A Review on Hot Melt Extrusion Coupled Novel Drug Delivery Systems

Authors

Abstract

The utilization of hot melt extrusion (HME) technology for new applications is increasing in recent years, as evidenced by the many published reports in the last five years. Because of its process automation and low-cost scale-up qualities, which decrease labor expenses and capital investment. HME has emerged as an essential technology for drug delivery applications in pharmaceutical research and manufacture. The novel application of the HME process provides a promising alternate approach in the formulation of novel drug delivery systems. The present review discusses the importance of HME in the development of novel drug delivery systems with the review of relevant case studies.

Keywords: hot melt extrusion, novel drug delivery, pharmaceutical research

Keywords:

hot melt extrusion (HME), NOVEL DRUG DELIVERY SYSTEMS, solid lipid nanoparticles, Liposomes

DOI

https://doi.org/10.22270/jddt.v12i5.5646

Author Biographies

Madhukiran Parvathaneni, Manager-Global Regulatory Affairs, CRC Pharma LLC, New Jersey, USA.

Corporate Faculty, Biotechnology, Harrisburg University of Science and Technology, Pennsylvania, USA.

Battu Heera, Assistant Professor, Adikavi Nannaya University College of Pharmaceutical Sciences, India.

Assistant Professor, Adikavi Nannaya University College of Pharmaceutical Sciences, India.

Sudhakar Beeravelli, Andhra University College of Pharmaceutical Sciences, Visakhapatnam, India.

Andhra University College of Pharmaceutical Sciences, Visakhapatnam, India.

References

(1) Reddy AB, Reddy ND, "Development of Multiple-Unit Floating Drug Delivery System of Clarithromycin: Formulation, in Vitro Dissolution by Modified Dissolution Apparatus, in Vivo Radiographic Studies in Human Volunteers", Drug Res (Stuttg), 2017; 67 (7):412–418. DOI: https://doi.org/10.1055/s-0043-102952.

(2) Fasano A, "Innovative Strategies for the Oral Delivery of Drugs and Peptides", Trends in Biotechnology, 1998; 16 (4):152–157. DOI: https://doi.org/10.1016/S0167-7799(97)01170-0.

(3) Butreddy A, Dudhipala N, "Enhancement of Solubility and Dissolution Rate of Trandolapril Sustained Release Matrix Tablets by Liquisolid Compact Approach", Asian Journal of Pharmaceutics, 2015; 9.

(4) Bolla PK, Gote V, Singh M, Yellepeddi VK, Patel M, Pal D, Gong X, Sambalingam D, Renukuntla J, "Preparation and Characterization of Lutein Loaded Folate Conjugated Polymeric Nanoparticles", J Microencapsul, 2020; 37 (7):502–516. DOI: https://doi.org/10.1080/02652048.2020.1809724.

(5) Kumar R, Butreddy A, Kommineni N, Reddy PG, Bunekar N, Sarkar C, Dutt S, Mishra VK, Aadil KR, Mishra YK, Oupicky D, Kaushik A, "Lignin: Drug/Gene Delivery and Tissue Engineering Applications", Int J Nanomedicine, 2021; 16:2419–2441. DOI: https://doi.org/10.2147/IJN.S303462.

(6) Mukherjee S, Ray S, Thakur RS, "Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug Delivery System", Indian J Pharm Sci, 2009; 71 (4):349–358. DOI: https://doi.org/10.4103/0250-474X.57282.

(7) Sainaga Jyothi VGS, Bulusu R, Venkata Krishna Rao B, Pranothi M, Banda S, Kumar Bolla P, Kommineni N, "Stability Characterization for Pharmaceutical Liposome Product Development with Focus on Regulatory Considerations: An Update", Int J Pharm, 2022; 624:122022. DOI: https://doi.org/10.1016/j.ijpharm.2022.122022.

(8) Bulbake U, Doppalapudi S, Kommineni N, Khan W, "Liposomal Formulations in Clinical Use: An Updated Review", Pharmaceutics 2017; 9 (2):12. DOI: https://doi.org/10.3390/pharmaceutics9020012.

