Comparative evaluation of the antioxidant and anti-inflammatory properties of Musa cavendish and Musa paradisiaca pulp and peel extracts from Guinea

Authors

  • Mamady Diawara Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
  • Imane Boukhers Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
  • Karine Portet Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
  • Orianne Duchamp Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
  • Sylvie Morel Laboratoire de Botanique, Phytochimie et Mycologie, CEFE, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE-IRD, Montpellier, France;
  • Frederic Boudard Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
  • Lounseny Traore Laboratoire de Chimie alimentaire, Université Gamal Abdel de Conakry, Guinée,
  • Alain Michel Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
  • Claudie Dhuique-Mayer Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
  • Patrick Poucheret Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Abstract

Banana is one of the most consumed fruits in the world. Musa cavendish and Musa paradisiaca cultivars differential nutrition-health properties and more specifically their antioxidant and anti-inflammatory potential are poorly known. The objective of the present study was to compare the hydroalcoholic dry extracts nutrition-health properties of these two types of Guinea bananas. Total polyphenols contents were evaluated by Folin Ciocalteu method, antioxidant capacity by DPPH, ORAC and Mito-tracker assays. Anti-inflammatory activity was evaluated in vitro on inflammatory macrophages. NO scavenging, NO and cytokines production (TNF-α and IL-6) were assessed. At 1 mg/mL, the extracts showed moderate total polyphenol content. Antioxidant activity potential was depended on the type of extracts. Banana pulps anti-inflammatory effects were demonstrated by the inhibition of NO cell production and NO scavenging suggesting that pulps have moderate anti-inflammatory effect as a function of doses (100, 50 and 25 µg/mL). However, none of the extracts inhibited the production of cytokines (TNF-α and IL-6). The present study indicates that Guinea bananas may be considered as an interesting food source of antioxidants associated to a moderate anti-inflammatory potential on specific inflammation markers.

Keywords: Banana pulp; Banana peel; Antioxidant activity; Anti-inflammatory activity; Polyphenols.

Keywords:

Banana pulp, Banana peel, Antioxidant activity, Anti-inflammatory activity, Polyphenols

DOI

https://doi.org/10.22270/jddt.v13i8.5928

Author Biographies

Mamady Diawara, Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Imane Boukhers, Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Karine Portet, Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Orianne Duchamp, Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Sylvie Morel, Laboratoire de Botanique, Phytochimie et Mycologie, CEFE, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE-IRD, Montpellier, France;

Laboratoire de Botanique, Phytochimie et Mycologie, CEFE, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE-IRD, Montpellier, France;

Frederic Boudard, Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Lounseny Traore, Laboratoire de Chimie alimentaire, Université Gamal Abdel de Conakry, Guinée,

Laboratoire de Chimie alimentaire, Université Gamal Abdel de Conakry, Guinée,

Alain Michel, Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Claudie Dhuique-Mayer, Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Patrick Poucheret, Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France

References

Muraki, I.; Imamura, F.; Manson, J. E.; Hu, F. B.; Willett, W. C.; Van Dam, R. M.; Sun, Q. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ 2013; 347:f5001. https://doi.org/10.1136/bmj.f5001

Sabatine, M. S. ; De Ferrari, G. M. ; Giugliano, R. P. ; Huber, K. ; Lewis, B. S. ; Ferreira, J. ; Pedersen, T. R. Clinical benefit of evolocumab by severity and extent of coronary artery disease: analysis from Fourier. Circulation 2018; 138(8):756-766. https://doi.org/10.1161/CIRCULATIONAHA.118.034309

FAOSTAT Statistics Database. Food and Agriculture Organization of the United Nations, 2013, Agriculture, Rome, Italy.

