Exploring the Potential of Ketoprofen Nanosuspension: In Vitro and In Vivo Insights into Drug Release and Bioavailability
Abstract
Low water solubility and high permeability present formulation challenges for drugs categorized as Biopharmaceutics Classification System (BCS) Class II, resulting in reduced bioavailability. This research focuses on addressing the solubility issues of BCS Class II drugs, including Simvastatin, Ketoprofen, griseofulvin, ibuprofen, ketoconazole, and carbamazepine, which exhibit high permeability but poor solubility. A potential strategy to improve the solubility and bioavailability of these drugs is the utilization of nanosuspensions.
This study investigates the application of nanosuspension technology to enhance the solubility of Ketoprofen, a BCS Class II drug. By reducing the drug's particle size within the nanosuspension, solubility is improved, leading to increased bioavailability and optimized therapeutic efficacy. The research includes in vitro and in vivo experiments to evaluate the drug release profiles and bioavailability of Ketoprofen-loaded nanosuspensions.
Significant findings from this research include the demonstration of improved bioavailability and enhanced drug release properties achieved with the nanosuspension formulation. In vitro studies show increased drug dissolution rates and improved release profiles compared to conventional formulations. In vivo experiments reveal enhanced pharmacokinetic parameters and therapeutic effectiveness of Ketoprofen when administered through the nanosuspension.
These results highlight the potential of nanosuspensions as an efficient drug delivery system for BCS Class II drugs, addressing their solubility limitations and improving their bioavailability. The findings contribute to the development of novel strategies in pharmacology for enhancing drug solubility and therapeutic outcomes. Overall, this research emphasizes the significance of nanosuspension technology in optimizing the delivery of BCS Class II drugs and offers valuable insights for future formulation development and therapeutic applications.
Keywords: Ketoprofen, Nanosuspensions, Ultrasonication, Precipitation, Dissolution rate, Oral bioavailability.
Keywords:
Ketoprofen, Nanosuspensions, Ultrasonication, Precipitation, Dissolution rate, Oral bioavailabilityDOI
https://doi.org/10.22270/jddt.v13i6.5890References
Dahan A, Miller JM. The Solubility-Permeability Interplay and Its Implications in Formulation Design and Development for Poorly Soluble Drugs. AAPS J [Internet]. 2012 Jun 6; 14(2):244-51. Available from: http://link.springer.com/10.1208/s12248-012-9337-6 https://doi.org/10.1208/s12248-012-9337-6
Raman S, Polli JE. Prediction of positive food effect: Bioavailability enhancement of BCS class II drugs. Int J Pharm [Internet]. 2016 Jun;506(1-2):110-5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517316302885 https://doi.org/10.1016/j.ijpharm.2016.04.013
Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm [Internet]. 2011 Nov; 420(1):1-10. https://linkinghub.elsevier.com/retrieve/pii/S0378517311007940 https://doi.org/10.1016/j.ijpharm.2011.08.032
Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov [Internet]. 2004 Sep;3(9):785-96. Available from: https://www.nature.com/articles/nrd1494 https://doi.org/10.1038/nrd1494
Fernandes GJ, Kumar L, Sharma K, Tunge R, Rathnanand M. A Review on Solubility Enhancement of Carvedilol-a BCS Class II Drug. J Pharm Innov [Internet]. 2018 Sep 7; 13(3):197-212. http://link.springer.com/10.1007/s12247-018-9319-z https://doi.org/10.1007/s12247-018-9319-z
Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm [Internet]. 2008 Nov; 364(1):64-75. https://linkinghub.elsevier.com/retrieve/pii/S0378517308005280 https://doi.org/10.1016/j.ijpharm.2008.07.023
Reverchon E. Supercritical antisolvent precipitation of micro- and nano-particles. J Supercrit Fluids [Internet]. 1999 May; 15(1):1-21. https://linkinghub.elsevier.com/retrieve/pii/S0896844698001296 https://doi.org/10.1016/S0896-8446(98)00129-6
Pathak P, Meziani MJ, Desai T, Sun YP. Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing. J Supercrit Fluids [Internet]. 2006 May; 37(3):279-86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0896844606000118 https://doi.org/10.1016/j.supflu.2005.09.005
Agrawal Y, Patel V. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res [Internet]. 2011; 2(2):81. Available from: http://www.japtr.org/text.asp?2011/2/2/81/82950 https://doi.org/10.4103/2231-4040.82950
Singh A, Worku ZA, Van den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv [Internet]. 2011 Oct 3; 8(10):1361-78. Available from: http://www.tandfonline.com/doi/full/10.1517/17425247.2011.606808 https://doi.org/10.1517/17425247.2011.606808
Li XS, Wang JX, Shen ZG, Zhang PY, Chen JF, Yun J. Preparation of uniform prednisolone microcrystals by a controlled microprecipitation method. Int J Pharm [Internet]. 2007 Sep; 342(1-2):26-32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517307003602 https://doi.org/10.1016/j.ijpharm.2007.04.025