(9) B A, D N, Veerabrahma K., "Development of Olmesartan Medoxomil Lipid-Based Nanoparticles and Nanosuspension: Preparation, Characterization and Comparative Pharmacokinetic Evaluation", Artif Cells Nanomed Biotechnol, 2018; 46 (1):126–137. DOI: https://doi.org/10.1080/21691401.2017.1299160.

(10) Bolla PK, Kalhapure RS, Rodriguez VA, Ramos DV, Dahl A, Renukuntla J, "Preparation of Solid Lipid Nanoparticles of Furosemide-Silver Complex and Evaluation of Antibacterial Activity", Journal of Drug Delivery Science and Technology, 2019; 49:6–13. DOI: https://doi.org/10.1016/j.jddst.2018.10.035.

(11) Karri V, Butreddy A, Dudhipala N, Fabrication of Efavirenz Freeze Dried Nanocrystals: Formulation, Physicochemical Characterization, In Vitro and Ex Vivo Evaluation. Available at https://www.ingentaconnect.com/content/asp/asem/2015/00000007/00000005/art00005 Accessed on December 20, 2019. DOI: https://doi.org/info:doi/10.1166/asem.2015.1710.

(12) Butreddy A, Narala A, Dudhipala N, "Formulation and Characterization of Liquid Crystalline Hydrogel of Agomelatin: In Vitro and Ex Vivo Evaluation", Journal of Applied Pharmaceutical Science, 2015; 110–114. DOI: https://doi.org/10.7324/japs.2015.50920.

(13) Pathade AD, Kommineni N, Bulbake U, Thummar MM, Samanthula G, Khan W, "Preparation and Comparison of Oral Bioavailability for Different Nano-Formulations of Olaparib", AAPS PharmSciTech, 2019; 20 (7):276. DOI: https://doi.org/10.1208/s12249-019-1468-y.

(14) Butreddy A, Kommineni N, Dudhipala N, "Exosomes as Naturally Occurring Vehicles for Delivery of Biopharmaceuticals: Insights from Drug Delivery to Clinical Perspectives", Nanomaterials, 2021; 11 (6):1481. DOI: https://doi.org/10.3390/nano11061481.

(15) Butreddy A, Gaddam RP, Kommineni N, Dudhipala N, Voshavar C, "PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery", International Journal of Molecular Sciences, 2021; 22 (16):8884. DOI: https://doi.org/10.3390/ijms22168884.

(16) Bolla PK, Gote V, Singh M, Patel M, Clark BA, Renukuntla J, "Lutein-Loaded, Biotin-Decorated Polymeric Nanoparticles Enhance Lutein Uptake in Retinal Cells", Pharmaceutics 2020; 12 (9):798. https://doi.org/10.3390/pharmaceutics12090798.

(17) Sarkar C, Kommineni N, Butreddy A, Kumar R, Bunekar N, Gugulothu K. PLGA Nanoparticles in Drug Delivery. In: Sougata Jana, Subrata Jana, editors. Nanoengineering of Biomaterials; John Wiley & Sons, Ltd, 2022; pp 217–260. https://doi.org/10.1002/9783527832095.ch8.

(18) Narala A, Suram D, Veerabrahma K, "Pharmacokinetic and Pharmacodynamic Studies of Iloperidone-Loaded Lipid Nanoemulsions via Oral Route of Administration", Drug Development and Industrial Pharmacy, 2021; 47 (4):618–625. DOI: https://doi.org/10.1080/03639045.2021.1908332.

(19) Suram D, Narala A, Veerabrahma K, "Development, Characterization, Comparative Pharmacokinetic and Pharmacodynamic Studies of Iloperidone Solid SMEDDS and Liquisolid Compact", Drug Development and Industrial Pharmacy, 2020; 46 (4):587–596. DOI: https://doi.org/10.1080/03639045.2020.1742142.

(20) Kayaert P, Van den Mooter G, "Is the Amorphous Fraction of a Dried Nanosuspension Caused by Milling or by Drying? A Case Study with Naproxen and Cinnarizine", European Journal of Pharmaceutics and Biopharmaceutics, 2012; 81 (3):650–656. DOI: https://doi.org/10.1016/j.ejpb.2012.04.020.