Falcomer, A. L. ; Riquette, R. F. R. ; de Lima, B. R. ; Ginani, V. C. ; Zandonadi, R. P. Health benefits of green banana consumption: A systematic review. Nutrients 2019; 11(6):1222. https://doi.org/10.3390/nu11061222

Forster, M. ; Rodríguez Rodríguez, E. ; Darias Martín, J. ; & Díaz Romero, C. Distribution of nutrients in edible banana pulp. Food Technol Biotechnol 2003; 41(2):167-171.

Singh, B.; Singh, J. P.; Kaur, A.; Singh, N. Bioactive compounds in banana and their associated health benefits-A review. Food Chem 2016; 206:1-11. https://doi.org/10.1016/j.foodchem.2016.03.033

Pereira, A.; Maraschin, M. Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health. J Ethnopharmacol 2015; 160:149-163. https://doi.org/10.1016/j.jep.2014.11.008

Agama-Acevedo, E. ; Sañudo-Barajas, J. A. ; Vélez De La Rocha, R. ; González-Aguilar, G. A. ; & Bello-Perez, L. A. Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA-J Food 2016; 14(1):117-123. https://doi.org/10.1080/19476337.2015.1055306

Amini Khoozani, A.; Birch, J.; Bekhit, A. E. D. A. Production, application and health effects of banana pulp and peel flour in the food industry. J Food Sci Technol 2019; 56(2):548-559. https://doi.org/10.1007/s13197-018-03562-z

Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front Nutr 2018; 5:87. https://doi.org/10.3389/fnut.2018.00087

Abdelkafi, S., Fouquet, B., Barouh, N., Durner, S., Pina, M., Scheirlinckx, F., ... & Carrière, F. In vitro comparisons between Carica papaya and pancreatic lipases during test meal lipolysis: potential use of CPL in enzyme replacement therapy. Food Chem, 2009; 115(2):488-494. https://doi.org/10.1016/j.foodchem.2008.12.043

Bashmil, Y. M.; Ali, A.; Bk, A.; Dunshea, F. R.; Suleria, H. A. Screening and characterization of phenolic compounds from australian grown bananas and their antioxidant capacity. Antioxidants 2021; 10(10):1521. https://doi.org/10.3390/antiox10101521

Van den Berg, H.; Faulks, R.; Granado, H. F.; Hirschberg, J.; Olmedilla, B.; Sandmann, G.; Stahl, W. The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agric 2000; 80(7):880-912. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<880::AID-JSFA646>3.0.CO;2-1

Englberger, L.; Darnton-Hill, I.; Coyne, T.; Fitzgerald, M. H.; Marks, G. C. Carotenoid-rich bananas: a potential food source for alleviating vitamin A deficiency. Food Nutr Bull 2003; 24(4):303-318. https://doi.org/10.1177/156482650302400401

Kanazawa, K.; Sakakibara, H. High content of dopamine, a strong antioxidant, in cavendish banana. J Agric Food Chem 2000; 48(3):844-848. https://doi.org/10.1021/jf9909860

Someya, S.; Yoshiki, Y.; Okubo, K. Antioxidant compounds from bananas (Musa cavendish). Food Chem 2002; 79(3):351-354. https://doi.org/10.1016/S0308-8146(02)00186-3

Septembre-Malaterre, A. ; Stanislas, G. ; Douraguia, E. ; Gonthier, M. P. Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chem 2016; 212:225-233. https://doi.org/10.1016/j.foodchem.2016.05.147

Zheng, X.; Gong, M.; Zhang, Q.; Tan, H.; Li, L.; Tang, Y.; Deng, W. Metabolism and Regulation of Ascorbic Acid in Fruits. Plants 2022; 11(12):1602. https://doi.org/10.3390/plants11121602

Kumar, K. S.; Bhowmik, D.; Duraivel, S.; Umadevi, M. Traditional and medicinal uses of banana. Journal of Pharmacognosy and Phytochem 2012; 1(3):51-63.

