Formulation development and characterization of Lecarnidipine hydrochloride niosomal transdermal patches
Abstract
The bioavailability of Lercanidipine Hydrochloride (LCP) is about 44% and half-life of the drug is about 4.6 hours. LCP due to its low therapeutic dose range of 2.5 to 20mg and substantial biotransformation in liver becomes it ideal molecule in development of transdermal therapeutic system. The primary objective of the present research work was to develop Niosomal transdermal patch (NP) of Lecarnidipine. The LCP nanoparticles were prepared by solvent evaporation method and the optimized Nanoparticles formulation has shown 225nm particle size with a polydispersity index (PDI) of 0.120. LCP patches were prepared by incorporating nanoparticles dispersion, using varying concentrations of polymers HPMC E5, HPMC 5cps, HPMC 15cps, Carbopol 734 and Sodium alginate using solvent casting techniques and further optimized by central composite design(CCD) the effect of polymer on the various physico-chemical characteristics and in-vitro drug release studies, ex-vivo skin permeation studies is studied. On the basis of in-vitro drug release and ex-vivo skin permeation studies, the formulation containing (HPMC 15cps and HPMC 5cps) has shown sustained and extended drug release over a period of 24 hrs.
Keywords: Lecarnidipine; Niosomes; Transdermal patch; Central composite Design, Controlled release; Bioavailability etc.
Keywords:
Lecarnidipine, Niosomes, Transdermal patch, Central composite Design, Controlled release, BioavailabilityDOI
https://doi.org/10.22270/jddt.v13i8.5942References
Abellán Alemán J, Martínez García JF, Merino Sánchez J, Gil Guillén V, Latorre Hernández J, Fernández Montero F, Navarro Lima A. Evaluation of psicosomatic semiology in hypertensive patients treated with lecarnidipine (LERCAPSICO study) : An. Med. Interna . 2003; 20(6):287-91. https://doi.org/10.4321/S0212-71992003000600003
Yeo, P. L., Lim, C. L., Chye, S. M., Ling, A. P. K. & Koh, R. Y. Niosomes: A review of their structure, properties, methods of preparation, and medical applications: Asian Biomedicine. 2018; 11:301-314. https://doi.org/10.1515/abm-2018-0002
Bhardwaj, P., Tripathi, P., Gupta, R. & Pandey, S. Niosomes: A review on niosomal research in the last decade: Journal of Drug Delivery Science and Technology. 2020; 56:101-117. https://doi.org/10.1016/j.jddst.2020.101581
Mishra, V., Nayak, P., Singh, M., Sriram, P. & Suttee, A. Niosomes: Potential nanocarriers for drug deliver: Int. J. Pharm. Qual. Assur. (2020); 2020; 11(3):389-394. https://doi.org/10.25258/ijpqa.11.3.13
Thabet, Y., Elsabahy, M. & Eissa, N. G. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods. 2022; 199:9-15. https://doi.org/10.1016/j.ymeth.2021.05.004
Kauslya, A., Borawake, P. D., Shinde, J. V & Chavan, R. S. Niosomes: A Novel Carrier Drug Delivery System. J. Drug Deliv. Ther.2021; 11(1):162-170. https://doi.org/10.22270/jddt.v11i1.4479
Nassu, R. T. & Gonçalves, L. A. G. Determination of melting point of vegetable oils and fats by differential scanning calorimetry (DSC) technique Grasas y Aceites. 1999; 50:16-22. https://doi.org/10.3989/gya.1999.v50.i1.630
Charsley, E. L., Laye, P. G., Palakollu, V., Rooney, J. J. & Joseph, B: DSC studies on organic melting point temperature standards. Thermochim. Acta. 2006; 35: 29-32. https://doi.org/10.1016/j.tca.2006.02.035
Calvo, N. L., Alvarez, V. A., Lamas, M. C. & Leonardi, D. New approaches to identification and characterization of tioconazole in raw material and in pharmaceutical dosage forms: J. Pharm. Anal. 2019; 446:1-6. doi:10.1016/j.jpha.2018.11.006. https://doi.org/10.1016/j.jpha.2018.11.006
Devika, G. S., Sudhakar, M. & Venkateshwara Rao, J. Simple and sensitive LC-UV method for simultaneous analysis of Lecarnidipine hydrochloride and Atenolol in pharmaceutical formulations. Res. J. Pharm. Technol. 2011; 4(4):592-595.
Chaurasia, G. a Review on Pharmaceutical Preformulation Studies in Formulation. Int. J. Pharm. Sci. Res. 2016; 7(6): 2313-2320.
Sopyan, I. et al. A review: Pharmaceutical excipients of solid dosage forms and characterizations. International Journal of Research in Pharmaceutical Sciences. 2020; 11(2):1472-1480. https://doi.org/10.26452/ijrps.v11i2.2020
Witika, B. A. & Walker, R. B. Development, manufacture and characterization of niosomes for the delivery for nevirapine. Pharmazie. 2019; 74(2):91-96.
