202901 PMCid:PMC6671319
Taha E.I., El-Anazi M.H., El-Bagory I.M., Bayomi M.A. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm. J. 2014;22:231-239. https://doi.org/10.1016/j.jsps.2013.07.003 PMid:25061409 PMCid:PMC4099572
Han Y., Gao Z., Chen L., Kang L., Huang W., Jin M., Wang Q., Bae Y.H. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm. Sin. B. 2019;9:902-922. https://doi.org/10.1016/j.apsb.2019.01.004 PMid:31649842 PMCid:PMC6804447
Mirtaleb M.S., Shahraky M.K., Ekrami E., Mirtaleb A. Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications. J. Drug Delivery Sci. Technol. 2021;61:102331. https://doi.org/10.1016/j.jddst.2021.102331
Mehta P.P., Ghoshal D., Pawar A.P., Kadam S.S., Dhapte-Pawar V.S. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. J. Drug Delivery Sci. Technol. 2020;56:101509. https://doi.org/10.1016/j.jddst.2020.101509
Yusuf H., Ali A.A., Orr N., Tunney M.M., Mc Carthy H.O., Kett V.L. Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine. Int. J. Pharm. 2017;533:179-186. https://doi.org/10.1016/j.ijpharm.2017.09.011 PMid:28887219
Liu W, Hou Y, Jin Y, Wang Y, Han J. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends Food Sci. Technol. 2020;104:177-189. https://doi.org/10.1016/j.tifs.2020.08.012
Himeno T, Konno Y, Naito N. Liposomes for Cosmetics. In: Sakamoto K., Lochhead R.Y., Maibach H.I., Yamashita Y., editors. Cosmetic Science and Technology. Elsevier; Amsterdam, The Netherlands: 2017;539-549. https://doi.org/10.1016/B978-0-12-802005-0.00031-8
Bhupendra P., Narendra K., Suman S., Amit R. Liposome: method of preparation, advantages, evaluation and its application. J. Appl. Pharmaceut. Res. 2015;3:1-8.
Large D.E., Abdelmessih R.G., Fink E.A., Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021;176:113851. https://doi.org/10.1016/j.addr.2021.113851 PMid:34224787
Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 2013;8:102. https://doi.org/10.1186/1556-276X-8-102 PMid:23432972 PMCid:PMC3599573
G. Corace, et al. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. Journal of Liposome Research, 2014;24(4):323-335. https://doi.org/10.3109/08982104.2014.899369 PMid:24807822
Pattni B.S, et al. New Developments in Liposomal Drug Delivery. Chemical Reviews, 2015;115(19):10938-10966. https://doi.org/10.1021/acs.chemrev.5b00046 PMid:26010257
Kalhapure R.S, et al. Nanoengineered Drug Delivery Systems for Enhancing Antibiotic Therapy. Journal of Pharmaceutical Sciences, 2015;104(3):872-905. https://doi.org/10.1002/jps.24298 PMid:25546108
U.S. Environmental Protection Agency : "Module 3: Characteristics of Particles Particle Size Categories". From the EPA Website.
Vert, M.; Doi, Y.; Hellwich, K. H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. O. "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)". Pure and Applied Chemistry. 2012;84 (2):377 410. https://doi.org/10.1351/PAC-REC-10-12-04
Vert, M; Doi, Y; Hellwich, K.H; ,Hess M; Hodge, P; Kubisa, P; Rinaudo, M; Schué, F "Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)". Pure and Applied Chemistry.2012; 84 (2):377-410. https://doi.org/10.1351/PAC-REC-10-12-04
Torres-Torres, C; López-Suárez, A; Can-Uc, B; Rangel-Rojo, R; Tamayo-Rivera, L; Oliver, A (24 July 2015). "Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica". Nanotechnology. 2015;26 (29): 295701. https://doi.org/10.1088/0957-4484/26/29/295701 PMid:26135968
Shishodia, S; Chouchene, B; Gries, T; Schneider, R "Selected I-III-VI2 Semiconductors: Synthesis, Properties and Applications in Photovoltaic Cells". Nanomaterials. 2023;13 (21):2889. https://doi.org/10.3390/nano13212889 PMid:37947733 PMCid:PMC10648425
Rajashekar K, Nandita G. D , Sudip K. Das, Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices, 2017;105-144
Upadhye SS et al., Microspheres: A Novel Drug Delivery System. American Journal of PharmTech Research 2020.