(21) Butreddy A, Dudhipala N, Janga KY, Gaddam RP, "Lyophilization of Small-Molecule Injectables: An Industry Perspective on Formulation Development, Process Optimization, Scale-Up Challenges, and Drug Product Quality Attributes", AAPS PharmSciTech 2020, 21 (7):252. DOI: https://doi.org/10.1208/s12249-020-01787-w.

(22) Butreddy A, Janga KY, Ajjarapu S, Sarabu S, Dudhipala N, "Instability of Therapeutic Proteins - An Overview of Stresses, Stabilization Mechanisms and Analytical Techniques Involved in Lyophilized Proteins", International Journal of Biological Macromolecules, 2021; 167, 309–325. DOI: https://doi.org/10.1016/j.ijbiomac.2020.11.188.

(23) Howard MD, Lu X, Jay M, Dziubla TD, "Optimization of the Lyophilization Process for Long-Term Stability of Solid-Lipid Nanoparticles", Drug Dev Ind Pharm, 2012; 38 (10):1270–1279. DOI: https://doi.org/10.3109/03639045.2011.645835.

(24) Amis TM, Renukuntla J, Bolla PK, Clark BA, "Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles", Pharmaceutics, 2020; 12 (9):892. DOI: https://doi.org/10.3390/pharmaceutics12090892.

(25) Mamidi HK, Palekar S, Nukala PK, Mishra SM, Patki M, Fu Y, Supner P, Chauhan G, Patel K, "Process Optimization of Twin-Screw Melt Granulation of Fenofibrate Using Design of Experiment (DoE)", International Journal of Pharmaceutics, 2021; 593:120101. https://doi.org/10.1016/j.ijpharm.2020.120101.

(26) Butreddy A, Bandari S, Repka MA, "Quality-by-Design in Hot Melt Extrusion Based Amorphous Solid Dispersions: An Industrial Perspective on Product Development", European Journal of Pharmaceutical Sciences, 2021; 158:105655. DOI: https://doi.org/10.1016/j.ejps.2020.105655.

(27) Butreddy A, Sarabu S, Almutairi M, Ajjarapu S, Kolimi P, Bandari S, Repka MA, "Hot-Melt Extruded Hydroxypropyl Methylcellulose Acetate Succinate Based Amorphous Solid Dispersions: Impact of Polymeric Combinations on Supersaturation Kinetics and Dissolution Performance", International Journal of Pharmaceutics, 2022; 615:121471. DOI: https://doi.org/10.1016/j.ijpharm.2022.121471.

(28) Butreddy A, "Hydroxypropyl Methylcellulose Acetate Succinate as an Exceptional Polymer for Amorphous Solid Dispersion Formulations: A Review from Bench to Clinic", Eur J Pharm Biopharm, 2022; S0939-6411(22):00148-5. DOI: https://doi.org/10.1016/j.ejpb.2022.07.010.

(29) Nukala PK, Palekar S, Patki M, Fu Y, Patel K, "Multi-Dose Oral Abuse Deterrent Formulation of Loperamide Using Hot Melt Extrusion", International journal of pharmaceutics, 2019; 569:118629.

(30) Butreddy A, Sarabu S, Bandari S, Dumpa N, Zhang F, Repka MA, "Polymer-Assisted Aripiprazole–Adipic Acid Cocrystals Produced by Hot Melt Extrusion Techniques", Crystal Growth & Design, 2020; 20 (7):4335–4345. DOI: https://doi.org/10.1021/acs.cgd.0c00020.

(31) Butreddy A, Almutairi M, Komanduri N, Bandari S, Zhang F, Repka MA, "Multicomponent Crystalline Solid Forms of Aripiprazole Produced via Hot Melt Extrusion Techniques: An Exploratory Study", Journal of Drug Delivery Science and Technology, 2021: 63:102529. DOI: https://doi.org/10.1016/j.jddst.2021.102529.

