Quantum Dots: A New Hope for the Pharmaceutical Field

  • Om Bhurbhure Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (MS), India
  • Vaishnavi Ghormade Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (MS), India
  • Vinayak Katekar Department of Quality Assurance, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (MS), India
  • Dipali Sangule Department of Quality Assurance, Anuradha College of Pharmacy, Chikhli (MS), India
  • Shivprasad Dhage Department of Pharmaceutics, Pataldhamal Wadhwani College of Pharmacy, Yavatmal, 445001 (MS), India
  • Vrushabh Boralkar Department of Pharmaceutics, Sudhakarrao Naik institute of pharmacy, Pusad (MS), India
  • Tejaswini Padole Department of Pharmaceutics, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik (MS), India

Abstract

Quantum dots (QDs) are nanoparticles that have been developed for a number of biological and biomedical applications, such as drug delivery and simultaneous imaging of several cells. As a result of their unique physicochemical features, QDs have shown remarkable potential in receptor-based targeting. Functionalized QDs (f-QDs) are nano-sized smart systems that can deliver a wide spectrum of bioactive. Surface modified fluorescent carbon QDs has received interest as a targeting ligand for achieving cellular targeting with increased specificity. Several surface-designed and conjugated fluorescent carbon QDs are currently being investigated for cancer treatment, and the results are awaited with bated breath. This review emphasizes different synthesis methods, their characterizations, and different applications of QDs in cancer therapies.


Keywords: Quantum dots, Synthesis, Medical applications.

Keywords: Quantum dots, Synthesis, Medical applications

Downloads

Download data is not yet available.

Author Biographies

Om Bhurbhure, Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (MS), India

Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (MS), India

Vaishnavi Ghormade, Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (MS), India

Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (MS), India

Vinayak Katekar, Department of Quality Assurance, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (MS), India

Department of Quality Assurance, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur (MS), India

Dipali Sangule, Department of Quality Assurance, Anuradha College of Pharmacy, Chikhli (MS), India

Department of Quality Assurance, Anuradha College of Pharmacy, Chikhli (MS), India

Shivprasad Dhage, Department of Pharmaceutics, Pataldhamal Wadhwani College of Pharmacy, Yavatmal, 445001 (MS), India

Department of Pharmaceutics, Pataldhamal Wadhwani College of Pharmacy, Yavatmal, 445001 (MS), India

Vrushabh Boralkar, Department of Pharmaceutics, Sudhakarrao Naik institute of pharmacy, Pusad (MS), India

Department of Pharmaceutics, Sudhakarrao Naik institute of pharmacy, Pusad (MS), India

Tejaswini Padole, Department of Pharmaceutics, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik (MS), India

Department of Pharmaceutics, MET's Institute of Pharmacy, Bhujbal Knowledge City, Adgaon, Nashik (MS), India

