Nanoparticle applications in intracellular infections

Authors

  • Judith Torres Facultad de Ciencias Médicas, Universidad Central del Ecuador, PO BOX 170136, Quito, Ecuador
  • Tatiana Lara Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 175231B, Sangolquí, Ecuador.
  • Marcelo Grijalva Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 175231B, Sangolquí, Ecuador. https://orcid.org/0000-0003-4970-7202

Abstract

Objective: To review selected recent studies on the therapeutic applications of nanoparticles and nanoparticle-conjugated antimicrobials as new therapeutic alternatives for a variety of intracellular infections.

Data Sources: Recent published papers on nanoparticles and intracellular infections, including bacterial, viral, and parasitic diseases in humans. The PubMed database was used as the main source. Publicly available papers were retrieved.

Summary of Contents: Therapeutic failure in intracellular infections is a challenging clinical problem. Antibiotics, anti-parasitics, antivirals, and other drugs might not reach effective levels in intracellular compartments; these agents in high doses might become toxic and may show undesirable effects. Researchers have been looking for alternative strategies for antimicrobials to reach intracellular spaces. The development of novel drugs and release mechanisms is currently a research priority in infectious diseases. With this background, new approaches such as those based on nanotechnology, including the fabrication of drug nanocarriers, are of increasing interest to researchers and clinicians. The goal for nanocarriers is to provide controlled release of drugs into cellular compartments with high selectivity, higher efficiency, better therapeutic outcomes, less toxicity, and more rational dosing schemes compared to traditional ones. Biocompatibility of nanocarriers may ensure affinity to the reticuloendothelial and immunological systems, which might facilitate drug delivery into intracellular compartments.

Conclusion: Nanoparticle systems have great potential in infectious diseases, particularly in difficult-to-treat infections, such as those caused by intracellular pathogens. These systems have been tested with several drugs, enzymes, genes, and peptides, showing long half-lives due to their hydrophilic coatings. The optimization of nanoparticle-based drug delivery systems has improved our understanding of the different mechanisms underlying biological interactions and the engineering of even more complex nanoparticles.

Keywords: Nanoparticles, intracellular infections, novel therapeutics.

Keywords:

Nanoparticles, intracellular infections, novel therapeutics

DOI

https://doi.org/10.22270/jddt.v12i5-S.5738

Author Biographies

Judith Torres, Facultad de Ciencias Médicas, Universidad Central del Ecuador, PO BOX 170136, Quito, Ecuador

Facultad de Ciencias Médicas, Universidad Central del Ecuador, PO BOX 170136, Quito, Ecuador

Tatiana Lara, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 175231B, Sangolquí, Ecuador.

Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 175231B, Sangolquí, Ecuador.

Marcelo Grijalva, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, PO BOX 175231B, Sangolquí, Ecuador.

Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, PO BOX 175231B, Sangolquí, Ecuador.

References

Chitra K, Annadurai G. Antibacterial activity of pH-dependent biosynthesized silver nanoparticles against clinical pathogen. Biomed Res Int., 2014; 2014. https://doi.org/10.1155/2014/725165

Geethalakshmi R, Sarada DVL. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties. Int J Nanomedicine, 2012; 7:5375-84. https://doi.org/10.2147/IJN.S36516

Saúde A, Cherobim M, Amaral, Andre; Dias S, Franco O. Nanoformulated Antibiotics: the Next Step for Pathogenic Bacteria Control. Current Medicinal Chemistry, 2013; 20:1232-40. https://doi.org/10.2174/0929867311320100004

Kaba SI, Egorova EM. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnol Sci Appl., 2015; 8:19-29. https://doi.org/10.2147/NSA.S78134

Yang H-W, Hua M-Y, Liu H-L, Huang C-Y, Wei K-C. Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol Sci Appl., 2012; 5:73-86. https://doi.org/10.2147/NSA.S35506

Mukunthan KS, Elumalai EK, Patel TN, Murty VR. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac J Trop Biomed, 2011; 1(4):270-4. https://doi.org/10.1016/S2221-1691(11)60041-5

Agarwal R, Roy K. Intracellular delivery of polymeric nanocarriers: a matter of size, shape, charge, elasticity and surface composition. Ther Deliv., 2013; 4(6):705-23. https://doi.org/10.4155/tde.13.37