Chen, S., Hanning, S., Falconer, J., Locke, M. & Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. European Journal of Pharmaceutics and Biopharmaceutics 2019; 144:18-39. https://doi.org/10.1016/j.ejpb.2019.08.015
Pando, D., Gutiérrez, G., Coca, J. & Pazos, C. Preparation and characterization of niosomes containing resveratrol: J. Food Eng. 2013; 117(2):227-234. https://doi.org/10.1016/j.jfoodeng.2013.02.020
Daniela Stan, C. et al. Preparation and characterization of niosomes containing metronidazole: Farmacia. 2013; 61(6):1178-1185.
Mohamad, E. A. & Fahmy, H. M. Niosomes and liposomes as promising carriers for dermal delivery of annona squamosa extract: Brazilian J. Pharm. Sci. 2020; 56:e18096, 1-8. https://doi.org/10.1590/s2175-97902019000318096
Bayindir, Z. S. & Yuksel, N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery: J. Pharm. Sci. 2010; 99(4):2049-60. https://doi.org/10.1002/jps.21944
Miatmoko, A. et al. Characterization and distribution of niosomes containing ursolic acid coated with chitosan layer: Res. Pharm. Sci. 2021; 16(6):660-673. https://doi.org/10.4103/1735-5362.327512
Yeo, L. K., Olusanya, T. O. B., Chaw, C. S. & Elkordy, A. A. Brief effect of a small hydrophobic drug (Cinnarizine) on the physicochemical characterisation of niosomes produced by thin-film hydration and microfluidic methods: Pharmaceutics. 2018; 10(185):1-15. https://doi.org/10.3390/pharmaceutics10040185
Moghassemi, S. & Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems-An illustrated review: Journal of Controlled Release. 2014; 185: 22-36. https://doi.org/10.1016/j.jconrel.2014.04.015
Md. Rageeb Md. Usman, P. R. G. & Jain, B. V. Niosomes : A Novel Trend of Drug Delivery of Biomedical: Eur. J. Biomed. Pharm. Sci. 2017; 4(7):436-442.
Sailaja, A. K. & Shreya, M. Preparation and characterization of naproxen loaded niosomes by ether injection method: Nano Biomed. Eng. 2018; 10(2):174-180. https://doi.org/10.5101/nbe.v10i2.p174-180
Patel, P., Barot, T. & Kulkarni, P. Formulation, Characterization and In-vitro and In-vivo Evaluation of Capecitabine Loaded Niosomes: Curr. Drug Deliv. 2020; 17(3):257-268. https://doi.org/10.2174/1567201817666200214111815
M, S., H, B. & P.A.Z, H. Formulation and Characterization Transdermal Patches of Meloxicam: Asian J. Pharm. Res. Dev. 2021; 1(3):96-101.
Sadeghi, M., Ganji, F., Taghizadeh, S. M. & Daraei, B. Preparation and characterization of rivastigmine transdermal patch based on chitosan microparticles: Iran. J. Pharm. Res. 2016; 15(3):283-294.
Musazzi, U. M. et al. Design of pressure-sensitive adhesive suitable for the preparation of transdermal patches by hot-melt printing: Int. J. Pharm. 2020; 586:119607. https://doi.org/10.1016/j.ijpharm.2020.119607
Sravanthi, K. et al. Preparation and In Vitro Evaluation Of Transdermal Patch Of Aceclofenac: Am. J. PharmTech Res. 2020; 10(2): 174-182. https://doi.org/10.46624/ajptr.2020.v10.i2.014
Brito Raj, S., Chandrasekhar, K. B. & Reddy, K. B. Formulation, in-vitro and in-vivo pharmacokinetic evaluation of simvastatin nanostructured lipid carrier loaded transdermal drug delivery system: Futur. J. Pharm. Sci. 2019; 5(9):2-14. https://doi.org/10.1186/s43094-019-0008-7
Parambil, A., Palanichamy, S., Kuttalingam, A. & Chitra, V. Preparation and characterization of trifluoperazine loaded transdermal patches for sustained release: Int. J. Appl. Pharm. 2021; 13(6):186-191. https://doi.org/10.22159/ijap.2021v13i6.42413
Shivalingam, M. R., Balasubramanian, A. & Ramalingam, K. Formulation and evaluation of transdermal patches of pantoprazole sodium: Int. J. Appl. Pharm. 2021; 13(5):287-291. https://doi.org/10.22159/ijap.2021v13i5.42175
Parivesh, S., Sumeet, D. & Abhishek, D. Design, Evaluation, Parameters and Marketed Products of transdermal patches: A Review. J. Pharm. Res. 2010; 8(1):5-9.