References

1. Dey NS, Rao MB. Quantum dot: Novel carrier for drug delivery. Int. J. Res. Pharm. Biomed. Sci. 2011; 2(2):448-58.
2. Jain S, Shukla K, Jain V, Saraf S, Saraf S. Nanoparticles: emerging carriers for delivery of bioactive agents. Pharma Times. 2007; 39(1):30-5.
3. Murray C, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society.1993; 115(19):8706-15. https://doi.org/10.1021/ja00072a025
4. Johuson RC. Scientists active neurons with quantum dots. EE times PM EST. 2001; 5:24-8.
5. Ambhore JP, Chaudhari SR, Cheke RS, Kharkar PS. A Concise Analytical Profile of Efavirenz: Analytical Methodologies. Critical Reviews in Analytical Chemistry. 2021; 27:1-0. https://doi.org/10.1080/10408347.2021.1895711
6. Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual review of materials science. 2000; 30(1):545-610. https://doi.org/10.1146/annurev.matsci.30.1.545
7. Peng ZA, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society. 2001; 123(1):183-4. https://doi.org/10.1021/ja003633m
8. Liu YF, Yu JS. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: the effect of ligands. Journal of Colloid and Interface Science. 2009 May 15; 333(2):690-8. https://doi.org/10.1016/j.jcis.2009.01.008
9. Oluwafemi SO, Revaprasadu N, Ramirez AJ. A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles. Journal of Crystal Growth. 2008 Jun 15; 310(13):3230-4. https://doi.org/10.1016/j.jcrysgro.2008.03.032
10. Kim DJ, Lee JH, Yu JW, Kim EJ, Koo KK. Low temperature non-alkylphosphine based synthesis of cadmium selenide nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008; 313:211-5. https://doi.org/10.1016/j.colsurfa.2007.04.096
11. Mao J, Yao JN, Wang LN, Liu WS. Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier. Journal of colloid and interface science. 2008 Mar 1; 319(1):353-6. https://doi.org/10.1016/j.jcis.2007.10.027
12. Yin Y, Xu X, Ge X, Lu Y, Zhang Z. Synthesis and characterization of ZnS colloidal particles via γ-radiation. Radiation Physics and Chemistry. 1999; 55(3):353-6. https://doi.org/10.1016/S0969-806X(98)00334-X
13. Dunstan DE, Hagfeldt A, Almgren M, Siegbahn HO, Mukhtar E. Importance of surface reactions in the photochemistry of zinc sulfide colloids. Journal of physical chemistry. 1990 Aug; 94(17):6797-804. https://doi.org/10.1021/j100380a048
14. Yin Y, Xu X, Ge X, Lu Y, Zhang Z. Synthesis and characterization of ZnS colloidal particles via γ-radiation. Radiation Physics and Chemistry. 1999; 55(3):353-6. https://doi.org/10.1016/S0969-806X(98)00334-X
15. Mostafavi M, Delcourt MO, Belloni J. Kinetics of electron transfer to critical sized silver clusters complexed by polyacrylate. The Journal of imaging science and technology. 1994; 38(1):54-8.
16. Feldmann C, Metzmacher C. Polyol mediated synthesis of nanoscale MS particles (M= Zn, Cd, Hg). Journal of Materials Chemistry. 2001; 11(10):2603-6. https://doi.org/10.1039/b103167h
17. Feldmann C. Polyol-mediated synthesis of nanoscale functional materials. Solid State Sciences. 2005 Jul 1; 7(7):868-73. https://doi.org/10.1016/j.solidstatesciences.2005.01.018
18. Toneguzzo P, Viau G, Acher O, Guillet F, Bruneton E, Fievet-Vincent F, Fievet F. CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties. Journal of materials science. 2000 Aug; 35(15):3767-84. https://doi.org/10.1023/A:1004864927169
19. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental health perspectives. 2006; 114(2):165-72. https://doi.org/10.1289/ehp.8284
20. Amiri A. Solid-phase microextraction-based sol–gel technique. TrAC Trends in Analytical Chemistry. 2016; 75:57-74. https://doi.org/10.1016/j.trac.2015.10.003
21. Lifshitz E, Dag I, Litvin I, Hodes G, Gorer S, Reisfeld R, Zelner M, Minti H. Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol–gel methods. Chemical Physics Letters. 1998; 288(2-4):188-96. https://doi.org/10.1016/S0009-2614(98)00283-8
22. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology. 2004; (8):969-76. https://doi.org/10.1038/nbt994
23. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemical Society. 1997; 119(30):7019-29. https://doi.org/10.1021/ja970754m
24. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG. (CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry B. 1997; 101(46):9463-75. https://doi.org/10.1021/jp971091y
25. Neo MS, Venkatram N, Li GS, Chin WS, Ji W. Synthesis of PbS/CdS core− shell QDs and their nonlinear optical properties. The Journal of Physical Chemistry C. 2010; 114(42):18037-44. https://doi.org/10.1021/jp104311j
26. Peng H, Zhang L, Soeller C, Travas-Sejdic J. Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability. Journal of Luminescence. 2007; 127(2):721-6. https://doi.org/10.1016/j.jlumin.2007.04.007
27. Hezinger AF, Teßmar J, Göpferich A. Polymer coating of quantum dots–a powerful tool toward diagnostics and sensorics. European Journal of Pharmaceutics and Biopharmaceutics. 2008; 68(1):138-52. https://doi.org/10.1016/j.ejpb.2007.05.013