Douroumis D, Fahr A. Stable carbamazepine colloidal systems using the cosolvent technique. Eur J Pharm Sci [Internet]. 2007 Apr; 30(5):367-74. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928098706003654 https://doi.org/10.1016/j.ejps.2006.12.003
Lindfors L, Forssén S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci [Internet]. 2008 Sep; 325(2):404-13. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979708006267 https://doi.org/10.1016/j.jcis.2008.05.034
Douroumis D, Fahr A. Nano- and micro-particulate formulations of poorly water-soluble drugs by using a novel optimized technique. Eur J Pharm Biopharm [Internet]. 2006 Jun; 63(2):173-5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S093964110600035X https://doi.org/10.1016/j.ejpb.2006.02.004
Lince F, Marchisio DL, Barresi AA. Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. J Colloid Interface Sci [Internet]. 2008 Jun; 322(2):505-15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979708003159 https://doi.org/10.1016/j.jcis.2008.03.033
LOUHIKULTANEN M, KARJALAINEN M, RANTANEN J, HUHTANEN M, KALLAS J. Crystallization of glycine with ultrasound. Int J Pharm [Internet]. 2006 Aug 31; 320(1-2):23-9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517306003413 https://doi.org/10.1016/j.ijpharm.2006.03.054
Luque de Castro MD, Priego-Capote F. Ultrasound-assisted crystallization (sonocrystallization). Ultrason Sonochem [Internet]. 2007 Sep; 14(6):717-24. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1350417706001684 https://doi.org/10.1016/j.ultsonch.2006.12.004
Liu D, Xu H, Tian B, Yuan K, Pan H, Ma S, et al. Fabrication of Carvedilol Nanosuspensions Through the Anti-Solvent Precipitation-Ultrasonication Method for the Improvement of Dissolution Rate and Oral Bioavailability. AAPS PharmSciTech [Internet]. 2012 Mar 13; 13(1):295-304. Available from: http://link.springer.com/10.1208/s12249-011-9750-7 https://doi.org/10.1208/s12249-011-9750-7
Rahim H, Sadiq A, Khan S, Amin F, Ullah R, Shahat AA, et al. Fabrication and characterization of glimepiride nanosuspension by ultrasonication-assisted precipitation for improvement of oral bioavailability and in vitro α-glucosidase inhibition. Int J Nanomedicine [Internet]. 2019 Aug; 14:6287-6296. Available from: https://www.dovepress.com/fabrication-and-characterization-of-glimepiride-nanosuspension-by-ultr-peer-reviewed-article-IJN https://doi.org/10.2147/IJN.S210548
Xia D, Quan P, Piao H, Piao H, Sun S, Yin Y, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci [Internet]. 2010 Jul; 40(4):325-34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S092809871000151X https://doi.org/10.1016/j.ejps.2010.04.006
Taneja S, Shilpi S, Khatri K. Formulation and optimization of efavirenz nanosuspensions using the precipitation-ultrasonication technique for solubility enhancement. Artif Cells, Nanomedicine, Biotechnol [Internet]. 2015 Feb 27; 1-7. Available from: http://www.tandfonline.com/doi/full/10.3109/21691401.2015.1008505 https://doi.org/10.3109/21691401.2015.1008505
Dandagi, P.M., Kerur, S.S., Mastiholimath, V., Gadad, A., & Kulkarni, A.R. (2009). Polymeric ocular nanosuspension for controlled release of acyclovir: in vitro release and ocular distribution. Iranian Journal of Pharmaceutical Research, 8 79-86. Polymeric ocular nanosuspension for controlled release of acyclovir: in vitro release and ocular distribution. Iran J Pharm Res. 2009;
Saindane NS, Pagar KP, Vavia PR. Nanosuspension Based In Situ Gelling Nasal Spray of Carvedilol: Development, In Vitro and In Vivo Characterization. AAPS PharmSciTech [Internet]. 2013 Mar 20; 14(1):189-99. Available from: http://link.springer.com/10.1208/s12249-012-9896-y https://doi.org/10.1208/s12249-012-9896-y
Yadav SK, Mishra S, Mishra B. Eudragit-Based Nanosuspension of Poorly Water-Soluble Drug: Formulation and In Vitro-In Vivo Evaluation. AAPS PharmSciTech [Internet]. 2012 Dec 15; 13(4):1031-44. Available from: http://link.springer.com/10.1208/s12249-012-9833-0 https://doi.org/10.1208/s12249-012-9833-0
Clancy D, Hodnett N, Orr R, Owen M, Peterson J. Kinetic Model Development for Accelerated Stability Studies. AAPS PharmSciTech [Internet]. 2017 May 15; 18(4):1158-76. Available from: http://link.springer.com/10.1208/s12249-016-0565-4 https://doi.org/10.1208/s12249-016-0565-4
Jandik KA, Kruep D, Cartier M, Linhardt RJ. Accelerated Stability Studies of Heparin. J Pharm Sci [Internet]. 1996 Jan; 85(1):45-51. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022354915499769 https://doi.org/10.1021/js9502736
Burdick RK, Sidor L. Establishment of an Equivalence Acceptance Criterion for Accelerated Stability Studies. J Biopharm Stat [Internet]. 2013 Jul 4; 23(4):730-43. Available from: https://www.tandfonline.com/doi/full/10.1080/10543406.2013.789891 https://doi.org/10.1080/10543406.2013.789891
Waterman KC. The Application of the Accelerated Stability Assessment Program (ASAP) to Quality by Design (QbD) for Drug Product Stability. AAPS PharmSciTech [Internet]. 2011 Sep 12; 12(3):932. Available from: http://link.springer.com/10.1208/s12249-011-9657-3 https://doi.org/10.1208/s12249-011-9657-3
Published
Abstract Display: 574
PDF Downloads: 649
PDF Downloads: 87 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.