Mondal, A.; Banerjee, S.; Bose, S.; Das, P. P.; Sandberg, E. N.; Atanasov, A. G.; Bishayee, A. Cancer preventive and therapeutic potential of banana and its bioactive constituents: a systematic, comprehensive, and mechanistic review. Front Oncol 2021; 2214. https://doi.org/10.3389/fonc.2021.697143

Sirajudin, Z. N. M.; Ahmed, Q. U.; Chowdhury, A. J. K.; Kamarudin, E. Z.; Khan, A. V.; Uddin, A. B. M. H. Antimicrobial activity of banana (Musa paradisiaca L.) peels against food borne pathogenic microbes. J Pure Appl Microbio 2014, 8, 3627-3639.

Hikal, W. M.; Ahl, S. A.; Hussein, A. H.; Bratovcic, A.; Tkachenko, K. G.; Sharifi-Rad, J.; Atanassova, M. Banana Peels: A Waste Treasure for Human Being. Evid Based Complement Alternat Med 2022; 7616452. https://doi.org/10.1155/2022/7616452

Vu, H. T. ; Scarlett, C. J. ; Vuong, Q. V. Maximising recovery of phenolic compounds and antioxidant properties from banana peel using microwave assisted extraction and water. J Food Sci Technol 2019 ; 56(3):1360-1370. https://doi.org/10.1007/s13197-019-03610-2

Hussain, T. ; Tan, B. ; Yin, Y. ; Blachier, F. ; Tossou, M. C. ; Rahu, N. Oxidative stress and inflammation: what polyphenols can do for us?. Ox Med Cell Longev 2016; 7432797. https://doi.org/10.1155/2016/7432797

Alfaddagh, A.; Martin, S. S.; Leucker, T. M.; Michos, E. D.; Blaha, M. J.; Lowenstein, C. J.; Toth, P. P. Inflammation and cardiovascular disease: From mechanisms to therapeutics. Am J Prev Cardiol 2020; 4:100130. https://doi.org/10.1016/j.ajpc.2020.100130

Favier, A. Le stress oxydant. Actu chim 2003 ; 108(10):863-832.

Morel, S.; Arnould, S.; Vitou, M.; Boudard, F.; Guzman, C.; Poucheret, P.; Rapior, S. Antiproliferative and antioxidant activities of wild Boletales mushrooms from France. Int J Med Mushrooms 2018; 20(1):13-19. https://doi.org/10.1615/IntJMedMushrooms.2018025329

Boukhers, I.; Boudard, F.; Morel, S.; Servent, A.; Portet, K.; Guzman, C.; Poucheret, P. Nutrition, healthcare benefits and phytochemical properties of cassava (Manihot esculenta) leaves sourced from three countries (Reunion, Guinea, and Costa Rica). Foods 2022; 11(14):2027. https://doi.org/10.3390/foods11142027

Ngo, T. V.; Scarlett, C. J.; Bowyer, M. C.; Ngo, P. D.; Vuong, Q. V. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. J Food Qual 2017; 9305047. https://doi.org/10.1155/2017/9305047

Emaga, H.T.; Andrianaivo, R.H.; Wathelet, B.; Tchango, J.T.; Paquot M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem 2007; 103(2):590-600. https://doi.org/10.1016/j.foodchem.2006.09.006

Vu, H. T. ; Scarlett, C. J. ; Vuong, Q. V. Optimization of ultrasound‐assisted extraction conditions for recovery of phenolic compounds and antioxidant capacity from banana (Musa cavendish) peel. J Food Process Preserv 2017; 41(5):e13148. https://doi.org/10.1111/jfpp.13148

Prior, R. L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 2005; 53(10):4290-4302. https://doi.org/10.1021/jf0502698

Eversley, T. C. Le potentiel antioxydant de l'alimentation tel qu'estimé par le score ORAC: une comparaison des apports des personnes âgées avec démence du type Alzheimer avec ceux des témoins sans problèmes cognitifs. Master of Science report 2012, Laval, Canada.

Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res Int 2015; 74:10-36. https://doi.org/10.1016/j.foodres.2015.04.018

Anhwange B.A. Chemical composition of Musa sapientum (Banana) Peels. J Food Technol, 2008; 6:263-266

Someya, S.; Yoshiki, Y.; Okubo, K. Antioxidant compounds from bananas (Musa Cavendish). Food Chem 2002; 79(3):351-354. https://doi.org/10.1016/S0308-8146(02)00186-3

Chew, K. K.; Khoo, M. Z.; Ng, S. Y.; Thoo, Y. Y.; Aida, W. W.; Ho, C. W. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. Int Food Res J 2011; 18(4):1427.

Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M. E.; Rodríguez, J. A.; Galán-Vidal, C. A. Chemical studies of anthocyanins: A review. Food chem 2009; 113(4):859-871. https://doi.org/10.1016/j.foodchem.2008.09.001

Chandrasekhar, J.; Madhusudhan, M. C.; Raghavarao, K. S. M. S. Extraction of anthocyanins from red cabbage and purification using adsorption. Food Bioprod Process 2012; 90(4):615-623. https://doi.org/10.1016/j.fbp.2012.07.004

González-Montelongo, R.; Lobo, M. G.; González, M. The effect of extraction temperature, time and number of steps on the antioxidant capacity of methanolic banana peel extracts. Sep Purif Technol 2010; 71(3):347-355. https://doi.org/10.1016/j.seppur.2009.12.022

Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. The Journal of nutrition, 130(8):2073S-2085S. https://doi.org/10.1093/jn/130.8.2073S

Siriwardhana, N., Kalupahana, N. S., Cekanova, M., LeMieux, M., Greer, B., & Moustaid-Moussa, N. Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 2000; 24(4):613-623. https://doi.org/10.1016/j.jnutbio.2012.12.013

Everette, J. D.; Bryant, Q. M.; Green, A. M.; Abbey, Y. A., Wangila, G. W.; Walker, R. B. Thorough study of reactivity of various compound classes toward the Folin− Ciocalteu reagent. J Agric Food Chem 2010; 58(14):8139-8144. https://doi.org/10.1021/jf1005935

Viuda-Martos, M. ; Ruiz-Navajas, Y. ; Fernández-López, J. ; Sendra, E. ; Sayas-Barberá, E. ; Pérez-Álvarez, J. A. Antioxidant properties of pomegranate (Punica granatum L.) bagasses obtained as co-product in the juice extraction. Food Res Int 2011; 44(5):1217-1223. https://doi.org/10.1016/j.foodres.2010.10.057

Del Carlo M.; Sacchetti G.; Di Mattia C.; Compagnone D.; Mastrocola D.; LiberatoreL.; Cichelli A. Contribution of the Phenolic Fraction to the Antioxidant Activity and Oxidative Stability of Olive Oil. J Agric Food Chem 2004; 52(13):4072-4079. https://doi.org/10.1021/jf049806z

Lim, Y. Y.; Lim, T. T.; Tee, J. J. Antioxidant properties of several tropical fruits: A comparative study. Food chem 2007; 103(3):1003-1008. https://doi.org/10.1016/j.foodchem.2006.08.038

Chen, G. L.; Chen, S. G.; Zhao, Y. Y.; Luo, C. X.; Li, J.; Gao, Y. Q. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Ind Crop Product 2014; 57:150-157. https://doi.org/10.1016/j.indcrop.2014.03.018

Méndez, C.; Forster, M.P.; Rodríguez-Delgado, M.A.; Rodríguez-Rodríguez, E.M.; Romero, C.D. Content of free phenolic compounds in bananas from Tenerife (Canary Islands) and Ecuador. Europ Food Res Technol 2003; 217:287-290. https://doi.org/10.1007/s00217-003-0762-8

Alothman, M.; Bhat, R.; Karim, A. A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem 2009, 115(3), 785-788. https://doi.org/10.1016/j.foodchem.2008.12.005