28. Kang EC, Ogura A, Kataoka K, Nagasaki Y. Preparation of water-soluble PEGylated semiconductor nanocrystals. Chemistry letters. 2004;33(7):840-1. https://doi.org/10.1246/cl.2004.840
29. Bentzen EL, Tomlinson ID, Mason J, Gresch P, Warnement MR, Wright D, Sanders-Bush E, Blakely R, Rosenthal SJ. Surface modification to reduce nonspecific binding of quantum dots in live cell assays. Bioconjugate chemistry. 2005; 16(6):1488-94. https://doi.org/10.1021/bc0502006
30. Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. science. 1998; 281(5385):2013-6. https://doi.org/10.1126/science.281.5385.2013
31. Luccardini C, Tribet C, Vial F, Marchi-Artzner V, Dahan M. Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir. 2006; 22(5):2304-10. https://doi.org/10.1021/la052704y
32. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002; 298(5599):1759-62. https://doi.org/10.1126/science.1077194
33. Kim DJ, Lee JH, Yu JW, Kim EJ, Koo KK. Low temperature non-alkylphosphine based synthesis of cadmium selenide nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008; 313:211-5. https://doi.org/10.1016/j.colsurfa.2007.04.096
34. Lipovskii A, Kolobkova E, Petrikov V, Kang I, Olkhovets A, Krauss T, Thomas M, Silcox J, Wise F, Shen Q, Kycia S. Synthesis and characterization of PbSe quantum dots in phosphate glass. Applied physics letters. 1997; 71(23):3406-8. https://doi.org/10.1063/1.120349
35. Guzelian AA, Banin U, Kadavanich AV, Peng X, Alivisatos AP. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Applied physics letters. 1996; 69(10):1432-4. https://doi.org/10.1063/1.117605
36. Rajh T, Micic OI, Nozik AJ. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. The Journal of Physical Chemistry. 1993; 97(46):11999-2003. https://doi.org/10.1021/j100148a026
37. Kuzyniak W, Adegoke O, Sekhosana K, D’Souza S, Tshangana SC, Hoffmann B, Ermilov EA, Nyokong T, Höpfner M. Synthesis and characterization of quantum dots designed for biomedical use. International Journal of Pharmaceutics. 2014; 466(1-2):382-9. https://doi.org/10.1016/j.ijpharm.2014.03.037
38. Drbohlavova J, Adam V, Kizek R, Hubalek J. Quantum dots—characterization, preparation and usage in biological systems. International journal of molecular sciences. 2009; 10(2):656-73. https://doi.org/10.3390/ijms10020656
39. Mahamuni S, Borgohain K, Bendre BS, Leppert VJ, Risbud SH. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. Journal of applied physics. 1999; 85(5):2861-5. https://doi.org/10.1063/1.369049
40. Bajwa N, Mehra NK, Jain K, Jain NK. Pharmaceutical and biomedical applications of quantum dots. Artificial cells, nanomedicine, and biotechnology. 2016; 44(3):758-68. https://doi.org/10.3109/21691401.2015.1102740
41. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Rädler J, Natile G, Parak WJ. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano letters. 2004; 4(4):703-7. https://doi.org/10.1021/nl035172j
42. Zhong X, Feng Y, Knoll W, Han M. Alloyed zn x cd1-x s nanocrystals with highly narrow luminescence spectral width. Journal of the American Chemical Society. 2003; 125(44):13559-63. https://doi.org/10.1021/ja036683a
43. Mukherjee A, Shim Y, Myong Song J. Quantum dot as probe for disease diagnosis and monitoring. Biotechnology journal. 2016; 11(1):31-42. https://doi.org/10.1002/biot.201500219
44. Sonvico F, Dubernet C, Colombo P, Couvreur P. Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Current pharmaceutical design. 2005; 11(16):2091-105. https://doi.org/10.2174/1381612054065738
45. Wang C, Gao X, Su X. In vitro and in vivo imaging with quantum dots. Analytical and bioanalytical chemistry. 2010; 397(4):1397-415. https://doi.org/10.1007/s00216-010-3481-6
46. Baoquan S, Xie W, Guangshun Y. Microminiaturied immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. Journal of Immunological Methods. 2001; 249:85. https://doi.org/10.1016/S0022-1759(00)00331-8
47. Firke S, Cheke R, Ugale V, Khadse S, Gagarani M, Bari S, Surana S. Rationale Design, Synthesis, and Pharmacological Evaluation of Isatin Analogues as Antiseizure Agents. Letters in Drug Design & Discovery. 2021 Nov 1; 18(12):1146-64. https://doi.org/10.2174/1570180818666210804145014
48. Srinivasan C, Lee J, Papadimitrakopoulos F, Silbart LK, Zhao M, Burgess DJ. Labeling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots. Molecular Therapy. 2006; 14(2):192-201. https://doi.org/10.1016/j.ymthe.2006.03.010
49. Cheke RS, Shinde SD, Ambhore JP, Chaudhari SR, Bari SB. Quinazoline: An update on current status against convulsions. Journal of Molecular Structure. 2022; 1248:131384. https://doi.org/10.1016/j.molstruc.2021.131384
50. Mulder WJ, Koole R, Brandwijk RJ, Storm G, Chin PT, Strijkers GJ, de Mello Donegá C, Nicolay K, Griffioen AW. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano letters. 2006; 6(1):1-6. https://doi.org/10.1021/nl051935m