Aboelfetoh EF, El-Shenody RA, Ghobara MM. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess, 2017; 189(7):1-15. https://doi.org/10.1007/s10661-017-6033-0

Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. "Green" synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 2018; 16(1):84. https://doi.org/10.1186/s12951-018-0408-4

Abed N, Couvreur P. Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents, 2014; 43(6):485-96. https://doi.org/10.1016/j.ijantimicag.2014.02.009

Thomas R, Janardhanan A, Varghese RT, Soniya E V, Mathew J, Radhakrishnan EK. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol, 2015; 45(4):1221-7. https://doi.org/10.1590/S1517-83822014000400012

Markowska, Katarzyna; Grudniak, Anna; Wolska K. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol., 2013; 60(4):523-30. https://doi.org/10.18388/abp.2013_2016

Freese, C; Anspach, L; Deller, RC; Richards SJ; Gibson, Ml; Kirkpatrick, CJ; Unger R. Gold nanoparticle interactions with endothelial cells cultured under physiological conditions. Biomater Sci., 2017: 707-17. https://doi.org/10.1039/C6BM00853D

Foroozandeh P, Aziz AA. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res Lett, 2018; 13(1):1-12. https://doi.org/10.1186/s11671-018-2728-6

Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine, 2014; 9:2399-407. https://doi.org/10.2147/IJN.S55015

Beyzay F, Zavaran Hosseini A, Soudi S. Alpha Alumina Nanoparticle Conjugation to Cysteine Peptidase A and B: An Efficient Method for Autophagy Induction. Avicenna J Med Biotechnol, 2017; 92:71-81.

Muhammad Q, Jang Y, Kang SH, Moon J, Kim WJ, Park H. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater Sci., 2020; 8(6):1490-501. https://doi.org/10.1039/C9BM01643K

Ray P, Haideri N, Haque I, Mohammed O, Chakraborty S, Banerjee S, et al. The Impact of Nanoparticles on the Immune System: A Gray Zone of Nanomedicine. J Immunol Sci Rev Artic., 2021; 5(1):19-33. https://doi.org/10.29245/2578-3009/2021/1.1206

Manzanares D, Ceña V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020; 12(4):1-22. https://doi.org/10.3390/pharmaceutics12040371

Sousa De Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev., 2021; 50(9):5397-434. https://doi.org/10.1039/D0CS01127D

Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem Soc Rev., 2017; 46(14):4218-44. https://doi.org/10.1039/C6CS00636A

Stern ST, Johnson DN. Role for nanomaterial-autophagy interaction in neurodegenerative disease. Autophagy, 2008; 4(8):1097-100. https://doi.org/10.4161/auto.7142

English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol, 2009; 10(5):480-7. https://doi.org/10.1038/ni.1720

Sémiramoth N; Di Meo C; Zouhiri F; Saïd-Hassane F; Valetti S; Gorges ; Nicolas V; Poupaert JH; Chollet-Martin S; Desmaële D; Gref R; Couvreur P. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano, 2012; 6(5):3820-31. https://doi.org/10.1021/nn204928v

Liu Y, Jia Y, Yang K, Wang Z. Heterogeneous Strategies to Eliminate Intracellular Bacterial Pathogens. Frontiers in Microbiology, 2020; 11:563. https://doi.org/10.3389/fmicb.2020.00563

Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, et al. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol, 2015; 305(1):85-95. https://doi.org/10.1016/j.ijmm.2014.11.005

Xie S, Yang F, Tao Y, Chen D, Qu W, Huang L, et al. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella. Sci Rep, 2017; 7:41104. https://doi.org/10.1038/srep41104

Seleem MN, Munusamy P, Ranjan A, Alqublan H, Pickrell G, Sriranganathan N. Silica-Antibiotic Hybrid Nanoparticles for Targeting Intracellular Pathogens. Antimicrob Agents Chemother, 2009; 53(10):4270 - 4274. https://doi.org/10.1128/AAC.00815-09

Zaki NM, Hafez MM. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech, 2012; 132:411-21. https://doi.org/10.1208/s12249-012-9758-7

Jin, Tony; Sun, Dazhi; Su, Judy; Zhang, Hui-wen; Sue H-J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci, 2009; 74(1):46-52. https://doi.org/10.1111/j.1750-3841.2008.01013.x