Prasad B. S. G et al, JGTPS, 2014;5(3):1961 -1972
Trivedi P., Verma A.M.L., Garud N., Preperation and Charecterization of Acclofenac Microspheres, Asian Journal of pharmaceutics. 2008;2:110- 11 https://doi.org/10.4103/0973-8398.42498
Sergio F, Hans P. M, Bruno G, Journal of Controlled Release ,February 2005;102:313-332 https://doi.org/10.1016/j.jconrel.2004.10.015 PMid:15653154
Peeyush B, Purnima T, Rishikesh G, Sonia P.Niosomes: A review on niosomal research in the last decade , Journal of Drug Delivery Science and Technology, April 2020;56:101581 https://doi.org/10.1016/j.jddst.2020.101581
Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery-an overview. Acta Pharm Sin B. 2011;1:208. https://doi.org/10.1016/j.apsb.2011.09.002
Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee SA, Behera M, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Tech Res. 2010; 1:374 https://doi.org/10.4103/0110-5558.76435 PMid:22247876 PMCid:PMC3255404
Sahin NO. Niosomes as nanocarrier systems. In: Mozafari MR, editor. Nanomaterials and nanosystems for biomedical applications. Dordrecht: Springer; 2007;67-82. https://doi.org/10.1007/978-1-4020-6289-6_4
Keservani RK, Sharma AK, Ayaz Md, Kesharwani RK. Novel drug delivery system for the vesicular delivery of drug by the niosomes. Int J Res Controlled Release. 2011;1:1-8.
Diljyot K. Niosomes: a new approach to targeted drug delivery. Int J Pharm Phytopharm Res. 2012;2:53-9.
Raja NRA, Pillai GK, Udupa N, Chandrashekhar G. Anti-inflammatory activity of niosome encapsulated diclofenac sodium in arthritic rats. Indian J Pharmacol. 1994;26:46-8.
Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Journal of Controlled Release 10 July 2014. https://doi.org/10.1016/j.jconrel.2014.04.015 PMid:24747765
Ritesh Kumar , Amrish Chandra , Pawan Kumar Gautam and Anand Shrivastava* , IJPSR, 2013;8:2880-2892
Hamidi M and Tajerzadeh H: Carrier Erythrocytes An Overview. Drug Delivery 2003; 10: 9-20. https://doi.org/10.1080/713840329 PMid:12554359
Deuticke B, Kim M and Zolinev C: The Influence of Amphotericin- B on the Permeability of Mammalian Erythrocytes to Nonelectrolytes, anions and Cations. Biochim Biophys Acta 1973; 318:345-59. https://doi.org/10.1016/0005-2736(73)90199-5
Kitao T, Hattori K and Takeshita M: Agglutination of Leukemic Cells and Daunomycin Entrapped Erythrocytes with Lectin in vitro and in vivo. Experimentia 1978; 341: 94-95. https://doi.org/10.1007/BF01921924 PMid:620752
Kishor A.B , Basavaraj K N, Meghana S K,Teerapol S ,World Journal of Pharmacy and Pharmaceutical Sciences ; 2:446-482
Tezel A, Sens A, and Mitragotri S. A Theoretical Analysis of Low‐Frequency Sonophoresis: Dependence of Transdermal Transport Pathways on Frequency and Energy Density. Pharmaceutical Research 2002; 19 Suppl 12:1841‐1846. https://doi.org/10.1023/A:1021493424737 PMid:12523663
Pahade A, Jadhav VM, Kadam VJ. Sonophoresis: an overview. International Journal of Pharmaceutical Sciences Review and Research 2010; 3 Suppl 2:24‐32.
Mitragotri S, Blankschtein D, and Langer R. Transdermal drug delivery using low‐ frequency sonophoresis. Pharmaceutical research 1996; 13 Suppl 3:411‐420. https://doi.org/10.1023/A:1016096626810 PMid:8692734
Terahara T, Mitragotri S, Kost J, Langer R. Dependence of low frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. International Journal of Pharmaceutics 2002; 235:35‐42. https://doi.org/10.1016/S0378-5173(01)00981-4 PMid:11879737
Allen LV, Popovich NG, Ansel HC. Ansel's pharmaceutical dosage forms and drug delivery systems. Transdermal drug delivey systems. 8th ed. India: Gopsons papers ltd.; 2006;298‐315.
