Nanoparticle applications in intracellular infections
Abstract
Objective: To review selected recent studies on the therapeutic applications of nanoparticles and nanoparticle-conjugated antimicrobials as new therapeutic alternatives for a variety of intracellular infections.
Data Sources: Recent published papers on nanoparticles and intracellular infections, including bacterial, viral, and parasitic diseases in humans. The PubMed database was used as the main source. Publicly available papers were retrieved.
Summary of Contents: Therapeutic failure in intracellular infections is a challenging clinical problem. Antibiotics, anti-parasitics, antivirals, and other drugs might not reach effective levels in intracellular compartments; these agents in high doses might become toxic and may show undesirable effects. Researchers have been looking for alternative strategies for antimicrobials to reach intracellular spaces. The development of novel drugs and release mechanisms is currently a research priority in infectious diseases. With this background, new approaches such as those based on nanotechnology, including the fabrication of drug nanocarriers, are of increasing interest to researchers and clinicians. The goal for nanocarriers is to provide controlled release of drugs into cellular compartments with high selectivity, higher efficiency, better therapeutic outcomes, less toxicity, and more rational dosing schemes compared to traditional ones. Biocompatibility of nanocarriers may ensure affinity to the reticuloendothelial and immunological systems, which might facilitate drug delivery into intracellular compartments.
Conclusion: Nanoparticle systems have great potential in infectious diseases, particularly in difficult-to-treat infections, such as those caused by intracellular pathogens. These systems have been tested with several drugs, enzymes, genes, and peptides, showing long half-lives due to their hydrophilic coatings. The optimization of nanoparticle-based drug delivery systems has improved our understanding of the different mechanisms underlying biological interactions and the engineering of even more complex nanoparticles.
Keywords: Nanoparticles, intracellular infections, novel therapeutics.
Keywords:
Nanoparticles, intracellular infections, novel therapeuticsDOI
https://doi.org/10.22270/jddt.v12i5-S.5738References
Chitra K, Annadurai G. Antibacterial activity of pH-dependent biosynthesized silver nanoparticles against clinical pathogen. Biomed Res Int., 2014; 2014. https://doi.org/10.1155/2014/725165
Geethalakshmi R, Sarada DVL. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties. Int J Nanomedicine, 2012; 7:5375-84. https://doi.org/10.2147/IJN.S36516
Saúde A, Cherobim M, Amaral, Andre; Dias S, Franco O. Nanoformulated Antibiotics: the Next Step for Pathogenic Bacteria Control. Current Medicinal Chemistry, 2013; 20:1232-40. https://doi.org/10.2174/0929867311320100004
Kaba SI, Egorova EM. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnol Sci Appl., 2015; 8:19-29. https://doi.org/10.2147/NSA.S78134
Yang H-W, Hua M-Y, Liu H-L, Huang C-Y, Wei K-C. Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol Sci Appl., 2012; 5:73-86. https://doi.org/10.2147/NSA.S35506
Mukunthan KS, Elumalai EK, Patel TN, Murty VR. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac J Trop Biomed, 2011; 1(4):270-4. https://doi.org/10.1016/S2221-1691(11)60041-5
Agarwal R, Roy K. Intracellular delivery of polymeric nanocarriers: a matter of size, shape, charge, elasticity and surface composition. Ther Deliv., 2013; 4(6):705-23. https://doi.org/10.4155/tde.13.37
Aboelfetoh EF, El-Shenody RA, Ghobara MM. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess, 2017; 189(7):1-15. https://doi.org/10.1007/s10661-017-6033-0
Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. "Green" synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 2018; 16(1):84. https://doi.org/10.1186/s12951-018-0408-4
Abed N, Couvreur P. Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents, 2014; 43(6):485-96. https://doi.org/10.1016/j.ijantimicag.2014.02.009
Thomas R, Janardhanan A, Varghese RT, Soniya E V, Mathew J, Radhakrishnan EK. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol, 2015; 45(4):1221-7. https://doi.org/10.1590/S1517-83822014000400012
Markowska, Katarzyna; Grudniak, Anna; Wolska K. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol., 2013; 60(4):523-30. https://doi.org/10.18388/abp.2013_2016
Freese, C; Anspach, L; Deller, RC; Richards SJ; Gibson, Ml; Kirkpatrick, CJ; Unger R. Gold nanoparticle interactions with endothelial cells cultured under physiological conditions. Biomater Sci., 2017: 707-17. https://doi.org/10.1039/C6BM00853D
Foroozandeh P, Aziz AA. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res Lett, 2018; 13(1):1-12. https://doi.org/10.1186/s11671-018-2728-6
Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine, 2014; 9:2399-407. https://doi.org/10.2147/IJN.S55015
Beyzay F, Zavaran Hosseini A, Soudi S. Alpha Alumina Nanoparticle Conjugation to Cysteine Peptidase A and B: An Efficient Method for Autophagy Induction. Avicenna J Med Biotechnol, 2017; 92:71-81.