(32) Butreddy A, Sarabu S, Bandari S, Batra A, Lawal K, Chen NN, Bi V, Durig T, Repka MA, "Influence of PlasdoneTM S630 Ultra—an Improved Copovidone on the Processability and Oxidative Degradation of Quetiapine Fumarate Amorphous Solid Dispersions Prepared via Hot-Melt Extrusion Technique", AAPS PharmSciTech 2021, 22(5):196. DOI: https://doi.org/10.1208/s12249-021-02069-9.

(33) Pandi P, Bulusu R, Kommineni N, Khan W, Singh M, "Amorphous Solid Dispersions: An Update for Preparation, Characterization, Mechanism on Bioavailability, Stability, Regulatory Considerations and Marketed Products", International Journal of Pharmaceutics 2020, 586, 119560. DOI: https://doi.org/10.1016/j.ijpharm.2020.119560.

(34) Haser A, Haight B, Berghaus A, Machado A, Martin C, Zhang F, "Scale-Up and In-Line Monitoring During Continuous Melt Extrusion of an Amorphous Solid Dispersion", AAPS PharmSciTech, 2018; 19 (7):2818–2827. DOI: https://doi.org/10.1208/s12249-018-1162-5.

(35) Silva LAD, Almeida SL, Alonso ECP, Rocha PBR, Martins FT, Freitas LAP, Taveira SF, Cunha-Filho MSS, Marreto RN, "Preparation of a Solid Self-Microemulsifying Drug Delivery System by Hot-Melt Extrusion", Int J Pharm, 2018; 541 (1–2):1–10. DOI: https://doi.org/10.1016/j.ijpharm.2018.02.020.

(36) Sarabu S, Kallakunta VR, Butreddy A, Janga KY, Ajjarapu S, Bandari S, Zhang F, Murthy SN, Repka MAA, "One-Step Twin-Screw Melt Granulation with Gelucire 48/16 and Surface Adsorbent to Improve the Solubility of Poorly Soluble Drugs: Effect of Formulation Variables on Dissolution and Stability", AAPS PharmSciTech 2021, 22 (3):79. DOI: https://doi.org/10.1208/s12249-021-01945-8.

(37) Bandari S, Nyavanandi D, Kallakunta VR, Janga KY, Sarabu S, Butreddy A, Repka MA, "Continuous Twin Screw Granulation – An Advanced Alternative Granulation Technology for Use in the Pharmaceutical Industry", International Journal of Pharmaceutics, 2020; 580:119215. DOI: https://doi.org/10.1016/j.ijpharm.2020.119215.

(38) Nyavanandi D, Kallakunta VR, Sarabu S, Butreddy A, Narala S, Bandari S, Repka MA, "Impact of Hydrophilic Binders on Stability of Lipid-Based Sustained Release Matrices of Quetiapine Fumarate by the Continuous Twin Screw Melt Granulation Technique", Advanced Powder Technology, 2021; 32 (7), 2591-2604. DOI: https://doi.org/10.1016/j.apt.2021.05.040.

(39) Zhang Y, Liu T, Kashani-Rahimi S, Zhang F, "A Review of Twin Screw Wet Granulation Mechanisms in Relation to Granule Attributes", Drug Development and Industrial Pharmacy, 2021; 47 (3):349–360. DOI: https://doi.org/10.1080/03639045.2021.1879844.

(40) Kittikunakorn N, Liu T, Zhang F, "Twin-Screw Melt Granulation: Current Progress and Challenges", International Journal of Pharmaceutics, 2020; 588:119670. DOI: https://doi.org/10.1016/j.ijpharm.2020.119670.

(41) Butreddy A, Sarabu S, Dumpa N, Bandari S, Repka MA, "Extended Release Pellets Prepared by Hot Melt Extrusion Technique for Abuse Deterrent Potential: Category-1 In-Vitro Evaluation", International Journal of Pharmaceutics, 2020; 119624. DOI: https://doi.org/10.1016/j.ijpharm.2020.119624.