Rahman, S. A. U. & Sharma, N. Formulation and evaluation of matrix transdermal patches of glibenclamide: J. Drug Deliv. Ther. 2018; 8(5-s):366-371. https://doi.org/10.22270/jddt.v8i5-s.1993
Chourasia, S., Shukla, T., Dangi, S., Upmanyu, N. & Jain, N. Formulation and evaluation of matrix transdermal patches of meloxicam: J. Drug Deliv. Ther. 2019; 9(1-s):209-213. https://doi.org/10.22270/jddt.v9i1-s.2326
Tadhi, N., Chopra, H. & Sharma, G. K. Formulation and evaluation of transdermal patch of methimazole: Res. J. Pharm. Technol. 2021; 14(9):4667-4672. https://doi.org/10.52711/0974-360X.2021.00811
Samiullah, Jan, S. U., Gul, R., Jalaludin, S. & Asmathullah. Formulation and evaluation of transdermal patches of pseudoephedrine HCL: Int. J. Appl. Pharm. 2020; 12(3). https://doi.org/10.22159/ijap.2020v12i3.37080
Budhathoki, U., Gartoulla, M. K. & Shakya, S. Formulation and evaluation of transdermal patches of atenolol: Indones. J. Pharm. 2016; 27(4):196 - 202. https://doi.org/10.14499/indonesianjpharm27iss4pp196
Prajapati, S. T., Patel, C. G. & Patel, C. N. Formulation and Evaluation of Transdermal Patch of Repaglinide: ISRN Pharm. 2011; 2011:651909. https://doi.org/10.5402/2011/651909
Trivedi, D. & Goyal, A. Formulation and evaluation of transdermal patches containing dexketoprofen trometamol: Int. J. Pharm. Chem. Anal. 2020; 7(2):87-97 https://doi.org/10.18231/j.ijpca.2020.014
Ma, X., Zuo, N., Chen, H. & Li, Y. X. Research progress in quality control and evaluation of transdermal patche: Chinese Journal of New Drugs. 2019; 28(5):551-557.
Patel, D. J., Vyas, A. M., Rathi, S. G. & Shah, S. K. Formulation and Evaluation of Transdermal Patch of Apixaban: Int. J. Pharm. Sci. Rev. Res.2021; 69(2): 57-63. https://doi.org/10.47583/ijpsrr.2021.v69i02.009
Kumar, S. S., Behury, B. & Sachinkumar, P. Formulation and evaluation of transdermal patch of stavudine. Dhaka Univ: J. Pharm. Sci. 2013; 12(1): 63-69. https://doi.org/10.3329/dujps.v12i1.16302
Almazan, E. A., Castañeda, P. S., Torres, R. D. & Escobar-Chavez, J. J. Design and evaluation of Losartan transdermal patch by using solid microneedles as a physical permeation enhancer: Iran. J. Pharm. Res. 2020; 19(1):38-152.
Gupta, V. & Joshi, N. K. Formulation, Development and Evaluation of Ketoprofen Loaded Transethosomes Gel: J. Drug Deliv. Ther. 2022; 12(1):86-90. https://doi.org/10.22270/jddt.v12i1.5177
More, T. C. P. Formulation and Evaluation of Transdermal patch of Antihypertensive Drug: Int. J. Sci. Res. 2018;
Gannu, R., Vamshi Vishnu, Y., Kishan, V. & Madhusudan Rao, Y. Development of Nitrendipine Transdermal Patches- In vitro and Ex vivo Characterization: Curr. Drug Deliv. 2006; 3(1):22-31. https://doi.org/10.2174/156720107779314767
Anitha, P. et al. Preparation, in-vitro and in-vivo characterization of transdermal patch containing glibenclamide and atenolol- A combinational approach: Pak. J. Pharm. Sci. 2011; 24(2):155-63.
Pisipati, A. & Chavali Venkata Satya, S. Formulation and characterization of anti hypertensive transdermal delivery system: J. Pharm. Res. 2013; 6(5): 551-554. https://doi.org/10.1016/j.jopr.2012.12.003
Dezfuli, A. R., Aravindram, A. S., Manjunath, M., Ganesh, N. S. & Shailesh, T. Development and evaluation of transdermal films loaded with antihypertensive drug: Int. J. Pharma Bio Sci. 2012; 3(3):559-569.
Patel, N. B., Sonpal, R. N., Mohan, S. & Selvaraj, S. Formulation and evaluation of iontophoretic transdermal delivery of diltiazem hydrochloride: Int. J. Res. Pharm. Sci. 2010;1(3):338-344.
Baishya, H. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets: J. Dev. Drugs. 2017; 6(2):2-8. https://doi.org/10.4172/2329-6631.1000171
R, K. A. Mathematical Models of Drug Dissolution-A Review: Sch. Acad. J. PharmacyOnline) Sch. Acad. J. Pharm. 2014; 453(1): 12-24.
Shayeda, D. & Ayesha, N. Development of Tizanidine HCl transdermal patches- In-vitro and Ex-vivo characterization: J. Drug Deliv. Ther. 2019; (1-s):295-300. https://doi.org/10.22270/jddt.v9i1-s.2431
Published
Abstract Display: 580
PDF Downloads: 576
PDF Downloads: 79 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.