Muhammad Q, Jang Y, Kang SH, Moon J, Kim WJ, Park H. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity. Biomater Sci., 2020; 8(6):1490-501. https://doi.org/10.1039/C9BM01643K
Ray P, Haideri N, Haque I, Mohammed O, Chakraborty S, Banerjee S, et al. The Impact of Nanoparticles on the Immune System: A Gray Zone of Nanomedicine. J Immunol Sci Rev Artic., 2021; 5(1):19-33. https://doi.org/10.29245/2578-3009/2021/1.1206
Manzanares D, Ceña V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020; 12(4):1-22. https://doi.org/10.3390/pharmaceutics12040371
Sousa De Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev., 2021; 50(9):5397-434. https://doi.org/10.1039/D0CS01127D
Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem Soc Rev., 2017; 46(14):4218-44. https://doi.org/10.1039/C6CS00636A
Stern ST, Johnson DN. Role for nanomaterial-autophagy interaction in neurodegenerative disease. Autophagy, 2008; 4(8):1097-100. https://doi.org/10.4161/auto.7142
English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol, 2009; 10(5):480-7. https://doi.org/10.1038/ni.1720
Sémiramoth N; Di Meo C; Zouhiri F; Saïd-Hassane F; Valetti S; Gorges ; Nicolas V; Poupaert JH; Chollet-Martin S; Desmaële D; Gref R; Couvreur P. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano, 2012; 6(5):3820-31. https://doi.org/10.1021/nn204928v
Liu Y, Jia Y, Yang K, Wang Z. Heterogeneous Strategies to Eliminate Intracellular Bacterial Pathogens. Frontiers in Microbiology, 2020; 11:563. https://doi.org/10.3389/fmicb.2020.00563
Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, et al. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol, 2015; 305(1):85-95. https://doi.org/10.1016/j.ijmm.2014.11.005
Xie S, Yang F, Tao Y, Chen D, Qu W, Huang L, et al. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella. Sci Rep, 2017; 7:41104. https://doi.org/10.1038/srep41104
Seleem MN, Munusamy P, Ranjan A, Alqublan H, Pickrell G, Sriranganathan N. Silica-Antibiotic Hybrid Nanoparticles for Targeting Intracellular Pathogens. Antimicrob Agents Chemother, 2009; 53(10):4270 - 4274. https://doi.org/10.1128/AAC.00815-09
Zaki NM, Hafez MM. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech, 2012; 132:411-21. https://doi.org/10.1208/s12249-012-9758-7
Jin, Tony; Sun, Dazhi; Su, Judy; Zhang, Hui-wen; Sue H-J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci, 2009; 74(1):46-52. https://doi.org/10.1111/j.1750-3841.2008.01013.x
Ranjan A, Pothayee N, Seleem MN, Sriranganathan N, Kasimanickam R, Makris M, et al. In vitro trafficking and efficacy of core-shell nanostructures for treating intracellular Salmonella infections. Antimicrob Agents Chemother, 2009; 53(9):3-8. https://doi.org/10.1128/AAC.00009-09
Farazuddin M, Alam M, Khan AA, Khan N, Parvez S, Dutt GU, et al. Efficacy of amoxicillin bearing microsphere formulation in treatment of Listeria monocytogenes infection in Swiss albino mice. J Drug Target, 2010; 18(1):45-52. https://doi.org/10.3109/10611860903156401