Sulaiman, S. F.; Yusoff, N. A. M.; Eldeen, I. M.; Seow, E. M.; Sajak, A. A. B.; Ooi, K. L. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.). J Food Comp Anal 2011; 24(1):1-10. https://doi.org/10.1016/j.jfca.2010.04.005

Rebello, L. P. G.; Ramos, A. M.; Pertuzatti, P. B.; Barcia, M. T.; Castillo-Muñoz, N.; Hermosín-Gutiérrez, I. Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Res Int 2014; 55:397-403. https://doi.org/10.1016/j.foodres.2013.11.039

Adedayo, B. C.; Oboh, G.; Oyeleye, S. I.; Olasehinde, T. A. Antioxidant and antihyperglycemic properties of three banana cultivars (Musa spp.). Scientifica 2016; 8391398. https://doi.org/10.1155/2016/8391398

Borges, C. V.; Minatel, I. O.; Amorim, E. P.; Belin, M. A. F.; Gomez-Gomez, H. A.; Correa, C. R.; Lima, G. P. P. Ripening and cooking processes influence the carotenoid content in bananas and plantains (Musa spp.). Food Res Int 2019; 124:129-136. https://doi.org/10.1016/j.foodres.2018.08.022

Djeridane, A.; Yousfi, M.; Nadjemi, B.; Maamri, S.; Djireb, F.; Stocker, P. Extraits phénoliques de diverses plantes algériennes comme inhibiteurs puissants de la carboxylestérase hépatique porcine. J Enz Inhib Med Chem 2006; 21(6):719-726. https://doi.org/10.1080/14756360600810399

Tawaha, K.; Alali, F. Q.; Gharaibeh, M.; Mohammad, M.; El-Elimat, T. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem 2007; 104(4):1372-1378. https://doi.org/10.1016/j.foodchem.2007.01.064

Balasundram N.; Sudram K.; Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem 2006; 99:191_203 https://doi.org/10.1016/j.foodchem.2005.07.042

Sarawong, C.; Schoenlechner, R.; Sekiguchi, K.; Berghofer, E.; Ng, P. K. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chem, 143:33-39. https://doi.org/10.1016/j.foodchem.2013.07.081

Sasipriya, G., Maria, C. L., & Siddhuraju, P. Influence of pressure cooking on antioxidant activity of wild (Ensete superbum) and commercial banana (Musa paradisiaca var. Monthan) unripe fruit and flower. J Food Sci Technol 2014; 51(10):2517-2525. https://doi.org/10.1007/s13197-012-0791-z

Floegel, A.; Kim, D. O.; Chung, S. J.; Koo, S. I.; Chun, O. K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compo Anal 2011; 24(7):1043-1048. https://doi.org/10.1016/j.jfca.2011.01.008

Menezes, E. W. ; Tadini, C. C. ; Tribess, T. B. ; Zuleta, A. ; Binaghi, J. ; Pak, N. ; Lajolo, F. M. Chemical composition and nutritional value of unripe banana flour (Musa acuminata, var. Nanicão). Plant Foods Human Nutr 2011; 66(3):231-237. https://doi.org/10.1007/s11130-011-0238-0

Patthamakanokporn, O.; Puwastien, P.; Nitithamyong, A.; Sirichakwal, P. P. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. J Food Compo Anal 2008; 21(3):241-248. https://doi.org/10.1016/j.jfca.2007.10.002

Wu, X.; Beecher, G. R.; Holden, J. M.; Haytowitz, D. B.; Gebhardt, S. E.; Prior, R. L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 2004; 52(12):4026-4037. https://doi.org/10.1021/jf049696w

Kauffman, M. E;, Kauffman, M. K.; Traore, K.; Zhu, H.; Trush, M. A.; Jia, Z.; Li, Y. R. MitoSOX-based flow cytometry for detecting mitochondrial ROS. Reac Ox Spe 2016; 2(5):361. https://doi.org/10.20455/ros.2016.865