Sinha VR, Kaur MP. Permeation enhancers for transdermal drug delivery. Drug Dev Ind Pharm 2000; 26:1131‐1140. https://doi.org/10.1081/DDC-100100984 PMid:11068686
Mathur V, Satrawala S, Rajput MS. Physical and chemical penetration enhancers in transdermal drug delivery system. Asian journal of pharmaceutics 2010; 218:173‐183. https://doi.org/10.4103/0973-8398.72115
Naik A, Kalia YN, and Guy RH. Transdermal drug delivery: overcoming the skin's barrier function. Research focuses 2000; 3 Suppl 9:318‐326. https://doi.org/10.1016/S1461-5347(00)00295-9 PMid:10996573
Verma R. Phonophoresis: Transdermal drug transport by ultrasound. Pharmainfo.net 2008.
Swathi B., Manichandrika K.P., Niharika R., Pravalika G., Sahithya D., Meghana M. Formulation and evaluation of quinidine osmotic drug delivery system. Int. J. Adv. Res. Med. Pharm. Sci. 2019;4:17-22
Sahoo C.K., Rao S.R., Sudhakar M. Evaluation of controlled porosity osmotic pump tablets: A Review. Res. J. Pharm. Technol. 2015;8:1340. https://doi.org/10.5958/0974-360X.2015.00312.1
Sharma A., Kumar D., Painuly N. A review on osmotically controlled drug delivery systems. Asian J. Pharm. Res. Dev. 2018;6:101-109. https://doi.org/10.22270/ajprd.v6i4.383
Gundu R., Pekamwar S., Shelke S., Kulkarni D., Gadade D., Shep S. Development and pharmacokinetic evaluation of osmotically controlled drug delivery system of Valganciclovir HCl for potential application in the treatment of CMV retinitis. Drug Deliv. Transl. Res. 2022;12:2708-2729. https://doi.org/10.1007/s13346-022-01122-9 PMid:35254625
Santus G., Baker R.W. Osmotic drug delivery: A review of the patent literature. J. Control. Release. 1995; 35:1-21. https://doi.org/10.1016/0168-3659(95)00013-X
Sareen R., Jain N., Kumar D.J. An insight to osmotic drug delivery. Curr. Drug Deliv. 2012; 9:285-296. https://doi.org/10.2174/156720112800389106 PMid:22452403
Harper D.J., Milo C.F. Osmotic Pump Drug Delivery Systems and Methods. no 6471688 B1. U.S. Patent. 2002; 29.
Almoshari Y. Osmotic Pump Drug Delivery Systems-A Comprehensive Review. Pharmaceuticals (Basel). 2022;11:1430. https://doi.org/10.3390/ph15111430 PMid:36422560 PMCid:PMC9697821
Alagusundaram M, Chetty MS, Umashankari C. Microspheres as a Novel drug delivery system - A review. Int J Chem. Tech. 2009;12: 526-534.
Allen LV, Popovich NG, Ansel HC. Pharmaceutical Dosage Forms and Drug Delivery Systems. Delhi, India: BI Pubication, 2005;8:265.
Banker G S, Rhodes C T. Modern pharmaceutics. In Parma Publication, 2002, 121:501-527. https://doi.org/10.1201/9780824744694 PMCid:PMC6758410
Bungenburg de Jong, H.G., Proc. Acad. Sci, Amsterdam, 1938;41:646.
Nitika A, Ravinesh M, Chirag G, Manu A Microencapsulation - A Novel Approach in Drug Delivery: A Review Indo Global Journal of Pharmaceutical Sciences, 2012; 1:1-20
Berkland C, King M, Cox A, Kim K, Pack DW. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Rel. 2002; 82:137-147. https://doi.org/10.1016/S0168-3659(02)00136-0 PMid:12106984
Felder CB, Blanco-Prieto MJ, Heizmann J, Merkle HP, Gander B. Ultrasonic atomization and subsequent polymer desolvation for peptide and protein microencapsulation into biodegradable polyesters. J Microencapsulation. 2003;20:553-567. https://doi.org/10.3109/02652040309178346 PMid:12909541
Kiyoyama S, Shiomori K, Kawano Y, Hatate Y. Preparation of microcapsules and control of their morphology. J Microencapsulation. 2003;20:497. https://doi.org/10.1080/0265204031000093096 PMid:12851050
Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Rel. 2003;90:261-280. https://doi.org/10.1016/S0168-3659(03)00194-9 PMid:12880694
Published



How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).