Farazuddin M, Chauhan A, Khan RMM, Owais M. Amoxicillin-bearing microparticles: potential in the treatment of Listeria monocytogenes infection in Swiss albino mice. Biosci Rep., 2011; 31(4):265-72. https://doi.org/10.1042/BSR20100027
Imbuluzqueta E, Gamazo C, Lana H, Campanero MÁ, Salas D, Gil AG, et al. Hydrophobic gentamicin-loaded nanoparticles are effective against Brucella melitensis infection in mice. Antimicrob Agents Chemother, 2013; 57(7):3326-33. https://doi.org/10.1128/AAC.00378-13
Imbuluzqueta E, Lemaire S, Gamazo C, Elizondo E, Ventosa N, Veciana J, et al. Cellular pharmacokinetics and intracellular activity against Listeria monocytogenes and Staphylococcus aureus of chemically modified and nanoencapsulated gentamicin. J Antimicrob Chemother, 2012; 67(9):2158-64. https://doi.org/10.1093/jac/dks172
Ranjan A, Pothayee N, Vadala TP, Seleem MN, Restis E, Sriranganathan N, et al. Efficacy of amphiphilic core-shell nanostructures encapsulating gentamicin in an in vitro salmonella and listeria intracellular infection model. Antimicrob Agents Chemother, 2010; 54(8):3524-6. https://doi.org/10.1128/AAC.01522-09
Seleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N. Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol Lett, 2009; 294(1):24-31. https://doi.org/10.1111/j.1574-6968.2009.01530.x
Lecaroz, C.; Gamazo, C.; Blanco-Prieto MJ. Nanocarriers with Gentamicin to Treat Intracellular Pathogens. J Nanosci Nanotechnol, 2006; 6(9-10). https://doi.org/10.1166/jnn.2006.478
Sánchez-Martínez M, da Costa Martins R, Quincoces G, Gamazo C, Caicedo C, Irache JM, et al. Radiomarcaje y estudios de biodistribución de nanopartículas poliméricas como adyuvantes para la vacunación oftálmica frente a la brucelosis. Rev Esp Med Nucl Imagen Mol., 2013; 322:92-7. https://doi.org/10.1016/j.remn.2012.11.005
Dube A, Reynolds JL, Law W-C, Maponga CC, Prasad PN, Morse GD. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomedicine Nanotechnology, Biol Med., 2014; 10(4):831-8. https://doi.org/10.1016/j.nano.2013.11.012
Hammerschlag MR, Kohlhoff SA. Treatment of chlamydial infections. Expert Opin Pharmacother, 2012; 13(4):545-52. https://doi.org/10.1517/14656566.2012.658776
Wyrick PB. Intracellular survival by Chlamydia. Cell Microbiol, 2000; 2(4):275-82. https://doi.org/10.1046/j.1462-5822.2000.00059.x
Wyrick PB. Chlamydia trachomatis Persistence In Vitro: An Overview . J Infect Dis, 2010; 2012:88-95. https://doi.org/10.1086/652394
Kintner J, Lajoie D, Hall J, Whittimore J, Schoborg R V. Commonly prescribed β-lactam antibiotics induce C. trachomatis persistence/stress in culture at physiologically relevant concentrations. Front Cell Infect Microbiol, 2014; 4:44. https://doi.org/10.3389/fcimb.2014.00044
Mishra MK, Kotta K, Hali M, Wykes S, Gerard HC, Hudson AP, et al. PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. Nanomedicine Nanotechnology, Biol Med, 2011; 7(6):935-44. https://doi.org/10.1016/j.nano.2011.04.008
Ikeda-Dantsuji Y, Feril LB, Tachibana K, Ogawa K, Endo H, Harada Y, et al. Synergistic effect of ultrasound and antibiotics against Chlamydia trachomatis-infected human epithelial cells in vitro. Ultrason Sonochem, 2011; 18(1):425-30. https://doi.org/10.1016/j.ultsonch.2010.07.015