Zielonka, J.; Kalyanaraman, B. Hydroethidine-and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Rad Biol Med 2010; 48(8):983-1001. https://doi.org/10.1016/j.freeradbiomed.2010.01.028

Roelofs, B. A.; Shealinna, X. G.; Studlack, P. E.; Polster, B. M. Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV. Free Rad Biol Med 2015; 86:250-258. https://doi.org/10.1016/j.freeradbiomed.2015.05.032

Adegoke, G. A.; Onasanwo, S. A.; Eyarefe, O. D.; Olaleye, S. B. Ameliorative effects of Musa sapientum peel extract on acetic acid-induced colitis in rats. J Basic Applied Zoo 2016; 77:49-55. https://doi.org/10.1016/j.jobaz.2016.06.004

Yuei, L. P.; Singaram, N.; Hassan, H. Study of anti-inflammatory and analgesic activity of Musa spp. peel. 2016, DOI 10.13140/RG.2.2.33612.10884.

Horie, K.; Hossain, M. S.; Kim, Y.; Akiko, I.; Kon, R.; Yamatsu, A.; Kim, M. Effects of Banafine®, a fermented green banana‐derived acidic glycoconjugate, on influenza vaccine antibody titer in elderly patients receiving gastrostomy tube feeding. J Food Sci 2021; 86(4):1410-1417. https://doi.org/10.1111/1750-3841.15675

Shen, C. Y.; Yang, L.; Jiang, J. G.; Zheng, C. Y.; Zhu, W. Immune enhancement effects and extraction optimization of polysaccharides from Citrus aurantium L. var. amara Engl. Food Funct 2017; 8(2):796-807. https://doi.org/10.1039/C6FO01545J

Wen, L.; Shi, D.; Zhou, T.; Liu, H.; Jiang, Y.; Yang, B. Immunomodulatory mechanism of α-d-(1→ 6)-glucan isolated from banana. RSC adv 2019; 9(12):6995-7003. https://doi.org/10.1039/C9RA00113A

Yang, Y.; Wang, H.; Kouadir, M.; Song, H.; Shi, F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 2019; 10(2):1-11. https://doi.org/10.1038/s41419-019-1413-8

Scarminio, V.; Fruet, A. C.; Witaicenis, A.; Rall, V. L.; Di Stasi, L. C. Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzenesulfonic acid model of rat colitis. Nutr Res 2012; 32(3):202-209. https://doi.org/10.1016/j.nutres.2012.01.002

Iwasawa, H.; Yamazaki, M. Differences in biological response modifier-like activities according to the strain and maturity of bananas. Food Sci Technol Res 2009; 15(3):275-282. https://doi.org/10.3136/fstr.15.275

Published

2023-08-15
Statistics
Abstract Display: 1205
PDF Downloads: 710
PDF Downloads: 118

How to Cite

1.
Diawara M, Boukhers I, Portet K, Duchamp O, Morel S, Boudard F, et al. Comparative evaluation of the antioxidant and anti-inflammatory properties of Musa cavendish and Musa paradisiaca pulp and peel extracts from Guinea. J. Drug Delivery Ther. [Internet]. 2023 Aug. 15 [cited 2026 Jan. 21];13(8):18-2. Available from: https://jddtonline.info/index.php/jddt/article/view/5928

How to Cite

1.
Diawara M, Boukhers I, Portet K, Duchamp O, Morel S, Boudard F, et al. Comparative evaluation of the antioxidant and anti-inflammatory properties of Musa cavendish and Musa paradisiaca pulp and peel extracts from Guinea. J. Drug Delivery Ther. [Internet]. 2023 Aug. 15 [cited 2026 Jan. 21];13(8):18-2. Available from: https://jddtonline.info/index.php/jddt/article/view/5928