(42) Butreddy A, Nyavanandi D, Narala S, Austin F, Bandari S, "Application of Hot Melt Extrusion Technology in the Development of Abuse-Deterrent Formulations: An Overview". Available at: https://www.ingentaconnect.com/content/ben/cdd/pre-prints/content-32811398. Accessed January 13, 2021. DOI: https://doi.org/10.2174/1567201817999200817151601.

(43) Nukala PK, Palekar S, Patki M, Patel K, "Abuse Deterrent Immediate Release Egg-Shaped Tablet (Egglets) Using 3D Printing Technology: Quality by Design to Optimize Drug Release and Extraction", AAPS PharmSciTech, 2019; 20 (2):80. DOI: https://doi.org/10.1208/s12249-019-1298-y.

(44) Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA, "3D Printing in Personalized Drug Delivery: An Overview of Hot-Melt Extrusion-Based Fused Deposition Modeling", International Journal of Pharmaceutics, 2021; 600:120501. DOI: https://doi.org/10.1016/j.ijpharm.2021.120501.

(45) Tan DK, Maniruzzaman M, Nokhodchi A, "Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery", Pharmaceutics, 2018; 10(4). DOI: https://doi.org/10.3390/pharmaceutics10040203.

(46) Patil H, Tiwari RV, Repka MA, "Hot-Melt Extrusion: From Theory to Application in Pharmaceutical Formulation", AAPS Pharmscitech, 2016; 17 (1):20–42.

(47) Sarabu S, Butreddy A, Bandari S, Batra A, Lawal K, Chen NN, Kogan M, Bi V, Durig T, Repka MA, "Preliminary Investigation of Peroxide Levels of PlasdoneTM Copovidones on the Purity of Atorvastatin Calcium Amorphous Solid Dispersions: Impact of Plasticizers on Hot Melt Extrusion Processability", Journal of Drug Delivery Science and Technology, 2022; 70:103190. DOI: https://doi.org/10.1016/j.jddst.2022.103190.

(48) Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D, "A Review of Hot-Melt Extrusion: Process Technology to Pharmaceutical Products", ISRN Pharm, 2012; 2012, 436763. DOI: https://doi.org/10.5402/2012/436763.

(49) Ghosh I, Vippagunta R, Li S,Vippagunta S, "Key Considerations for Optimization of Formulation and Melt-Extrusion Process Parameters for Developing Thermosensitive Compound", Pharm Dev Technol, 2012; 17 (4):502–510. DOI: https://doi.org/10.3109/10837450.2010.550624.

(50) Martin C, "Twin Screw Extruders as Continuous Mixers for Thermal Processing: A Technical and Historical Perspective", AAPS PharmSciTech, 2016; 17 (1):3–19.

(51) Maniruzzaman M, Nokhodchi A, "Continuous Manufacturing via Hot-Melt Extrusion and Scale up: Regulatory Matters", Drug Discovery Today, 2017; 22 (2):340–351. DOI: https://doi.org/10.1016/j.drudis.2016.11.007.

(52) Nanotechnology tools in pharmaceutical R&D - Materials Today. Available at: https://www.materialstoday.com/nanomaterials/articles/s1369702110701425. Accessed on December 22, 2021.

(53) Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, Charman WN, Bergström CAS, Porter CJH, "50years of Oral Lipid-Based Formulations: Provenance, Progress and Future Perspectives", Advanced Drug Delivery Reviews, 2016; 101:167–194. DOI: https://doi.org/10.1016/j.addr.2016.04.007.

(54) Patil H, Kulkarni V, Majumdar S, Repka MA, "Continuous Manufacturing of Solid Lipid Nanoparticles by Hot Melt Extrusion", Int J Pharm, 2014; 471 (1–2):153–156. DOI: https://doi.org/10.1016/j.ijpharm.2014.05.024.

(55) Patil H, Feng X, Ye X, Majumdar S, Repka MA, "Continuous Production of Fenofibrate Solid Lipid Nanoparticles by Hot-Melt Extrusion Technology: A Systematic Study Based on a Quality by Design Approach", AAPS J, 2015; 17 (1):194–205. DOI: https://doi.org/10.1208/s12248-014-9674-8.