Ranjan A, Pothayee N, Seleem MN, Sriranganathan N, Kasimanickam R, Makris M, et al. In vitro trafficking and efficacy of core-shell nanostructures for treating intracellular Salmonella infections. Antimicrob Agents Chemother, 2009; 53(9):3-8. https://doi.org/10.1128/AAC.00009-09

Farazuddin M, Alam M, Khan AA, Khan N, Parvez S, Dutt GU, et al. Efficacy of amoxicillin bearing microsphere formulation in treatment of Listeria monocytogenes infection in Swiss albino mice. J Drug Target, 2010; 18(1):45-52. https://doi.org/10.3109/10611860903156401

Farazuddin M, Chauhan A, Khan RMM, Owais M. Amoxicillin-bearing microparticles: potential in the treatment of Listeria monocytogenes infection in Swiss albino mice. Biosci Rep., 2011; 31(4):265-72. https://doi.org/10.1042/BSR20100027

Imbuluzqueta E, Gamazo C, Lana H, Campanero MÁ, Salas D, Gil AG, et al. Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice. Antimicrob Agents Chemother, 2013; 57(7):3326-33. https://doi.org/10.1128/AAC.00378-13

Imbuluzqueta E, Lemaire S, Gamazo C, Elizondo E, Ventosa N, Veciana J, et al. Cellular pharmacokinetics and intracellular activity against Listeria monocytogenes and Staphylococcus aureus of chemically modified and nanoencapsulated gentamicin. J Antimicrob Chemother, 2012; 67(9):2158-64. https://doi.org/10.1093/jac/dks172

Ranjan A, Pothayee N, Vadala TP, Seleem MN, Restis E, Sriranganathan N, et al. Efficacy of amphiphilic core-shell nanostructures encapsulating gentamicin in an in vitro salmonella and listeria intracellular infection model. Antimicrob Agents Chemother, 2010; 54(8):3524-6. https://doi.org/10.1128/AAC.01522-09

Seleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N. Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol Lett, 2009; 294(1):24-31. https://doi.org/10.1111/j.1574-6968.2009.01530.x

Lecaroz, C.; Gamazo, C.; Blanco-Prieto MJ. Nanocarriers with Gentamicin to Treat Intracellular Pathogens. J Nanosci Nanotechnol, 2006; 6(9-10). https://doi.org/10.1166/jnn.2006.478

Sánchez-Martínez M, da Costa Martins R, Quincoces G, Gamazo C, Caicedo C, Irache JM, et al. Radiomarcaje y estudios de biodistribución de nanopartículas poliméricas como adyuvantes para la vacunación oftálmica frente a la brucelosis. Rev Esp Med Nucl Imagen Mol., 2013; 322:92-7. https://doi.org/10.1016/j.remn.2012.11.005

Dube A, Reynolds JL, Law W-C, Maponga CC, Prasad PN, Morse GD. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomedicine Nanotechnology, Biol Med., 2014; 10(4):831-8. https://doi.org/10.1016/j.nano.2013.11.012

Hammerschlag MR, Kohlhoff SA. Treatment of chlamydial infections. Expert Opin Pharmacother, 2012; 13(4):545-52. https://doi.org/10.1517/14656566.2012.658776

Wyrick PB. Intracellular survival by Chlamydia. Cell Microbiol, 2000; 2(4):275-82. https://doi.org/10.1046/j.1462-5822.2000.00059.x

Wyrick PB. Chlamydia trachomatis Persistence In Vitro: An Overview . J Infect Dis, 2010; 2012:88-95. https://doi.org/10.1086/652394

Kintner J, Lajoie D, Hall J, Whittimore J, Schoborg R V. Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations. Front Cell Infect Microbiol, 2014; 4:44. https://doi.org/10.3389/fcimb.2014.00044

Mishra MK, Kotta K, Hali M, Wykes S, Gerard HC, Hudson AP, et al. PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomedicine Nanotechnology, Biol Med, 2011; 7(6):935-44. https://doi.org/10.1016/j.nano.2011.04.008

Ikeda-Dantsuji Y, Feril LB, Tachibana K, Ogawa K, Endo H, Harada Y, et al. Synergistic effect of ultrasound and antibiotics against Chlamydia trachomatis-infected human epithelial cells in vitro. Ultrason Sonochem, 2011; 18(1):425-30. https://doi.org/10.1016/j.ultsonch.2010.07.015