Inic-Kanada A, Stojanovic M, Schlacher S, Stein E, Belij-Rammerstorfer S, Marinkovic E, et al. Delivery of a Chlamydial Adhesin N-PmpC Subunit Vaccine to the Ocular Mucosa Using Particulate Carriers. PLoS One, 2015; 10(12). https://doi.org/10.1371/journal.pone.0144380
Bharatwaj B, Wu L, Whittum-Hudson JA, da Rocha SRP. The potential for the noninvasive delivery of polymeric nanocarriers using propellant-based inhalers in the treatment of Chlamydial respiratory infections. Biomaterials, 2010; 31(28):7376-85. https://doi.org/10.1016/j.biomaterials.2010.06.005
Silva NC, Silva S, Sarmento B, Pintado M. Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis. Drug Deliv, 2015; 22(7):885-93. https://doi.org/10.3109/10717544.2013.858195
Prokopovich P, Leech R, Carmalt CJ, Parkin IP, Perni S. A novel bone cement impregnated with silver-tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties. Int J Nanomedicine, 2013; 8:2227-37. https://doi.org/10.2147/IJN.S42822
Chaubey P, Patel RR, Mishra B. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Expert Opin Drug Deliv, 2014; 11(8):1163-81. https://doi.org/10.1517/17425247.2014.917076
Ribeiro TG, Chávez-Fumagalli MA, Valadares DG, França JR, Rodrigues LB, Duarte MC, et al. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine, 2014; 9:877-90. https://doi.org/10.2147/IJN.S55678
Van de Ven H, Vermeersch M, Matheeussen A, Vandervoort J, Weyenberg W, Apers S, et al. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: Factor influence study and in vitro efficacy evaluation. Int J Pharm, 2011; 420(1):122-32. https://doi.org/10.1016/j.ijpharm.2011.08.016
Van de Ven H, Vermeersch M, Vandenbroucke RE, Matheeussen A, Apers S, Weyenberg W, et al. Intracellular drug delivery in Leishmania-infected macrophages: Evaluation of saponin-loaded PLGA nanoparticles. J Drug Target, 2012; 20:142-54. https://doi.org/10.3109/1061186X.2011.595491
Tavares J, Ouaissi A, Silva AM, Lin PKT, Roy N, Cordeiro-da-Silva A. Anti-leishmanial activity of the bisnaphthalimidopropyl derivatives. Parasitol Int., 2012; 61:360-3. https://doi.org/10.1016/j.parint.2011.11.005
Costa Lima SA, Resende M, Silvestre R, Tavares J, Ouaissi A, Lin PKT, et al. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine, 2012; 7(12):1839-49. https://doi.org/10.2217/nnm.12.74
das Neves, J; Michiels, J; Arien, KK; Vanham, G; Amiji, M; Bahìa, MF; Sarmento B. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine. Pharm Res., 2012; 1468-884. https://doi.org/10.1007/s11095-011-0622-3
Kuntworbe N, Al-Kassas R. Design and in vitro haemolytic evaluation of cryptolepine hydrochloride-loaded gelatine nanoparticles as a novel approach for the treatment of malaria. AAPS PharmSciTech, 2012; 13:568-81. https://doi.org/10.1208/s12249-012-9775-6
Mohanraj, VJ; Chen Y. Nanoparticles - A review. Trop J Pharm Res, 2006; 5(1):561-73. https://doi.org/10.4314/tjpr.v5i1.14634
Published
Abstract Display: 435
PDF Downloads: 944
PDF Downloads: 25 How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

.