(56) Gajera BY, Shah DA, Dave RH, "Investigating a Novel Hot Melt Extrusion-Based Drying Technique to Solidify an Amorphous Nanosuspension Using Design of Experiment Methodology", AAPS PharmSciTech, 2018; 19 (8):3778–3790. DOI: https://doi.org/10.1208/s12249-018-1189-7.

(57) Manjunath K, Reddy JS, Venkateswarlu V, "Solid Lipid Nanoparticles as Drug Delivery Systems", Methods Find Exp Clin Pharmacol, 2005; 27 (2):127–144. DOI: https://doi.org/10.1358/mf.2005.27.2.876286.

(58) Pandey S, Shaikh F, Gupta A, Tripathi P, Yadav JS, "A Recent Update: Solid Lipid Nanoparticles for Effective Drug Delivery", Adv Pharm Bull 2022, 12 (1):17–33. DOI: https://doi.org/10.34172/apb.2022.007.

(59) Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK, "Solid Lipid Nanoparticles: A Review on Recent Perspectives and Patents", Expert Opinion on Therapeutic Patents, 2020; 30 (3):179–194. https://doi.org/10.1080/13543776.2020.1720649.

(60) Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM, "Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems", Pharmaceutics , 2018; 10 (4):E191. DOI: https://doi.org/10.3390/pharmaceutics10040191.

(61) Khinast J, Baumgartner R, Roblegg E, "Nano-Extrusion: A One-Step Process for Manufacturing of Solid Nanoparticle Formulations Directly from the Liquid Phase", AAPS PharmSciTech, 2013; 14 (2):601–604. DOI: https://doi.org/10.1208/s12249-013-9946-0.

(62) Baumgartner R, Eitzlmayr A, Matsko N, Tetyczka C, Khinast J, Roblegg E, "Nano-Extrusion: A Promising Tool for Continuous Manufacturing of Solid Nano-Formulations" Int J Pharm 2014, 477 (1–2):1–11. DOI: https://doi.org/10.1016/j.ijpharm.2014.10.008.

(63) Ye X, Patil H, Feng X, Tiwari RV, Lu J, Gryczke A, Kolter K, Langley N, Majumdar S, Neupane D, Mishra SR, Repka MA, "Conjugation of Hot-Melt Extrusion with High-Pressure Homogenization: A Novel Method of Continuously Preparing Nanocrystal Solid Dispersions”, AAPS PharmSciTech, 2016; 17 (1):78–88. DOI: https://doi.org/10.1208/s12249-015-0389-7.

(64) Stuchlík M, Zák S, "Lipid-Based Vehicle for Oral Drug Delivery", Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2001; 145 (2):17–26.

(65) Kale AA, Patravale VB, "Design and Evaluation of Self-Emulsifying Drug Delivery Systems (SEDDS) of Nimodipine", AAPS PharmSciTech, 2008; 9 (1):191–196. DOI: https://doi.org/10.1208/s12249-008-9037-9.

(66) Gursoy RN, Benita S, "Self-Emulsifying Drug Delivery Systems (SEDDS) for Improved Oral Delivery of Lipophilic Drugs", Biomed Pharmacother, 2004; 58 (3):173–182. DOI: https://doi.org/10.1016/j.biopha.2004.02.001.

(67) Fatouros DG, Deen GR, Arleth L, Bergenstahl B, Nielsen FS, Pedersen JS, Mullertz A, "Structural Development of Self Nano Emulsifying Drug Delivery Systems (SNEDDS) during in Vitro Lipid Digestion Monitored by Small-Angle X-Ray Scattering", Pharm Res, 2007; 24(10), DOI: 1844–1853. https://doi.org/10.1007/s11095-007-9304-6.

(68) Christensen JØ, Schultz K, Mollgaard B, Kristensen HG, Mullertz A, "Solubilisation of Poorly Water-Soluble Drugs during in Vitro Lipolysis of Medium- and Long-Chain Triacylglycerols", Eur J Pharm Sci, 2004; 23 (3):287–296. DOI: https://doi.org/10.1016/j.ejps.2004.08.003.