Inic-Kanada A, Stojanovic M, Schlacher S, Stein E, Belij-Rammerstorfer S, Marinkovic E, et al. Delivery of a Chlamydial Adhesin N-PmpC Subunit Vaccine to the Ocular Mucosa Using Particulate Carriers. PLoS One, 2015; 10(12). https://doi.org/10.1371/journal.pone.0144380

Bharatwaj B, Wu L, Whittum-Hudson JA, da Rocha SRP. The potential for the noninvasive delivery of polymeric nanocarriers using propellant-based inhalers in the treatment of Chlamydial respiratory infections. Biomaterials, 2010; 31(28):7376-85. https://doi.org/10.1016/j.biomaterials.2010.06.005

Silva NC, Silva S, Sarmento B, Pintado M. Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis. Drug Deliv, 2015; 22(7):885-93. https://doi.org/10.3109/10717544.2013.858195

Prokopovich P, Leech R, Carmalt CJ, Parkin IP, Perni S. A novel bone cement impregnated with silver-tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties. Int J Nanomedicine, 2013; 8:2227-37. https://doi.org/10.2147/IJN.S42822

Chaubey P, Patel RR, Mishra B. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Expert Opin Drug Deliv, 2014; 11(8):1163-81. https://doi.org/10.1517/17425247.2014.917076

Ribeiro TG, Chávez-Fumagalli MA, Valadares DG, França JR, Rodrigues LB, Duarte MC, et al. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine, 2014; 9:877-90. https://doi.org/10.2147/IJN.S55678

Van de Ven H, Vermeersch M, Matheeussen A, Vandervoort J, Weyenberg W, Apers S, et al. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: Factor influence study and in vitro efficacy evaluation. Int J Pharm, 2011; 420(1):122-32. https://doi.org/10.1016/j.ijpharm.2011.08.016

Van de Ven H, Vermeersch M, Vandenbroucke RE, Matheeussen A, Apers S, Weyenberg W, et al. Intracellular drug delivery in Leishmania-infected macrophages: Evaluation of saponin-loaded PLGA nanoparticles. J Drug Target, 2012; 20:142-54. https://doi.org/10.3109/1061186X.2011.595491

Tavares J, Ouaissi A, Silva AM, Lin PKT, Roy N, Cordeiro-da-Silva A. Anti-leishmanial activity of the bisnaphthalimidopropyl derivatives. Parasitol Int., 2012; 61:360-3. https://doi.org/10.1016/j.parint.2011.11.005

Costa Lima SA, Resende M, Silvestre R, Tavares J, Ouaissi A, Lin PKT, et al. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine, 2012; 7(12):1839-49. https://doi.org/10.2217/nnm.12.74

das Neves, J; Michiels, J; Arien, KK; Vanham, G; Amiji, M; Bahìa, MF; Sarmento B. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine. Pharm Res., 2012; 1468-884. https://doi.org/10.1007/s11095-011-0622-3

Kuntworbe N, Al-Kassas R. Design and in vitro haemolytic evaluation of cryptolepine hydrochloride-loaded gelatine nanoparticles as a novel approach for the treatment of malaria. AAPS PharmSciTech, 2012; 13:568-81. https://doi.org/10.1208/s12249-012-9775-6

Mohanraj, VJ; Chen Y. Nanoparticles - A review. Trop J Pharm Res, 2006; 5(1):561-73. https://doi.org/10.4314/tjpr.v5i1.14634

Published

2022-10-15
Statistics
Abstract Display: 435
PDF Downloads: 944
PDF Downloads: 25

How to Cite

1.
Torres J, Lara T, Grijalva M. Nanoparticle applications in intracellular infections. J. Drug Delivery Ther. [Internet]. 2022 Oct. 15 [cited 2026 Jan. 21];12(5-S):217-9. Available from: https://jddtonline.info/index.php/jddt/article/view/5738

How to Cite

1.
Torres J, Lara T, Grijalva M. Nanoparticle applications in intracellular infections. J. Drug Delivery Ther. [Internet]. 2022 Oct. 15 [cited 2026 Jan. 21];12(5-S):217-9. Available from: https://jddtonline.info/index.php/jddt/article/view/5738