51. Gao X, Dave SR. Quantum dots for cancer molecular imaging. Bio-applications of Nanoparticles. 2007:57-73. https://doi.org/10.1007/978-0-387-76713-0_5
52. Fang M, Yuan JP, Peng CW, Pang DW, Li Y. Quantum dots-based in situ molecular imaging of dynamic changes of collagen IV during cancer invasion. Biomaterials. 2013; 34(34):8708-17. https://doi.org/10.1016/j.biomaterials.2013.07.069
53. Wang J, Yong WH, Sun YH, Vernier PT, Koeffler HP, Gundersen MA, Marcu L. Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis. Journal of Biomedical Optics. 2007; 12(4):044021. https://doi.org/10.1117/1.2764463
54. Saad M, Garbuzenko OB, Ber E, Chandna P, Khandare JJ, Pozharov VP, Minko T. Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging?. Journal of Controlled Release. 2008; 130(2):107-14. https://doi.org/10.1016/j.jconrel.2008.05.024
55. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature medicine. 2005; 1(6):678-82. https://doi.org/10.1038/nm1247
56. Ko MH, Kim S, Kang WJ, Lee JH, Kang H, Moon SH, Hwang DW, Ko HY, Lee DS. In vitro derby imaging of cancer biomarkers using quantum dots. Small. 2009; 5(10):1207-12. https://doi.org/10.1002/smll.200801580
57. Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nature reviews Drug discovery. 2003; 2(9):717-26. https://doi.org/10.1038/nrd1177
58. Gao X, Dave SR. Quantum dots for cancer molecular imaging. Bio-applications of Nanoparticles. 2007:57-73. https://doi.org/10.1007/978-0-387-76713-0_5
59. Luo G, Long J, Zhang B, Liu C, Ji S, Xu J, Yu X, Ni Q. Quantum dots in cancer therapy. Expert opinion on drug delivery. 2012; 9(1):47-58. https://doi.org/10.1517/17425247.2012.638624
60. Fang M, Peng CW, Pang DW, Li Y. Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biology & Medicine. 2012; 9(3):151.
61. Weng KC, Noble CO, Papahadjopoulos-Sternberg B, Chen FF, Park JW. Optimizing quantum-dot conjugated immunoliposomes for cancer diagnostics and targeted therapeutics. Nanotechnology. 2007; 2:776-9.
62. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology. 2004; 22(8):969-76. https://doi.org/10.1038/nbt994
63. Adhao VS, Chaudhari SR, Ambhore JP, Sangolkar S, Thenge RR, Cheke RS, Patil AS. Reverse phase-liquid chromatography assisted protocol for simultaneous determination of lamivudine and tenofovir disoproxil fumarate in combined medication used to control HIV infection: an investigative approach. Future Journal of Pharmaceutical Sciences. 2021; 7(1):1-1. https://doi.org/10.1186/s43094-021-00233-3
64. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG. (CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry B. 1997; 101(46):9463-75. https://doi.org/10.1021/jp971091y
65. Abbasi E, Kafshdooz T, Bakhtiary M, Nikzamir N, Nikzamir N, Nikzamir M, Mohammadian M, Akbarzadeh A. Biomedical and biological applications of quantum dots. Artificial cells, nanomedicine, and biotechnology. 2016; 44(3):885-91. https://doi.org/10.3109/21691401.2014.998826
66. Azzazy HM, Mansour MM, Kazmierczak SC. From diagnostics to therapy: prospects of quantum dots. Clinical biochemistry. 2007; 40(13-14):917-27. https://doi.org/10.1016/j.clinbiochem.2007.05.018
67. Tabatabaei Mirakabad FS, Nejati-Koshki K, Akbarzadeh A, Yamchi MR, Milani M, Zarghami N, Zeighamian V, Rahimzadeh A, Alimohammadi S, Hanifehpour Y, Joo SW. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pacific Journal of Cancer Prevention. 2014; 15(2):517-35. https://doi.org/10.7314/APJCP.2014.15.2.517
68. Davaran S, Akbarzadeh A, Nejati-Koshki K, Alimohammadi S, Ghamari MF, Soghrati MM, Rezaei A, Khandaghi AA. In vitro studies of NIPAAM-MAA-VP copolymer-coated magnetic nanoparticles for controlled anticancer drug release. Journal of Encapsulation and Adsorption Sciences. 2013; 3:108-115. https://doi.org/10.4236/jeas.2013.34013
69. Kouhi M, Vahedi A, Akbarzadeh A, Hanifehpour Y, Joo SW. Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot. Nanoscale research letters. 2014; 9(1):1-6. https://doi.org/10.1186/1556-276X-9-131
70. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose SJ, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. science. 2005; 307(5709):538-44. https://doi.org/10.1126/science.1104274
71. Bentolila LA, Ebenstein Y, Weiss S. Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine. 2009; 50(4):493-6. https://doi.org/10.2967/jnumed.108.053561
72. High-Tech Synthesis of Colloidal Quantum Dots Begins in Dubna [WWW Document], n.d. URL https://en.rusnano.com/press-centre/news/88604 (accessed 5 Jan 2022)
Statistics
43 Views | 5 Downloads
How to Cite
1.
Bhurbhure O, Ghormade V, Katekar V, Sangule D, Dhage S, Boralkar V, Padole T. Quantum Dots: A New Hope for the Pharmaceutical Field. JDDT [Internet]. 15Jun.2022 [cited 1Jul.2022];12(3-S):236-44. Available from: https://jddtonline.info/index.php/jddt/article/view/5373

Most read articles by the same author(s)