(69) Truong DH, Tran TH, Ramasamy T, Choi JY, Lee HH, Moon C, Choi H-G, Yong CS, Kim JO, "Development of Solid Self-Emulsifying Formulation for Improving the Oral Bioavailability of Erlotinib", AAPS PharmSciTech, 2015; 17 (2):466–473. DOI: https://doi.org/10.1208/s12249-015-0370-5.

(70) Pouton CW, Porter CJH, "Formulation of Lipid-Based Delivery Systems for Oral Administration: Materials, Methods and Strategies", Adv Drug Deliv Rev, 2008; 60 (6):625–637. DOI: https://doi.org/10.1016/j.addr.2007.10.010.

(71) Singh B, Bandopadhyay S, Kapil R, Singh R, Katare O, "Self-Emulsifying Drug Delivery Systems (SEDDS): Formulation Development, Characterization, and Applications" Crit Rev Ther Drug Carrier Syst, 2009; 26 (5):427–521. DOI: https://doi.org/10.1615/critrevtherdrugcarriersyst.v26.i5.10.

(72) Pouton CW, "Lipid Formulations for Oral Administration of Drugs: Non-Emulsifying, Self-Emulsifying and “self-Microemulsifying” Drug Delivery Systems", Eur J Pharm Sci, 2000; 11 Suppl 2, S93-98. DOI: https://doi.org/10.1016/s0928-0987(00)00167-6.

(73) Yamasaki K, Kwok PCL, Fukushige K, Prud’homme RK, Chan H-K, "Enhanced Dissolution of Inhalable Cyclosporine Nano-Matrix Particles with Mannitol as Matrix Former", Int J Pharm 2011, 420 (1):34–42. DOI: https://doi.org/10.1016/j.ijpharm.2011.08.010.

(74) Abdelwahed W, Degobert G, Stainmesse S, Fessi H, "Freeze-Drying of Nanoparticles: Formulation, Process and Storage Considerations", Adv Drug Deliv Rev, 2006; 58 (15):1688-1713. DOI: https://doi.org/10.1016/j.addr.2006.09.017.

(75) Cerdeira AM, Mazzotti M, Gander B, "Formulation and Drying of Miconazole and Itraconazole Nanosuspensions", Int J Pharm, 2013; 443 (1-2):209-220. DOI: https://doi.org/10.1016/j.ijpharm.2012.11.044.

(76) Ahmadi Tehrani A, Omranpoor MM, Vatanara A, Seyedabadi M, Ramezani V, "Formation of Nanosuspensions in Bottom-up Approach: Theories and Optimization", Daru 2019, 27 (1):451–473. DOI: https://doi.org/10.1007/s40199-018-00235-2.

(77) Sinha B, Müller RH, Möschwitzer JP, "Bottom-up Approaches for Preparing Drug Nanocrystals: Formulations and Factors Affecting Particle Size", Int J Pharm, 2013; 453 (1):126–141. DOI: https://doi.org/10.1016/j.ijpharm.2013.01.019.

(78) Chan H-K, Kwok PCL, "Production Methods for Nanodrug Particles Using the Bottom-up Approach", Adv Drug Deliv Rev, 2011; 63 (6):406–416. DOI: https://doi.org/10.1016/j.addr.2011.03.011.

Published

15-09-2022
Statistics
Abstract Display: 684
PDF Downloads: 463
PDF Downloads: 73

How to Cite

1.
Parvathaneni M, Heera B, Beeravelli S. A Review on Hot Melt Extrusion Coupled Novel Drug Delivery Systems. J. Drug Delivery Ther. [Internet]. 2022 Sep. 15 [cited 2025 Jul. 8];12(5):201-7. Available from: https://jddtonline.info/index.php/jddt/article/view/5646

How to Cite

1.
Parvathaneni M, Heera B, Beeravelli S. A Review on Hot Melt Extrusion Coupled Novel Drug Delivery Systems. J. Drug Delivery Ther. [Internet]. 2022 Sep. 15 [cited 2025 Jul. 8];12(5):201-7. Available from: https://jddtonline.info/index.php/jddt/article/view/5646